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Abstract: Coffee pulp is one of the most underutilised by-products from coffee processing. For coffee
growers, disposing of this agro-industrial biomass has become one of the most difficult challenges.
This study utilised this potential biomass as raw material for polyphenolic antifungal agents. First,
the proportion of biomass was obtained from the Arabica green bean processing. The yield of
by-products was recorded, and the high-potency biomass was serially extracted with organic solvents
for the polyphenol fraction. Quantification of the polyphenols was performed by High Performance
Liquid Chromatography (HPLC), then further confirmed by mass spectrometry modes of the liquid
chromatography–quadrupole time-of-flight (QTOF). Then, the fraction was used to test antifungal
activities against Alternaria brassicicola, Pestalotiopsis sp. and Paramyrothecium breviseta. The results
illustrated that caffeic acid and epigallocatechin gallate represented in the polyphenol fraction actively
inhibited these fungi with an inhibitory concentration (IC50) of 0.09, 0.31 and 0.14, respectively. This
study is also the first report on the alternative use of natural biocontrol agent of P. breviseta, the
pathogen causing leaf spot in the Arabica coffee.

Keywords: antifungal; antioxidant; bioactive compounds; extracts; flavonoids; losses; phenolic;
value-adding components

1. Introduction

Coffee is a beverage cash crop that is widely cultivated in the tropicals, especially
in the Americas, Africa, and Asia with global production reaching 10.5 million tons per
year [1]. Coffea arabica L. is cultivated mainly for the premium quality that the selling
price is twice as much as other varieties [2,3]. As such, the production volume of Arabica
coffee is up to 60–65% and the demand is expected to increase by ca. 10% per year [4,5].
During the coffee processing, the biological losses are accounted for up to 40–45% and
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the losses include pulp, husk, parchment, silver skin and spent coffee grounds [6]. Coffee
pulp is weighed as high as 29% of the total dried weight which is disposed of as waste
and has become an environmental pollution that incurs a high cost of management [7].
Therefore, considering their availability, which is practically of low cost, attempts have
been made in order to value-add this agro-industrial biomass through the recovery of
bioactive components [6–10].

The coffee pulp contains carbohydrates, proteins, fibres, fats, and antioxidants such as
phenolic compounds, chlorogenic acid, epicatechin [11,12] and caffeine [13]. Plant phenolic
compounds are known as effective pathogenic fungi inhibiting agents [14–16]. The possible
modes of actions include but are not limited to, toxic effects, inducing cell apoptosis,
inhibition of hypha development, inhibition of biofilm formation and disruption of cell
membrane integrity [14–16]. However, the studies on the utilisation of coffee pulp extract
to use against plant pathogenic fungi were only a few. Presently, Alternaria brassicicola is the
major pest that causes pre-postharvest diseases of various vegetables such as cabbages and
kales [17,18]. Pestalotiopsis sp. induced postharvest diseases in tropical fruits, cut flowers
and a new type of leaf fall of para rubber [19–22]. Furthermore, Paramyrothecium breviseta
was recently isolated from the leaf spot of the Arabica coffee [23–25]. To fill in the gap
mentioned above as to increase the value of the coffee pulp biomass, the objectives of this
research are to investigate types of biomass and losses during Arabica coffee processing
and to serially extract the Arabica coffee pulp and analyse the chemical compositions. The
fraction was then used as plant pathogenic antifungal agents. The outcome of this study
would ideally support the global sustainable development goals (SDGs) by providing an
alternative way to minimise the volume of non-renewable materials, thereby reducing the
cost of management and carbon footprint attached to coffee production.

2. Results and Discussion
2.1. The Phytochemical Profiles of Coffee Pulp Powder

From the initial processing step, the data indicated that the high-quality green bean
yielded only 13% of the total harvesting weight while the others remained as processing
by-products. The major by-products consisted of 54% of pulp, 12% of immature fruit and
5% of green fruit (Figure 1).

Figure 1. Losses and types of by-products from Arabica coffee processing.

In Table 1, carbohydrate was the major constituent followed by crude fibre, crude pro-
tein, crude fat and ash, respectively. The phytochemical compositions were not apparently
different in both steps, except for the contents of crude fat and crude fibre. Carbohydrate is



Plants 2021, 10, 1422 3 of 15

a dominant nutrient in the coffee pulp which is accounted for in the range 35.0–66.0% [26].
The carbohydrate compositions comprised reducing sugars (5.4%) and a high content of
pectin (20.5%) [27]. Pectin was possibly separated from the pulp and precipitated from
other components by methanol, thus a slight reduction in the content was observed.

Table 1. Phytochemical compositions of coffee pulp powder.

Coffee Pulp Powder

Compositions Before extraction (BCF) After extraction (ACF)
Moisture (%w/w) 5.98 ± 0.538 6.12 ± 0.02

Carbohydrate (%w/w) 62.78 ± 0.756 61.93 ± 1.45
Crude fibre (%w/w) 15.69 ± 0.66 18.27 ± 1.03

Crude protein (%w/w) 11.13 ± 0.009 12.09 ± 0.25 *
Crude fat (%w/w) 4.10 ± 0.265 1.23 ± 0.19 *

Ash (%w/w) 0.32 ± 0.009 0.36 ± 0.11
%Yield methanol extract 6.64 ± 1.911 -

%Yield dichloromethane extract 2.27 ± 0.287 -
Crude extracts

Polyphenols (µg/g dried sample) Methanol Dichloromethane
Total flavonoid content 1.03 ± 0.00 n/d
Total phenolic content 0.56 ± 0.00 n/d

Antioxidant activities (%)
ABTS 93.13 ± 0.64 56.09 ± 0.52
DPPH 99.44 ± 0.40 65.22 ± 5.32

n/a = not available; n/d = not detectable. Data are expressed as mean ± standard error, minimum n = 3;
* Student’s t-test analysis of the significant difference of proximate compositions of coffee pulp powder between
before and after extraction (p < 0.05).

The crude fibre content of the coffee pulp powder was ~18% and remained stable
either before or after extraction. In other works, dried coffee pulp obtained from the
residue of wet processing is widely used as a source of dietary fibre (33.6%) [28,29]. The
dietary fibre in the soluble type of carbohydrate is run off during the extraction process,
particularly when a highly polar solvent is used [30].

The protein content of the coffee pulp before and after methanolic extraction was ~12%,
which is in line with the studies of Ameca et al. [31] and Setyobudi et al. [26]. The elevating
content of protein in the pulp may involve the enzyme excretion (polygalacturonase, pectin
methylesterase and galactosidase) for pectin modification during the maturity stage [32].

The reduction of crude fat contents in the BCF (4.1%) to the ACF (1.2%) was notably
distinct. The major component of fat in coffee is unsaturated fatty acids (such as linoleic
acid) [33], which are highly dissolved in methanol, based on the principle of “like dissolves
like” [34]. The content of crude fat was somewhat low when compared to other constituents.
Other studies reported that fat content was in the range of 0.8–7.0% [26]. Mostly, fat content
in coffee was in the form of polyunsaturated and saturated fatty acids [33]. Ash content in
coffee pulp was the lowest ~0.30% in both types of raw materials. These values were much
lower than what had been reported by Ameca et al. [31] and Figueroa and Mendoza [35] at
7.0%. Generally, ash referred to minerals, as well as both micro and macronutrients [36].

The yield of the extracts obtained from methanolic extraction (6.6%) was higher
than that of dichloromethane (2.3%) extraction. Based on the polarity of the solvent,
where methanol has greater polarity than that of dichloromethane, as the major important
substances in the pulp are the polar substances, especially those of the polyphenols [37],
it is evident that the recovery of the phenolic compounds was dependent on the solvent
used and its polarity [38]. Polyphenols are often soluble in organic solvents that are less
polar than water. Effective extraction of plant material depends on the choices of the
solvent, extracting temperatures, and mechanical agitation to maximise the polyphenol
recovery [39].

Polyphenols, secondary metabolites, are categorised into two classes; flavonoids and
phenolic acids [40]. The amount of total flavonoid recovered from the coffee pulp extract
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was higher than that of total phenolic contents approximately two times by different means
of standards. These contents in the dichloromethane fraction, however, were not detected
(Table 1). This was comparable to Delgado et al. [41]. Rodríguez-Carpena et al. [42]
described that the recovery of the polyphenols from plant materials is affected by the
solubility of the phenolic compounds in the solvent of choice. Consequently, solvent
polarity plays a key role in increasing phenolic solubility [43]. Geremu et al. [37] reported
that the concentration of the total polyphenols was the highest when methanol was used
followed by acetone and ethanol, respectively. Therefore, in substantial studies, only the
methanol fraction was used.

The antioxidant activities of the extracts obtained from methanol and dichloromethane
were also evaluated using DPPH and ABTS assays. The methanol extract provided greater
efficiency in both assays than dichloromethane. The same result was also reported by
Geremu et al. [37], by which the methanolic extract gave the highest scavenging activity
(17.3–70.2%) when comparing ethanol to the acetone extracts. This corresponds with the
high polyphenol content that is able to scavenge free radicals with their hydroxyl groups.
The finding is in agreement with Haifeng et al. [44] who reported higher polyphenol
content along with high antioxidant activity. Therefore, the polyphenol content of plants
may contribute directly to their antioxidant potency [45].

2.2. Quantitative Polyphenol Analyses

Table 2 illustrates the polyphenol compositions (flavonoid and phenolic compounds)
in the coffee pulp. Among all others, epigallocatechin gallate was dominant (32.0 mg/g
extract) and caffeic acid (68.0 mg/g extract) for the flavonoids and non-flavonoids, respec-
tively. The flavonoids are further classified into flavones (apigenin), flavanones (narin-
genin), flavonols (quercetin), flavanols (catechin), isoflavones (daidzein), as well as the
phenolic acids are grouped into hydroxybenzoic (gallic acid, protocatechuic acid) and
hydroxycinnamic acids (coumaric acid, caffeic acid) [46]. The content of non-flavonoids
(caffeic acid, caffeine, p-coumaric acid, rosmarinic acid, o-coumaric acid, quercetin, gallic
acid) were greater than that of the flavonoid contents (epigallocatechin gallate, naringenin,
epicatechin gallate, catechin, gallocatechin gallate). The highest content of flavonoid and
non-flavonoid compounds were epigallocatechin gallate (31.8%) and caffeic acid (68.1%),
respectively. Heeger et al. [47] reported that chlorogenic acid, gallic acid, protocatechuic
acid and rutin are the most prominent compounds identified in the coffee pulp extracts
(>80.0% of polyphenol content). The presence of chlorogenic acid (42.2%), epicatechin
(21.6%), rutin (2.1%), catechin (2.2%), ferulic acid (1.0%) and protocatechuic acid (1.6%) has
also been found in the pulp extracted with 80.0% methanol [48].

Table 2. Polyphenol compositions of the methanolic fraction of the Arabica coffee pulp powder.

Compositions Methanol

Flavonoid
compounds (mg/g extract)

Epigallocatechin gallate 31.76 ± 0.34
Naringin 9.63 ± 0.00

Epicatechin
8.66 ± 0.01gallate

Catechin 2.41 ± 0.15

Gallocatechin
0.12 ± 0.00gallate

Quercetin 5.42 ± 0.00
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Table 2. Cont.

Compositions Methanol

Non-flavonoid compound
(mg/g extract)

Caffeic acid 68.05 ± 0.45
Caffeine 21.59 ± 0.00

P-coumaric 11.04 ± 0.02
Rosmarinic acid 6.41 ± 0.00

O-coumaric 6.24 ± 0.01
Gallic acid 2.41 ± 0.15

Data are expressed as mean ± standard error, n = 3.

The presence of the polyphenols was confirmed by the scanning modes -ESI+ and
LC-ESI- modes by the protocol set earlier in our previous work as shown in Table 3 [49].
Among the 12 quantified compounds derived from the HPLC standard curves of the
polyphenol and catechin, we were only able to confirm quercetin, gallic acid and caffeine
with the m/z values of 361.0, 171.0 and 195.0, respectively by the QTOF-MS possibly due
to the impurity of the crude methanolic fraction. These compounds were selected at a
minimum of 80% matching score. The chemical structures of the confirmed compounds are
illustrated in Figure 2. Low signal performance of the spectrometry was also problematic
for crude methanolic extract in our previous study [50]. We recommended that for further
structure elucidation the purification step should be undertaken.

Table 3. Characterisation of the methanolic fraction on quadrupole time-of-flight mass spectrometer (QTOF-MS).

Polyphenol
Groups

Relation
Time CAS No.

m/z Values
Formula Compounds Matching

Score(M + H)+ (M + NH4)+ (M + Na)+ (M +
CH3COO)−

Flavonoid

- 989-51-5 - - - - C22 H18 O11
Epigallocatechin

gallate -

- 10236-47-2 - - - - C15 H12 O5 Naringenin -

- 1257-08-5 - - - - C22 H18 O10
Epicatechin

gallate -

- 154-23-4 - - - - C15 H14 O6 Catechin -

- 4233-96-9 - - - - C22 H18 O11
Gallocatechin

gallate -

1.203 117-39-5 - - - 361.0544 C15 H10 O7 Quercetin 85.56

Non-
flavonoid

- 331-393-5 - - - - C9 H8 O4 Caffeic acid -
- 501-98-4 - - - - C9 H8 O3 p-coumaric -
- 20283-92-5 - - - - C18 H16 O8 Rosmarinic acid -
- 614-60-8 - - - - C9 H8 O3 O-coumaric -

1.222 149-91-7 171.0288 - 193.0117 - C7 H6 O5 Gallic acid 95.51

1.288 58-08-2 195.0877 212.1126 217.0747 - C8 H10 N4
O2

Caffeine
(alkaloid) 98.03

- Not able to be detected by quadrupole time-of-flight mass spectrometry (QTOF-MS).

2.3. Antifungal Activities

The results of the antifungal bioassay of the crude methanolic coffee pulp extract
at different concentrations are given in Table 4 with their comparative effectiveness as
shown in Figure 3. The results indicated that at 0.5% concentration, the methanolic extract
inhibited 78.0% growth against P. breviseta, 71.0% against A. brassicicola and the lowest
at 62.0% inhibition against Pestalotiopsis sp. The result convinces us that the coffee pulp
methanolic extract is able to accomplish antifungal activity in vitro and, more importantly,
the inhibition increases with the increasing extract concentrations [51]. Gupta et al. [51]
reported that two botanical extracts viz. Azadirachta indica, Capsicum annum were found to
be highly effective against A. brassicicola at both 15.0% and 25.0% concentrations and the
mycelial inhibition was recorded at 68.0% and 25.0% concentrations.
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Figure 2. The quadrupole time-of-flight mass chromatograms with the EIC and +TIC scan of the polyphenols in crude
methanol fraction of the coffee pulp powder with the chemical structures (a) quercetin, (b) caffeine and (c) gallic acid.

Figure 3. Inhibitory effect (inhibition zone, mm) after 7 days of inoculation of the crude methanolic fraction of coffee pulp
powder against 7 days mycelium plug of Alternaria bassicicola (CRC152), Pestalotiopsis sp. (CRC151) and Paramyrothecium
breviseta (CRC12). The concentrations of poison food were prepared at 0, 0.01, 0.03, 0.05, 0.1 and 0.5 g/mL extract in the
potato dextrose agar.
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Table 4. Antifungal inhibition and morphology of the spores and mycelium.

Alternaria brassicicola Pestalotiopsis sp. Paramyrothecium breviseta

Extract
Concentration

(g/mL)
0.01 0.03 0.05 0.10 0.50 0.01 0.03 0.05 0.10 0.50 0.01 0.03 0.05 0.10 0.50

%Inhibition 41.02 ± 4.44 a 48.71 ± 1.48 ab 52.14 ± 3.08 b 45.30 ± 2.26 ab 70.94 ± 0.85 c 29.12 ± 8.09 a 35.44 ± 5.74 a 31.23 ± 8.63 a 32.63 ± 9.95 a 62.10 ± 5.57 b 37.50 ± 7.22 a 42.71 ± 2.75 a 41.66 ± 5.80 a 47.92 ± 5.21 a 78.12 ± 3.12 b
IC50 0.09 0.31 0.14

Spore counts 8.90 ±1.5 bc ×
10−4

1.31 ± 0.01 c ×
10−5

4.9 ± 0.004 ac
× 10−4

1.1 ± 0.001 a
× 10−4 0 ± 0.0 a n/a n/a n/a n/a n/a 9.85 ± 0.001 ×

10−5
5.85 ± 0.004 b

× 10−5
5.2 ± 0.0002 c

× 10−5
6.70 ± 0.001 a

× 10−4 0 ± 0.0 a

Spore morphology
Length 15.05 ± 0.89 b 14.55 ± 1.36 b 12.85 ± 0.84 b 12.85 ± 1.00 b 0 ± 0.0 a n/a n/a n/a n/a n/a 6.65 ± 0.10 bc 6.76 ± 0.12 c 6.37 ± 0.01 b 6.65 ± 0.10 bc 0 ± 0.0 a
Width 8.56 ± 0.17 c 8.51 ± 0.21 c 8.38 ± 0.19 c 7.12 ± 0.33 b 0 ± 0.0 a n/a n/a n/a n/a n/a 1.95 ± 0.05 b 2.03 ± 0.05 b 2.22 ± 0.41 c 1.95 ± 0.45 b 0 ± 0.0 a

Cell wall
thickness 1.03 ± 0.04 c 0.95 ± 0.04 c 0.08 ± 0.04 c 0.69 ± 0.03 b 0 ± 0.0 a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Mycelial morphology
Width 4.39 ± 0.11 c 3.99 ± 0.17 bc 3.39 ± 0.15 a 3.67 ± 0.14 ab 3.88 ± 0.15 b 2.63 ± 0.11 ab 3.80 ± 0.15 c 3.01 ± 0.15 b 2.87 ± 0.14 b 2.40 ± 0.12 a 2.45 ± 0.77 a 3.09 ± 0.08 c 3.04 ± 0.01 c 2.7 ± 0.08 b 3.040 ± 0.1 c

Cell wall
thickness 0.54 ± 0.02 d 0.53 ± 0.02 d 0.47 ± 0.03 c 0.30 ± 0.02 b 0.184 ± 0.01 a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a = Not available. Data are expressed as mean ± standard error, n = 30; values followed by different letter(s) in the same parameters within the same pathogen are significantly different (p < 0.05).
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The 50.0% inhibitory concentration of the mycelial growth of A. brassicicola, Pestalotiop-
sis sp. and P. breviseta was 0.09, 0.31 and 0.14 g/mL, respectively (Table 4). Chen et al. [52]
reported a minimum concentration of crude extract that was able to inhibit conidial ger-
mination of A. solani at the lowest (0.19 mg) concentration after a 72 h incubation period.
However, the chemical profile of the extract was not reported. Phytochemical extracts are
known to exhibit antimicrobial activity from a wide variety of secondary metabolite compo-
sitions [49,53]. Crude extract from plants might be a good candidate for an antifungal agent.
Pestalotiopsis spp. can cause fruit rot in Chinese olives [54,55]. In this study, Pestalotiopsis
sp. was isolated from leaf spot disease of rose apple, however, the effective dose of the
coffee pulp extract was the highest. We believe that as an endophyte pathogen, it is able
to repel natural products synthesised within the plants per se, thereby requiring a higher
concentration for fungal inhibition. Such a mechanism has been described previously [52].
Finally, the report on antifungal effects of P. breviseta has not been documented anywhere.

The numbers of spore counts in A. brassicicola and P. breviseta decreased with the
increasing concentrations of the extract in the poison food until reaching the maximum
concentration (Figure 4). The sporulation of the fungi could be induced by environmental
stress including lack of nutrients, the resistance of the host tissues and UV light [56–59].
Plant natural products could initiate fungal cell wall stress, thereby inducing sporulation
and inhibiting fungal growth [60]. The concentration of the extracts in the potato dextrose
agar, however, did not affect spore morphology as described by spore width and length
for P. breviseta. Indeed, the result indicated the morphology alteration at the concentration
of 0.1 mg/mL in the A. brassicicola. The mycelial morphology did not illustrate many
changes in the poison food. It is possible that light microscopy would not be able to get
clear photographs of mycelium morphology. The aberrant mycelium morphology may
necessitate examination with a scanning electron microscope (SEM).

Figure 4. Effects of the crude methanolic fraction of coffee pulp powder on the fungal morphology of Alternaria brassicicola
(CRC152), Pestalotiopsis sp. (CRC151) and Paramyrothecium breviseta (CRC12) after culturing on the poison food after 7 days
of inoculation. The concentrations of poison food were prepared at 0, 0.01, 0.03, 0.05, 0.1 and 0.5 g/mL extract in the potato
dextrose agar.

2.4. Chemometric Relations

The chemometric multivariate has been used to comprehend the relationships between
bioactive ingredients and biological activities by many studies [53–55]. The score plot
relationship of the polyphenols and the biological activities are illustrated in Figure 5. All
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variations were well distributed across the plot which accounted for 96.4% in the PC1 and
2.0% in the PC2. As depicted in the Figure, the biological functional properties as described
by the antioxidant activities (either by the DPPH and ABTS assays) and antifungal activities
against all fungal strains clustered together (marked in yellow and blue). These were
projected closely to caffeic acid and epigallocatechin gallate. In contrast, the total phenol
and flavonoid displayed among the other polyphenols were projected at the opposite
end of the score plot. We were then convinced that the caffeic acid and epigallocatechin
gallate were responsible for the antifungal properties. Caffeic acid induces the pathogenic
lipolytic enzymes which disintegrate the cell membranes of the fungus, thereby causing
cell leakage. Additionally, it can directly inhibit protein synthesis in pathogen cells [51,56].
Thus, caffeic acid and its derivatives have been used against many plant-fungal pathogens
such as Aspergillus niger, Fusarium graminearum and A. alternata that cause food spoilage,
post-harvest browning and plant head white diseases [57,58]. Epigallocatechin gallate
also interferes with fungal cell wall integrity by directly binding to peptidoglycan which
has affinities toward various cell wall components [59]. Among all others, these coffee
polyphenols could also inhibit mycelial growth, inducing the production of H2O2 leading
to lipid peroxidation, and the leakage of K+, soluble protein and soluble sugars that are
responsible for the increased cell membrane permeability [60].

Figure 5. Chemometric score plot of the antifungal activities described as percentage of inhibition (%in) of Alternaria
brassicicola (CRC152), Pestalotiopsis sp. (CRC151) and Paramyrothecium breviseta (CRC12) in different concentrations of
crude methanolic extracts of coffee pulp 0, 0.01, 0.03, 0.05, 0.1 and 0.5 g/mL. Abbreviations; alter = Alternaria spp.;
pesta = Pestalotiopsis spp.; para = Paramyrothecium spp.; TTF = total flavonoid content; TTP = total phenolic content.

3. Materials and Methods
3.1. Raw Material

Fruits of the Arabica coffee (C. arabica L.) in a commercial harvesting stage (~80%
red of the overall skin colour) were hand picked from Khun Changkhian Highland Agri-
cultural Research and Training Station, Faculty of Agriculture, Chiang Mai University
(18.840093525158775, 98.89823401100753) in January 2021. The coffee cherry was trans-
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ported to the coffee processing site immediately after harvest, which they were then cleaned
by floating in tap water prior to wet processing [61]. The defective and green fruits were
then eliminated by this step. Losses (%) were recorded as biomass weight to the total mass
of raw materials. The losses of coffee processing consisted of floating and green fruits, pulp,
wet parchment and parchment. The coffee pulp was then dehydrated by sun-drying for
2 weeks followed by hot air drying until constant moisture content was reached (4.0–6.0%).
The dried material was ground to a fine powder using a high-speed food processor for
subsequent uses [62].

3.2. Microorganisms

Alternaria brassicicola (CRC152), Pestalotiopsis sp. (CRC151) and Paramyrothecium bre-
viseta (CRC12), obtained from the fungus collections of the Department of Entomology and
Plant Pathology, Faculty of Agriculture, Chiang Mai University were used for antifungal
activity tests. They were originally isolated from lettuce (Brassica rapa subsp. pekinensis),
oil palm (Elaeis guineensis L.) and coffee (C. arabica L.), respectively [63]. Morphological
characteristics of the fungus were identified using a Stemi 305 Zeiss stereo microscope and
Axiovision Zeiss Scope-A1 microscope. The isolates were submerged in 10.0% glycerol and
kept at 4 ◦C before use. All isolates were activated on the prepared potato dextrose agar
(PDA) and incubated at room temperature (28 ± 2 ◦C) for 7 days before being used [64].

3.3. Proximate Analyses

Coffee pulp powder was analysed for proximate compositions according to the meth-
ods of the Association of Official Analytical Chemists (AOAC, 2000) [62]. Crude fibre
content was analysed using the fibre analyser (Fibertherm FT12, Gerharadt, Germany).

3.4. Polyphenolic Fractions

The extraction was according to the serial extraction as described in
Wisetkomolmat et al. [65] with some modifications. One hundred grams of the coffee
pulp (CF) was first extracted with 400 mL of 95% dichloromethane for 24 h at room tem-
perature to remove compounds of low polarity such as fatty acids. The extract was then
separated through filter paper Whatman No.1. The filtrate was concentrated using a rotary
evaporator at 40.0 ◦C and used as the crude dichloromethane fraction. After that, the
remaining CF was extracted with 400 mL of 80% methanol, filtered, and concentrated as
the crude methanol fraction. Yields of those fractions were recorded, accordingly. Also,
for comparison, the proximate contents of the biomass after the serial extractions were
also examined.

3.5. Quantitative Polyphenol Analyses
3.5.1. Total Phenolic Content

As described by Sunanta et al. [66], the extract (30 µL) was mixed with 60 µL of
Folin–Ciocalteu reagent and then neutralized with 210 µL of 6.0% w/v saturated sodium
bicarbonate and kept at room temperature in the darkness for 2 h. The absorbance reading
was taken at a wavelength of 725 nm by UV-Vis spectrophotometer (SPECTROstar, BMG
LABTECH, Offenburg, Germany). The calibration standard was prepared using different
concentrations of gallic acid (10–200 mg/mL). The total phenolic content was expressed as
milligram gallic acid equivalents per gram of dried sample.

3.5.2. Total Flavonoid Content

The content of total flavonoid was determined using the modified method of
Sunanta et al. [66]. The methanolic crude extract (25 µL) was mixed with 125 µL of
distilled water and 7.5 µL of 5.0% NaNO2 solution was then added. The mixture was left
to stand at room temperature for 5 min, thereafter 15 µL of 10.0% AlCl3·6H2O was added
and incubated for 6 min. After that, 50 µL of 1 M of NaOH and 27.5 µL distilled water was
subsequently added. The absorbance of the test solution was measured at a wavelength
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of 510 nm using the UV-Vis spectrophotometer. The catechin calibration standard was
prepared at different concentrations (30–300 mg/mL). The total flavonoid content was
expressed as milligram catechin equivalents per gram of dried sample.

3.6. Antioxidant Activities
3.6.1. DPPH• Radical Scavenging Activity

The free radical-scavenging activity was determined using the method described
by Sunanta et al. [66]. Twenty-five microliters of the extract were added with 250 µL of
0.2 mM DPPH (2,2-diphenyl-1-picrylhydrazyl) and incubated in the darkness at room
temperature for 30 min. The absorbance was measured at a wavelength of 510 nm using
the UV-Vis spectrophotometer. The DPPH radical scavenging was calculated using the
following equation;

DPPH radical scavenging activity (%) = [(Abscontrol − Abssample)]/(Abscontrol)] × 100 (1)

where Abscontrol is the absorbance of DPPH radical mixed with methanol; Abssample is the
absorbance of DPPH radical reacted with sample extract/standard.

3.6.2. Total Antioxidant Activity by ABTS•+ Radical Cation Decolourization Assay

For ABTS [2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] assay, the method of
Adedapo et al. [67] was adjusted briefly. The working solution was prepared by mixing the
two stock solutions including 7.0 mM ABTS solution and 2.45 mM potassium persulfate
solution. The solutions were mixed in equal quantities and the solution was allowed to
react in the darkness at room temperature for 12–16 h. The ABTS solution was prepared
by diluting 1.0 mL ABTS with 60.0 mL of 80.0% methanol to obtain an absorbance of
0.7 ± 0.02 units at 734 nm. Thereafter, 10 µL of methanol extract and 200 µL of ABTS
working solution were pipetted into the microplate well, shaken and incubated at room
temperature for 30 min. The absorbance was then taken at 734 nm. The ABTS scavenging
capacity of the extract was calculated by the following equation;

ABTS radical scavenging activity (%) = [(Abscontrol − Abssample)]/(Abscontrol)] × 100 (2)

where Abscontrol is the absorbance of ABTS radical mixed with 80% methanol; Abssample is
the absorbance of ABTS radical reacted with sample extract/standard.

3.7. Antifungal Activities

The methanol extract was dissolved in 95% methanol at different concentrations (0.01,
0.03, 0.05, 0.1 and 0.5 g/mL). For the preparation of the poison food, 1 mL of each sample
was supplemented in a sterilised potato dextrose agar (PDA) and poured onto the petri
dish. The active fungal mycelium (plug) cultivated for 7 days (6 mm diameter) was placed
into the centre of the media and incubated at room temperature (28 ± 2 ◦C) for 7 days.
Growth development of fungal mycelium was measured and compared with negative
control (without the extract supplementation). Images of spore and mycelium were taken
by a Canon 6D camera connected with an Axiovision Zeiss Scope-A1 microscope. All
measurements were made using the Tarosoft® Image Framework program v.0.9.0.7. The
percentage of growth inhibition of the fungi was calculated using the following equation;

Percentage inhibition (%) = [(R1 − R2)/R1] × 100 (3)

where R1 is the colony radius in the control plate and R2 is the radial growth of the
pathogen in the presence of plant extract.

3.8. Quantitative Analysis of Phenolic and Flavonoid

The methanol fraction was dissolved in 95.0% methanol to a final concentration of
1 mg/mL and analysed for the polyphenol contents using a High-Performance Liquid
Chromatography analysis (HPLC) (Shimadzu, Kyoto, Japan) with an automatic injection
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(SIL-20ACHT), diode array detection (CTO-20AC), pump (LC-20AD) and automatic control
(CBM-20A). The running protocol consisted of two conditions. The first condition was
according to the modified method of Lux et al. [68]. Reverse-phase column chromatography
was performed using an Ultra Aqueous C18 (250 × 4.6 mm, 5 µm) (RESTEK, Bellefonte, PA,
USA). The mobile phase consisted of the mixtures of A and B, where mixture A contained
formic acid and distilled water with a ratio of 5:95 and mixture B included acetonitrile
(ACN) formic acid and distilled water with a ratio of 85:50:10. The gradient elution started
at a flow rate of 1 mL/min and the injection volume was 10 µL. The initial condition was
80% A in 4 min and decreased to 25% A in 8 min, 25% A hold on 2 min, and increased to
70% A in 3 min before returning to 95% A in 1 min. The total run time was 18 min per
sample. The second condition was applied by Wang et al. [69] with slight modification. The
Platinum™ C18-EPS Rocket™ (53 × 7mm 3µm) (Alltech®, Missouri, United States) was
used for reverse-phase column chromatography. The mobile phase consisted of acetonitrile
and water with a ratio of 13:87. The injection volume for all samples was 10 µL. Compounds
were monitored at 280 nm at a flow rate of 1 mL/mins. All determinations were performed
in triplicate. Chromatograms were recorded by photodiode array detection at 280 nm. The
calibration standards were prepared by serial dilutions of different polyphenols to obtain
the concentrations between 25–50 µg/mL (Figures S1 and S2).

3.9. Characterisation of the Methanolic Fraction on Quadrupole Time-of-Flight Mass Spectrometer
(QTOF-MS)

The methanolic fractions of CF confirmed the presence of the polyphenolics by QTOF-
MS coupled with ZORBAX Eclipse Plus C18 (2.1 × 150 mm, 1.8 µm) and UV–Vis detector
(Agilent Tech., Santa Clara, CA, USA). The sample preparation and cleaning up steps were
according to Arjin et al. [49]. The instrument settings were the specific protocol for the
polyphenol detection using the UV at 330 nm; 0.2 mL/min flow rate; injection volume of
10 µL. The mobile phase gradients comprised of 5% ACN and 95% water (1% formic acid),
decreasing to 20% ACN in 5 min, 30% ACN in 5 min, 35% ACN in 5 min, 45% ACN in
5 min, 75% ACN in 5 min, and 95% ACN until the run ended. The MS conditions involved
an electrospray ionization probe in positive and negative mode [70]. The nebulizer was
operated at 20 psi with 7 L/min N2 flow. The capillary temperature was maintained at
300 ◦C, while the sample flow rate was at 8 µL/min. The m/z range was 50–1000, the
capillary voltage was 4500 V, and the dry heater temperature was set at 280 ◦C.

3.10. Chemometric and Statistical Analyses

All experiments were operated in at least triplicate for each test. Comparisons of the
mean of differences in antifungal activities of CF extract fractions were analyzed using a one-
way analysis of variance and Duncan’s Multiple Range Test. All statistical analyses were
performed using the SPSS 23.0 software (SPSS Inc., Chicago, IL, USA). A p-value < 0.05 was
considered statistically significant. The relationships between the polyphenol compositions,
antioxidant and antifungal activities were analysed using Principal Component Analysis
(PCA) by the XLSTAT version 2020.

4. Conclusions

The polyphenols from the Arabica coffee pulp powder possess high inhibitory activity
against horticultural pathogens, A. brassicicola, Pestalotiopsis sp. and P. breviseta. It is worth
highlighting that this study is the first to use plant extract to control leaf spot pathogens
in coffee. It provides an alternative way to value add the coffee by-products that support
sustainable development during food production.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10071422/s1, Figure S1: Chromatograms of polyphenol standards (A); Gallic acid
(1); Catechin (2); Epicatechin (3); Gallocatechin gallate (4); Epigallocatechin gallate (5); Caffeic acid
(6); Epicatechin gallate (7); Naringin (8); P-coumeric acid (9); Rosmarinic acid (10); Quercetin (11);
O-coumeric acid (12) and crude methanolic coffee pulp extract (B) on High-Performance Liquid
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Chromatography analysis (HPLC) (Shimadzu, Kyoto, Japan), Figure S2: Chromatograms of catechin
standards and crude methanolic coffee pulp extract run on a C18 column by High-Performance
Liquid Chromatography analysis (HPLC) (Shimadzu, Kyoto, Japan).
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