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Background: Patients with non-calcified hamartoma were more susceptible to surgery or
needle biopsy for the tough discrimination from lung adenocarcinoma. Radiomics have
the ability to quantify the lesion features and potentially improve disease diagnosis. Thus,
this study aimed to discriminate non-calcified hamartoma from adenocarcinoma by
employing imaging quantification and machine learning.

Methods: Forty-two patients with non-calcified hamartoma and 49 patients with
adenocarcinoma were retrospentation; Manual lesion segmentation, feature
quantification (e.g., texture features), and artificial neural network were performed
consecutively. Independent t-test was used to conduct the inter-group comparisons of
those imaging features. Receiver operating characteristic curve was performed to
investigate the discriminating efficacy.

Results: Significantly higher contrast, cluster prominence, cluster shade, dissimilarity,
energy, and entropy in non-calcified hamartoma were observed compared with lung
adenocarcinoma. Texture-grey-level co-occurrence matrix showed a well discrimination
between non-calcified hamartoma and adenocarcinoma as the detection sensitivity,
specificity, accuracy, and the area under the curve were 87.22% ± 9.07%, 82.64% ±
8.07%, 85.11% ± 5.40%, and 0.942, respectively.

Conclusion: Quantifying imaging features is a potentially useful tool for clinical diagnosis.
This study demonstrated that non-calcified hamartoma has a heterogeneous distribution
of attenuations probably resulting from its complex organizations. Based on this property,
imaging quantification could improve discrimination of non-calcified hamartoma from
adenocarcinoma.
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INTRODUCTION

Pulmonary hamartoma is the most common benign tumor in the
lung, which constitutes approximately 8% of all neoplasms (1, 2).
Patients with pulmonary hamartoma require no further
treatment unless the lesion grows rapidly or the patients
become symptomatic during clinical follow-up (2); only
clinical monitoring is required for some patients with
confirmed symptoms (3). The presences of fat and calcification
in computed tomography (CT) detection have been reported to
be good indicators of pulmonary hamartoma (2), and nearly 45%
of 89 hamartomas were diagnosed depending on needle biopsy
(1). However, about 35% of hamartomas lack of the appearance
of fat or calcification (2), and the finding of fat was with little
specificity in discriminating benign from malignant tumors (4).
In a clinical practice, Cicco et al. (5) reported that only 26/42
(62%) of hamartoma patients in CT examination (calcification
was found in 9 patients) were diagnosed as probably benign.
Alternatively, positron emission tomography examination
reached an accuracy of 81%, indicating that nearly 20% of the
patients still had uptake characteristics suggesting malignancy
(5). Therefore, for diagnostic and therapeutic purposes, these
patients with non-calcified hamartoma (NCH) were susceptible
to suffer from unneeded surgery or needle biopsy.

Different solid tumors have different biological bases varying
from the density of tumor proliferation and the tissue
components, and by taking the advantages of quantitative
imaging technology this intra-tumoral heterogeneity can be
reflected by calculating the complicated distributions of CT
attenuations, termed imaging heterogeneity (6, 7). Therefore,
radiomics, possessing the ability to quantify the high-dimension
mineable features and identify the underlying differences,
appears to offer a nearly limitless supply of imaging
biomarkers that could potentially improve disease diagnosis
(6–9). Specifically, texture-based features have been widely
applied in the recognition tasks of pulmonary nodule, which
could provide quantitative interrelationships between voxels and
therefore capture the intra-tumoral heterogeneity (10–13).
Taken together, we hypothesized that quantifying the high-
dimension imaging features, especially the texture-based ones,
would contribute to their discriminations and potentially reduce
the invasive operations for patients with NCHs.

In the present study, we retrospectively collected 42 patients
with NCH and 49 patients with adenocarcinoma. Procedures,
including manual segmentation of lesions, feature extraction,
and artificial neural network (ANN), were performed. This study
aimed to discriminate NCH from lung adenocarcinoma by using
imaging quantification and determine the internal biological
behavior within these two tumors.
MATERIALS AND METHODS

Subjects
This retrospective study was approved by the Medical Ethic
Committee in the Second Affiliated Hospital, Zhejiang
Frontiers in Oncology | www.frontiersin.org 2
University School of Medicine, with a waiver of patients’
approvals. We retrospectively collected 42 patients with NCH
(female/male, 22/20) in the past five years. All of them showed
solid lesion, with the largest diameters from 6.6 to 32.4 mm, and
accepted either thoracic surgery or needle biopsy. No one was
diagnosed with a calcification (density > 120 HU) by experienced
radiologists in our institute. Considering the distribution of these
lesions, we found 6 lesions in the right superior lobe, 17 lesions in
the right inferior lobe, 10 lesions in the left superior lobe, and 9
lesions in the left inferior lobe.

Forty-nine patients (female/male, 34/15) diagnosed as solid
adenocarcinoma (the largest diameters from 9.1 to 40.0 mm)
were also identified by the pathologists in the same institute. The
lesions that had obvious cavitation and vessels passing through
were excluded. The biggest lesion confirmed by pathology was
segmented in a patient with pulmonary metastasis. All of these
adenocarcinoma lesions were confirmed as having no
calcification inside. To exclude the influence of obstructive
pneumonia on feature extraction, the same radiologists
confirmed that all lesions were solitary without obvious
obstructive pneumonia. In addition, there were 11 lesions in
the right superior lobe, 6 lesions in the right middle lobe, 14
lesions in the right inferior lobe, 7 lesions in the left superior lobe,
and 11 lesions in the left inferior lobe.

Table 1 showed the demographic information and
lesion descriptions.

Data Collection
The thorax images were obtained from four CT scanners in the
institute (Siemens Sensation 16-detector, Siemens Volum Zoom
4-detector, Siemens Definition AS 32-detector, GE Right Seep
RT 16-detector) with a breath-held helical acquisition, 120 or 140
kV, 120–240 mAs, and pitch 1.0–1.45. The collimations of them
were 0.75, 0.625, 0.625, and 0.6 mm, respectively. All chest
images were reconstructed with a reconstruction algorithm.
The reconstructed slice thicknesses were 1.2–1.5 mm and the
FOVs were 318–378 mm with a matrix 512 × 512 mm.

Imaging Quantification
Three-dimensional (3D) ROIs were manually extracted using
MITK open-source software in a slice-by-slice method. Two
experienced radiologists (XG and XX) who were blind to the
TABLE 1 | Demographic information and lesion descriptions.

Non-calcified
Hamartoma

Lung
Adenocarcinoma

p
value

Number (Female/
Male)

42 (22/20) 49 (34/15) 0.096

Age (years) 55.2 ± 11.4 56.8 ± 12.0 0.413
Location 0.092
Right superior lobe 6 11
Right middle lobe 0 6
Right inferior lobe 17 14
Left superior lobe 10 7
Left inferior lobe 9 11

Diameter (mm) 14.3 ± 6.0 22.6 ± 7.4 <0.05
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patient classifications conducted the 3D ROI segmentation
(Figure 1). These ROI masks, stored in NIFT format, were
converted into a ROI list where axial positions (x and y), slice
indices (z), and CT attenuation values of each voxels were
recorded. Attenuation values were normalized between m ± 3s
where m denotes the mean value and s the standard deviation.
This normalization is to reduce inter-scanner effects in CT
feature analysis. Both 3D and two-dimensional (2D) features
were extracted (Table 2): 3D attenuation features included mass,
sigmoid function parameter, and statistical attenuation; 2D
texture features included gray-level co-occurrence matrix
(GLCM) and local binary pattern (LBP). Attenuation features
record global pixel distribution without considering
neighborhood restraint, while both GLCM and LBP consider
neighborhood restraint. Moreover, GLCM makes statistics on
global neighborhood restraint, while LBP just accounts local
neighborhood restraint (14–17). Of note, GLCM and LBP were
computed from the maximum-area slice in each ROI.

For texture-GLCM, the normalized attenuation values were
decimated to 8 gray levels, based on which four co-occurrence
matrices were generated to represent texture distribution on 0°,
45°, 90°, and 135°, respectively. On each orientation, 20 features
were selected according to the previous studies (Table 2) (14, 16,
17). For texture-LBP, we computed rotation-invariant LBP codes
and calculated both spatial and histogram features of LBP
codes (15).

Figure 2 visualized features as well as the classification targets
of 91 subjects. Each row represented one sample, recording 94
features (from left to right, attenuation features, f1–f8; GLCM
features at 0 degrees, f9–f28; GLCM features at 45 degrees, f29–
f48; GLCM features at 90 degrees, f49–f68; GLCM features at 135
degrees, f69–f88; LBP features, f89–f94), and the target index on
the last column (0 denoted adenocarcinoma and 1 NCH). Prior
Frontiers in Oncology | www.frontiersin.org 3
to visualization, features on each column were linearly
normalized to be within 0 and 1, respectively.

ANN has been demonstrated to be more relevant to human
brain perception and more flexible to be extended to deep
learning classifiers such as deep stack networks or convolution
neural networks (18). Therefore, in the present study, the ANN
was implemented using Matlab feedforward networks that can be
trained to classify the above features according to target labels.
Here, a total of 94 features (80 GLCM features, 6 LBP features,
and 8 attenuation features) were taken as input neurons. Since
this paper aims to discriminate NCH from adenocarcinoma, two
output neurons are adequate. The hidden neuron size was
optimized to be 50 by 10-fold cross-validation; 100 training-
testing cycles were conducted.

As a reference, this study invited two experienced radiologists
(XX and LY, with 20 and 8 years of experience in diagnostic
radiology) to review the CT images and make a clinical diagnosis
according to their clinical knowledge. Both radiologists were
unaware of clinical and pathologic results. Agreement would be
achieved after a discussion if diagnostic inconsistency occurred.

Statistical Analysis
Independent t-test was performed to test the intergroup
difference of age distribution, and chi-square test was
performed to analyze the differences of sex distribution and
lesion location between patients with NCH and adenocarcinoma.

DICE similarity coefficient was performed to analyze the
inter-observer variability in the lesion (ROI) segmentations
between two radiologists, where the coefficient > 0.7 indicates
an excellent agreement (19, 20). To compare the intergroup
differences among 94 features, independent test was performed.
We used Bonferroni correction to reduce the type I error, so that
p < 0.0005 (0.050/94) was considered to be statistically
FIGURE 1 | A flowchart of the imaging quantification. Flowchart I: Raw data. Flowchart II: ROI segmentation. Pathologically confirmed non-calcified hamartoma from
a male patient with 44 years old locating in the left inferior lobe (A1–A2), pathologically confirmed adenocarcinoma from a female patient with 70 years old located in
the right inferior lobe (B1–B2). Flowchart III and V: Adenocarcinoma patients were labelled as positive group; Non-calcified hamartoma patients were labelled as
negative group. Flowchart IV and VI: Three kinds of features, e.g., attenuation features, GLCM features, and LBP features, were respectively extracted, and were
trained by ANN model with 10-flod cross-validation method. ROI, Region of interest; ANN, Artificial neuronal network; GLCM, Gray-level co-occurrence matrix.
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significant. As 80 features of texture-GLCM were calculated on 4
orientations, to confirm its overall efficacy, features attaching to
different orientations were averaged so that 20 pooled GLCM-
based features were analyzed. The results were corrected by
Bonferroni correction, and p < 0.0025 (0.050/20) was
considered to be statistically significant.

The receiver operating characteristic curves (ROC) are
plotted afterwards, and once the ROC curve is plotted, we can
get sensitivity, specificity, accuracy, positive predictive value
(PPV), negative predictive value (NPV), and the area under
curve (AUC) between the positive group (NCH) and the negative
(adenocarcinoma). Analyses of covariance (ANOVA) were used
to compare the AUC distributions among different ANN models
fed with texture-GLCM, texture-LBP, attenuation, and all
features. Bonferroni method was used for the multiple
comparison correction.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Demographic and Clinical Statistic
A total of 91 patients were recruited in the present study, including
42 patients with NCH and 49 patients with adenocarcinoma (Table
1). There were no significant differences in the distributions of age
(p = 0.413), sex (p = 0.096), and lesion location (p = 0.092) between
patients with NCH and adenocarcinoma. Compared with themean
diameter of the adenocarcinoma (22.6 ± 7.4 mm), the NCH had a
smaller mean diameter (14.3 ± 6.0 mm) (p < 0.050).

Features Extraction
A total of 94 features, including attenuation, texture-GLCM, and
texture-LBP, were extracted quantitatively from each lesion of
NCH and adenocarcinoma (Figure 2). Intergroup comparisons
showed that there were 53 features with significantly differences,
50 of which were derived by texture-GLCM features (p < 0.0005)
(Figure 2).

Of note, each feature defined by texture-GLCM was
calculated on 4 different orientations (0°, 45°, 90°, and 135°).
Therefore, we averaged each feature of texture-GLCM with 4
orientations to observe the overall differences between two
groups. After Bonferroni correction, averaged features, such as
contrast, cluster prominence, cluster shade, dissimilarity, energy,
and entropy, in the NCH were significantly higher than that in
the lung adenocarcinoma (P < 0.0025) (Figure 3).

Discriminating Efficacy of Imaging
Quantification
As a preliminary study to explore the underlying clinical
application of imaging quantification, we tested three
commonly used feature extraction techniques in the present
study. As texture-GLCM features derive from 4 isotropic sub-
bands, i.e., 4 different orientations, averaging across all
orientations, provided a perspective of statistical heterogeneous
distribution from which lesions with diverse imaging attributes
were projected into particular orientations. This is helpful for
machine learning techniques to predict the target of a lesion
comprehensively with low computing complexity. We observed
that the sensitivity, specificity, accuracy, and AUC were 87.22% ±
9.07%, 82.64% ± 8.07%, 85.11% ± 5.40%, 0.942 respectively for
the ANN model trained with texture-GLCM and 82.63% ±
11.38%, 67.46% ± 11.53%, 75.63% ± 7.09%, and 0.857 for that
trained with texture-LBP. For the attenuation features, the
sensitivity, specificity, accuracy, and AUC were 78.01% ±
10.55%, 73.73% ± 11.87%, 76.03% ± 7.58%, and 0.887,
respectively. Finally, by combining the whole 94 features, the
sensitivity, specificity, accuracy, and AUC were as follows:
87.23% ± 10.18%, 83.20% ± 8.61%, 85.37% ± 6.23%, and 0.951.
Figure 4 showed the performance of each ANN model fed with
corresponding feature set; AUC, PPV, and NPV were exhibited.

Among the AUC distributions among 4 ANN models fed
with different feature sets, we observed that ANN model trained
with texture-GLCM had significantly better performance than
that trained with texture-LBP and attenuation features (p < 0.001
and p = 0.006, respectively). Similar performance (texture-
October 2020 | Volume 10 | Article 568069
TABLE 2 | The information of 94 features in detail.

3D attenuation features

Mass f1: sum of ROI voxel intensities divided by
voxel numbers

Sigmoid Get sigmoid features f2, f3 and f4 from curve

fitting function: f(x) =
f2

1 + e−
x−f3
f4

Attenuation f5: mean value of attenuation
f6: standard deviation of attenuation
f7: skew value of attenuation
f8: kurtosis value of attenuation

2D texture features
GLCM features on four
orientations (0°, 45°, 90°, 135°)

f9,29,49,69: auto-correlation**
f10,30,50,70: contrast**
f11,31,51,71: correlation**
f12, 32,52,72: cluster prominence**
f13,33,53,73: cluster shade**
f14,34,54,74: dissimilarity**
f15,35,55,75: energy**
f16,36,56,76: entropy***
f17,37,57,77: homogeneity*
f18,38,58,78: maximum probability*
f19,39,59,79: sum of squares/variance**
f20,40,60,80: sum average*
f21,41,61,81: sum variance**
f22,42,62,82: sum entropy***
f23,43,63,83: difference variance**
f24,44,64,84: difference entropy***
f25,45,65,85: information measure of correlation
1**
f26,46,66,86: information measure of correlation
2**
f27,47,67,87: normalized inverse difference***
f28,48,68,88: normalized inverse difference
moment***

LBP f89: mean value of LBP codes*
f90: standard deviation of LBP codes**
f91: skew of LBP codes***
f92: kurtosis of LBP codes***
f93: histogram mean value*
f94: entropy of LBP codes***
*indicates first-order texture feature;
**indicates second-order texture feature;
***indicates high-order texture feature.
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GCLM vs. all features, p = 1.000) was observed when training the
ANN model with all features in comparison with the models
trained with texture-LBP and attenuation features (both p <
0.001). No significant difference of AUC distribution was
observed between the models trained with texture-LBP and
attenuation features (p = 0.177).
Frontiers in Oncology | www.frontiersin.org 5
Discriminative Efficacy of Experienced
Radiologists
In the discrimination between adenocarcinoma and NCH by two
experienced radiologists, the sensitivity, specificity, and accuracy
were 87.76% (43/49), 71.43% (30/42), and 80.2% (73/91).
DISCUSSION

Radiomics integrating the high-dimension features of CT data
has its limitless potential ability to identify the attenuation
distribution, which is unavailable to human visual resolution.
Through our practice of imaging quantification, our major
findings were as follows. First, NCH had a more heterogeneous
internal distribution of attenuations than adenocarcinoma,
which probably indicated the complex components of
organization inside the NCH. Then, as we hypothesized, by
implementing the imaging features into ANN classifier, NCH
could be well discriminated from lung adenocarcinoma, which
was obviously outperforming the experienced radiologists in
diagnosing NCH (ANN classifier trained with texture-GLCM
vs. experienced radiologists, 83.20% vs. 71.43%).

The heterogeneities of imaging features mainly depend on the
differences of interrelationships between voxels, which could
reflect the intra-tumoral heterogeneity (6, 7). Putting insight
into the biological behavior of different tumors, a majority of
evidences supported that the intra-tumoral heterogeneity
generally results from the different tumor growth (21), internal
necrosis (22), and complex organizations. Relative to
adenocarcinoma being the most common malignant tumor in
lung, NCH manifests a less progressive biological behavior
FIGURE 2 | Patterns-features matrix (the quantification of 94 extracted features). Each row represents one sample recording 94 features (from left to right, mass
feature, f1; sigmoid features, f2–f4; attenuation features; GLCM features at 0 degrees, f9–f28; GLCM features at 45 degrees, f29–f48; GLCM features at 90 degrees,
f49–f68; GLCM features at 135 degrees, f69–f88; LBP features, f89–f94), and the target index on the last column (0 denotes adenocarcinoma and 1 non-calcified
hamartoma). Prior to visualization, features on each column were linearly normalized to be within 0 and 1, respectively. * was considered as statistically significant
after Bonferroni correction (p < 0.0005). GLCM, Gray-level co-occurrence matrix.
FIGURE 3 | The averaged value of texture-GLCM features on 4 orientations
that showed significant difference between non-calcified hamartoma and
adenocarcinoma (after Bonferroni correction, p < 0.0025). GLCM, Gray-level
co-occurrence matrix.
October 2020 | Volume 10 | Article 568069
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indicating slower growth rate and less internal necrosis but larger
heterogeneity of tissue organizations including fibrous connective
tissue and the cartilage, fat in different proportions (23). Currently,
we observed a significantly higher averaged contrast, cluster
prominence, cluster shade, energy, and entropy in the NCH
compared to the adenocarcinoma. All these features increase
with an amplification of heterogeneity of attenuation
distribution in NCH. Nevertheless, Dennie et al. reported that
malignant tumors in the lung had more complex and
inhomogeneous internal structure compared to a benign lesion
(granulomatous nodule) quantified by texture analysis (24). The
key reason for this inconsistency was that the benign lesions both
studies included were with obviously different histological
organizations. Indeed, NCH owns greatly complex organizations
but is undetectable to human visual resolution. Therefore, the
quantitative imaging features would be helpful to identify these
differences. However, it may be suggestive that, as imaging
quantification is widely used previously (6, 7), the heterogeneity
is not always indicative of malignant lesions; the internal complex
organization should be also taken into consideration.

Because those microscopic alterations (texture features) are
imperceptible to human sight for its lacking of the diagnostic
hallmark (calcification), patients with NCH are susceptible to
accept invasive examinations including surgery resection.
Therefore, it was significant for us to test the capacity of imaging
quantification in discriminating NCH from adenocarcinoma,
which is of great importance in future clinical application. Here,
we confirmed that texture-GLCM analysis showed the highest
Frontiers in Oncology | www.frontiersin.org 6
efficacy to discriminate the lesions among the three kinds of
features, which was demonstrated to outperform the invited
experienced radiologists. Specifically, the performance of ANN
classifier trained with texture-GLCM features to correctly diagnose
NCH patients was significantly better than the radiologists (83.20%
vs. 71.43%), while they had comparable ability to diagnose
adenocarcinoma patients (87.22% vs. 87.87%). Taken together, in
future clinical practice, if it is difficult to discriminate the lesions
while NCH and adenocarcinoma are both suspected, such a
machine-learning model trained with a texture-GLCM feature
would contribute to identifying the internal distribution of
attenuations and provide evidence for the discrimination.

There were some limitations in this study. First, though we
collected the pathologically confirmed NCH with a distance of 5
years in our institute, the sample size here was relatively small,
which made it difficult to perform external validation. Therefore,
studies with larger sample size (e.g., multi-center database) would
be expected to further facilitate the clinical translation. Second,
the raw images were collected from different CT scanners. The
existence of variability in image acquisition may influence the
results, but that may not be evitable in the clinical practice. Third,
the ROI segmentation was performed manually, which might be
affected by the observers’ subjective bias. Nevertheless, for solid
lesions, manual segmentation is stable rather than ground-glass
lesions, and the DICE Similarity coefficients demonstrated an
excellent inter-observer agreement in the segmentations. Fourth,
the lack of other benign lesions consisting of single tissue
component as another reference may limit future application;
A B

DC

FIGURE 4 | The receiver operating characteristic curves of attenuation features (A), texture-GLCM (B), texture-LBP (C), and all features (D) to discriminate non-
calcified hamartoma and adenocarcinoma. GLCM, Gray-level co-occurrence matrix; LBP, Local binary pattern; PPV, Positive predictive value; NPV, Negative
predictive value.
October 2020 | Volume 10 | Article 568069
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therefore, the alterations of radiomics features among multiple
kinds of lesions should be explored in the future.
CONCLUSIONS

Quantifying imaging features is a potentially useful tool for clinical
diagnosis. Our study demonstrated that NCH has a heterogeneous
distribution of attenuations probably reflecting its complex
organizations. Based on this property, imaging quantification
could improve the discrimination of NCH from adenocarcinoma.
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