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Abstract: Ion concentration polarization (ICP) is a promising mechanism for concentrating and/or
separating charged molecules. This work simulates the extraction of Li+ ions in a diluted high
Mg2+/Li+ ratio salt lake brines based on free flow ICP focusing (FF-ICPF). The model solution
of diluted brine continuously flows through the system with Li+ slightly concentrated and Mg2+

significantly removed by ICP driven by external pressure and perpendicular electric field. In a
typical case, our results showed that this system could focus Li+ concentration by ~1.28 times while
decreasing the Mg2+/Li+ ratio by about 85% (from 40 to 5.85). Although Li+ and Mg2+ ions are not
separated as an end product, which is preferably required by the lithium industry, this method is
capable of decreasing the Mg2+/Li+ ratio significantly and has great potential as a preprocessing
technology for lithium extraction from salt lake brines.

Keywords: nanofluidic; lithium extraction; membrane separation; ion concentration polarization

1. Introduction

Global demand for lithium has increased significantly over the past decades, driven by
the expanding requirement of rechargeable lithium batteries for portable electronic devices,
electric vehicles, and grid storage applications. Generally, lithium has been obtained
from two sources—hard rock ores and continental brines [1,2]. Extraction of lithium from
ores/minerals is mainly through calcination. In this method, lithium ore is calcined or
roasted and then leached to dissolve lithium into the liquid phase. In this process, a large
amount of hydrogen chloride gas is produced, which has serious pollution consequences [3].
As a result, lithium production from alternative resources, i.e., salt lake brines, is increasing
steadily over the last decades [4].

Essentially, the key task of lithium extraction from salt lake brines is the separation
of Li+ and Mg2+ ions. This is because magnesium and lithium elements possess similar
chemical properties, and magnesium must be removed in most lithium applications [5,6].
So far, several methods have been developed for extracting lithium from salt lake brines,
such as precipitation [7,8], adsorption [9], solvent extraction [10,11], calcination [12], and
membrane approaches [13,14], etc.

Generally, the precipitation method uses chemical reactions to convert Li+ into insolu-
ble substances and then separate them from the solution. This method is commonly used
in low Mg2+/Li+ ratio brines of salt lakes in South America, yielding the largest portion of
the world’s lithium productions today [15]. However, this procedure needs a large area
and a long processing time [16], and it does not work for high Mg2+/Li+ ratio salt lake
brines. The adsorption method uses ion sieve adsorbents to absorb Li+ selectively from
the brine and extract lithium in subsequent stages. It works well for high Mg2+/Li+ ratio
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brines. Still, its processes are complicated, time-consuming, and suffering from the cost
and efficiency problems of the absorbents. Solvent extraction uses an organic extractant
to extract Li+ from the brine. However, the organic extractant may solve into the brine
in this process, causing environmental pollution [17]. Calcination technology uses dried
salts obtained from the brines through heating and dissolution. The production procedures
and the suffering problems are the same as those in the calcination of mineral ores [18].
Membrane technologies use membranes to separate Li+ and Mg2+, which could be driven
by mechanical pressure (nanofiltration) [13,14] or by the electric field (electrodialysis) [19].
In a nanofiltration system, high pressure is used to push Li+ through the nanoporous
membranes while Mg2+ cannot pass through. The advantages of nanofiltration are low
energy consumption, environmental friendliness, and easy operation. However, the total
salinity of the feed solution must be low, and the cost of an ion-selective nanofiltration
membrane is high [20]. In an electrodialysis system, a monovalent ion exchange membrane
is used to transport monovalent Li+ through the membrane while blocking the permeation
of multivalent Mg2+ [21,22]. This method requires high-quality membranes, the cost of
which is still hindering its industrial applications. Further research is required to develop
new technologies based on completely new fundamental principles. In this aspect, the ion
concentration polarization (ICP) based method may play a promising role.

A preferable method for lithium extraction must be able to concentrate Li+ and remove
Mg2+ simultaneously. For the first task, i.e., the concentration of a specific kind of ions,
or generally a charged species, Wang et al. developed a micro-nanochannel ICP system
to preconcentrate proteins and peptides [23]. In their pioneer system, two microchannels
(the main channel and a buffer one) are connected by an array of nanochannels. An
electric field is applied through nanochannels from the main channel to the buffer channel.
Because the walls of nanochannels are negatively charged, only cations and positively
charged species can pass through nanochannels. As a result, the concentration of ions
in the main channel near micro-nanochannel interfaces is lower than that in the buffer
channel, i.e., ICP is induced across two ends of nanochannels [24–27]. If the electric field
across two microchannels is so high that the concentration of the ions is close to zero near
the openings of nanochannels in the main channel, an ion depletion zone (IDZ) is formed
there. The electric field in IDZ is significantly higher than those at other locations [28]. This
locally amplified electric field in IDZ can hinder the fluid-drag motion of the co-charged
species (with respect to the charges on the nanochannel walls). In Wang’s work [23], when
the negatively charged proteins or peptides migrate from the inlet to the outlet (carried by
fluid flow), they are subjected to a sharply increasing resistive electric force at the boundary
of the IDZ. For a specific molecule, if the electric force (FE) applied to it becomes equal to
the fluid drag force (FD) at a specific location, it will be trapped there. When a large number
of molecules arrive at this location, they gather and get concentrated there [29]. Using
this method, Wang et al. achieved a million-fold concentration for protein and peptide
molecules [23].

If there is more than one type of co-charged species, their force balances (between
FD, proportional to the size, and FE, proportional to the charge) will be different. As a
result, they will be focused at different locations in the microchannel. If one applies a
pressure-driven flow to make the fluid drag force FD of a charged molecule greater than the
maximum FE at the boundary of IDZ, this molecule may squeeze through IDZ and flow out
of the microchannel. In the meantime, other co-charged molecules remain trapped at the
boundary of IDZ because their fluid drag forces are lower than the maximum electric forces
at that location. In this way, selective trapping and separation of co-charged species are
realized. Based on this understanding, Ouyang et al. selectively focused DNA molecules in
the microchannel but let the proteins pass through [30]. Gong et al. studied the applicability
of this mechanism for the separation of Li+ and Mg2+ through numerical simulation. They
achieved a very low Mg2+/Li+ ratio in their product solution, but Li+ concentration is also
very low [31,32]. Later the same group proposed a method to collect Li+ enriched solution
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selectively through a branch channel, achieving simultaneous concentration of Li+ and
removal of Mg2+ [32].

In recent work, Papadimitridou et al. reported a new system to focus (and separate)
charged particles [33]. In their system, sample solutions were pumped horizontally from
left to right (as in Figures of [33]) through a macroscale chamber, with all the chamber walls
formed by large arrays of microchannels. In the meantime, an electric field was applied in
the perpendicular direction (vertically from top to bottom as in Figures of [33]). Nafion
membranes are embedded across the microchannel arrays outside the bottom boundary of
the chamber to facilitate the cation-selective transport and generate the ICP effect there. The
vertical electric field also produces an electroosmotic flow from top to bottom, which carries
all the species in the solution to move downwards and facilitates focusing of negatively
charged particles while migrating from left to right along with the pressure-driven flow.
Based on the fact that the solution runs continuously through the macroscale chamber, with
charged species focused (through ICP) and collected at the bottom right corner, this device
was referred to as a free flow ICP focusing (FF-ICPF) system. Their FF-ICPF device operates
in two modes: peak mode (the concentration of the focused analytes is significantly lower
than that of buffer ions) and plateau mode (concentrations of the focused analytes are
high enough to neutralize the counterions in the buffer). Separation of different species
can be performed in the peak mode by collecting the solutions at different groups of
microchannels at the outlet (at the right boundary of the chamber). The FF-ICPF system
in [28] can process the sample at a flow rate of 10 µL/min, significantly faster than typical
microfluidic systems. However, its enrichment factor is low: ~17 times for three dyes in
peak mode and 4–5 times in plateau mode, which is orders lower than the single-channel
devices proposed by Wang et al. [23]. In fact, concentrations of focused analytes in the peak
mode and the plateau mode had been termed as “electrokinetic limit” and “neutrality limit”
by Ouyang et al. in their theoretical work, where approximated analytical expressions and
scaling laws were given rigorously [34].

Now that the FF-ICP system has the potential to focus and separate the charged
species at a macroscopic scale, one may ask if such a system is capable of concentration
and separation of simple ions. This paper will answer this question through numerical
simulation. More specifically, we will evaluate the performance of the FF-ICP system in
separating Li+ and Mg2+ ions and check its potential role in lithium extraction from high
Mg2+/Li+ ratio salt lake brines.

2. Method
2.1. Physical Setup

Similar to the device in [33], the microfluidic device we study is composed of a
chamber surrounded by four microchannels arrays. Surfaces of the microchannels at the
upper and lower sides of the chamber are positively charged. Under the microchannels at
the upper side of the chamber, an anion exchange membrane (AEM) is embedded. Mixed
Li+, Na+, Mg2+, K+, and Cl− ions flow from left to right, driven by external pressure.

In the meantime, microchannels at the upper and lower sides of the chamber are
connected to reservoirs of NaCl solution. A strong electric field is applied from top to
bottom. This electric field will apply an upward FE to anions and a downward FE to cations
and produce IDZ near the AEM at the interfaces between microchannels and the upper
side of the chamber. This electric field also generates an upward electroosmotic flow, which
applies an additional component to FD of all the species in the chamber, on top of the fluid
drag imposed by the rightward pressure-driven flow (PDF). As a result, when a cation, e.g.,
Li+ or Mg2+, enters the chamber from the left side, it is subjected to an up-right directed FD
and a downward FE. If the drag force in the y-direction FD,y is greater than the y-component
of the electric force FE,y, the ion will move upward when moving rightward with the fluid.

On the other hand, if FD,y is smaller than FD,y, the ion moves downward. If the
y-components of two forces are equal, the ion will be balanced in that location. Because
of the ICP effect, the electric field at the boundary of IDZ is significantly higher than in
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the other regions. These uneven distributions of electric force define different equilibrium
positions in y-direction for different cation species. As shown in Figure 1a, as Li+ ion
enters the chamber at the center of the inlet, it is subject to a larger FD,y than FE,y (because
the downward electric field there is low). Hence, it will move upward as it is moving
with fluid in the right direction. When it is closer to the IDZ region, the electric field
will become stronger, and the electric force will increase. This upward motion will stop
when the two forces (FD,y and FE,y) are equal. It will move rightward and run out through
microchannels at the right side of the chamber. In the meantime, Mg2+ is subject to a
2-times higher electric field and a 1.46-times (calculated from the diffusion coefficients
shown in Table 1) higher fluid drag force as compared to those of Li+, the balance position
for Mg2+ will be lower than that of Li+. If we optimize the fluid flow speeds and the electric
field such that the focused peaks of Li+ and Mg2+ run out of the system through a different
group of microchannels, these two ion species are separated.
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Table 1. The transport parameters of the ions in the raw brine [35].

Index i Species Diffusion Coefficient Di (×10−9 m2/s) Electrophoretic Mobility µi (×10−8 m2/V·s)

1 Li+ 1.029 3.98

2 Na+ 1.334 5.152

3 Mg2+ 0.706 7.563

4 K+ 1.957 5.457

5 Cl− 2.032 7.853

2.2. Simulation Model

We use a simplified model for our simulation study, as shown in Figure 1b. In this
model, the chamber is of length L and width H. At the left and right sides of the chambers,
there are a number of microchannels of length Lc and width Hc. On the upper and lower
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boundaries of the chamber, there are a series of barriers of length Lb (representing the barrier
between microchannels in Figure 1a), the distance between, which is Lm (representing the
microchannels). We apply a constant inlet flow of u1 and a constant outlet flow of speed
u2 at the location of the microchannels on the lower and upper boundaries, respectively.
This treatment is based on the fact that the electroosmotic flow has the plug shape in
a microchannel, and the concentration of the solution in the lower and upper sides is
different. At the inlets of microchannels at the left side of the chamber, constant pressure of
P1 is applied. At the outlet of microchannels on the right side, a constant flow speed uout
is set.

To simplify our computation model, we move the AEM embedded to the microchan-
nels at the upper side of the chamber to the chamber boundary (the green sections). For
the electric field, a positive electric potential V is applied on these membranes’ segments.
At the lower boundary of the chamber, the segments corresponding to the microchannels
are grounded.

2.3. Governing Equations

For the fluid flow, the Navier–Stokes equation for an incompressible Newton fluid
is employed.

ρ

(
∂U
∂t

+ (U · ∇)U
)
= −∇P + η∇2U− ρe∇Φ (1)

ρ∇ ·U = 0 (2)

Here ρ is the fluid mass density, U is the fluid velocity, P is the pressure, and Φ is
electric potential.

Transport of charged species is modeled via the Nernst–Planck equations and the
mass conservation equation.

Ji = −Di∇Ci − Zi(DiF/RT)Ci∇Φ + UCi (3)

∇ · Ji = −
∂Ci
∂t

(4)

where Ji, Ci and Zi are flux, concentration, and valence, all for species i. For convenience, we
set i = 1 for Li+, i = 2 for Na+, and i = 3, 4, 5 for Mg2+, K+, and Cl−, respectively. Symbols F, R,
and the parameter T are the Faraday constant, gas constant, and temperature, respectively.
The Poisson equation governed the distribution of the electric field.

−∇ · (ε∇Φ) = ρe (5)

where ρe = e∑ ZiCi is the charge density, with e representing the elementary charge and ε
denoting the dielectric permittivity of the solution.

2.4. Boundary Conditions

As shown in Figure 1b, the boundary conditions illustrate as follows:
On the inlet boundaries of microchannels at the left side, (i) the pressure is P1; (ii) the

concentration of all ionic species is equal to those in the reservoir:

P = P1, Ci = Ci,0, i = 1, 2, . . . , 5 (6)

On the outlet boundaries of microchannels at the right side, (i) the free boundary condition
is applied for mass transport; (ii) the fluid flow speed is the constant uout = (uout, 0):

U = uout, ∇Ci · n = 0, i = 1, 2, . . . , 5 (7)

where n represents the outer-pointing normal vector perpendicular to the boundary of the
fluid domain.
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On the microchannel portion of the lower boundary, (i) the electric potential of the
lower boundary is 0; (ii) the velocity of the fluid is constant u1 = (0, u1); (iii) the concen-
tration of Na+ is C2,1, the concentration of Cl− is the opposite number of the sum of other
four cations:

Φ = 0, U = u1, C2 = C2,1, C5 = −∑ CiZi, i = 1, 2, 3, 4 (8)

where ci and Zi represent the variable concentration and the valence of ion i.
On the red dashed boundary, (i) a voltage V is applied on the membrane to generate

electric field; (ii) the velocity of the fluid is the constant velocity (u2 = (0, u2)); (iii) the con-
centration of Cl− at the upper boundary is Cm; (iv) fluxes of cations across the membrane
are zero. The corresponding equations can be expressed as:

Φ = V, U = u2, C5 = Cm, Ji · n = 0, i = 1, 2, 3, 4 (9)

The other black lines and black dashed lines are the microchannel walls, (i) no-slip
condition for fluid velocity; (ii) impermeability to all anions and cations:

U= 0, Ji · n= 0, i = 1, 2, . . . , 5 (10)

2.5. Numerical Methods

Simulations were carried out using COMSOL Multiphysics software (version 5.6) on a
Dell workstation (Precision 7920) equipped with an Intel Xeon processor (Gold 6128) and
112 GB of RAM. Steady-state simulations were used for all studies. Solution convection was
modeled with the “Creeping Flow” interface. Moreover, the “Transport of Diluted Species”
and the “Electrostatics” interfaces were coupled to solve the “Nernst–Planck–Poisson”
equation; 3,833,759 quadrilateral elements were utilized for meshing. Near the membrane
region, extremely fine meshes are used to ensure sufficient solution accuracy. To obtain
the highly nonlinear solution under high electric potential, we needed to start from low
voltage and sweep the high voltage parameter. Initially, the down boundary should be set
as no flux for Li+, Mg2+, and K+ to converge the simulation. After the system is stable, we
set it out to facilitate ion exchange between the chamber and the reservoir below.

As shown in Figure 1b, in the simulation model, we kept the horizontal microfins to
analyze the average ion fluxes of the outflow because the value taken on the boundary will
greatly affect the calculation result. However, we ignore the vertical ones as they do not
affect the results.

To analyze the behavior of the separation system, we started with the setting of a
particular parameter. Then, we studied the effects of two critical operational parameters, the
voltage V and velocity u, and clarified how these parameters affected system performance
to prove the feasibility of the proposed ion separation method.

3. Results and Discussions

In this simulation, the geometric parameters of the chamber are L = 90 µm, H = 31.5 µm
(see Figure 1b). The length of the microfins channel is Lc = 3 µm, and the width is
Hc = 1.5 µm, while the distance between the channels is Hb = 1.5 µm. The length of
membrane segments is Lm = 1.5 µm, Lb = 1.5 µm.

Using a simplified brine consisting of only five ions (Li+, Na+, K+, Mg2+, Cl−) [31].
After diluting the raw brine, we selected the following typical concentrations. The con-
centrations of ions (the left inlet boundary) are: C1,0 = 0.001 mM, C2,0 = 0.125 mM,
C3,0 = 0.04 mM, C4,0 = 0.04 mM, C5,0 = 0.211 mM. The ion concentrations of the lower
edge are C2,1= 0.375 mM, C5,1 = −∑ CiZi, i = 1, 2, 3, 4, where NaCl enters the chamber
from the lower boundary as a supplement buffer to maintain electrical neutrality. In the
ideal simplified model of the ion-selective membrane, the results of fixed voltage and
fixed counter ion concentration are accurate in most cases, especially in the case of high
voltage and/or high charge density [36]. At the membrane boundary, the voltage V is from



Membranes 2021, 11, 697 7 of 13

V = 0 to V = 30VT, with the thermal voltage VT equal to 25.8 mV [31]. The assumption of
charge selectivity is a fixed counterion boundary. We set the fixed concentration of Cl− at
Cm = 10C5,0 [37]. As for other parameters, we set P1 = 100 Pa, T = 300 K, ρ = 1000 kg/m3,
and η = 0.001 Pa·s, respectively.

The concentration of Na+ is not an essential research item. Although the content of
this ion in the brine is high, the Li+ can be collected in the subsequent steps [31]. Therefore,
it is easy to separate Li+ ions from it. Instead, we have to focus on the extraction quantity of
Li+ ions, especially the Mg2+/Li+ flux ratio in the microchannel and use this parameter as a
separate indicator. Steady-state solutions are used to study the performance of the system.
The governing Equations (1)–(5) are solved with the above boundary conditions (6)–(10).

We simulate the steady-state behavior of this system at V = 30VT, and the PDF
constrains the fluid velocity uout = 0.5 mm/s in the x-direction, and the velocity rate of
y-direction is u1 = 0.63 mm/s and u2 = 1 mm/s.

Comparing the two pictures (Figure 2a,b), we can find that in the black dashed box
range (18 µm ≤ y ≤ 31.5 µm), the Li+ ions concentration was much higher than the feed.
We put the collector there to get a high-resolution separation effect. The box indicates the
location of the collector.
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Figure 2. (a) The concentration distribution of Li+ in the chamber (b) The concentration distribution
of Mg2+ in the chamber. Values of other parameters: V = 30VT, uout = 0.5 mm/s, u1 = 0.63 mm/s, and
u2 = 1 mm/s.

Since the initial concentrations were different, we paid more attention to the flux of
the two ions. Most Li+ flow through the upper right of the chamber where the collector
box is located (Figure 3). The flux of Mg2+ at the right outlet of the chamber is much lower
than the feed (Figure 4). These two figures demonstrated that the proposed system could
continuously extract Li+ ions with a concentration of 1.28 times in the raw brine while
simultaneously removing Mg2+ ions.
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3.1. Effect of the Voltage

To reduce the vortices, we control the voltage within 30VT. It is noticed that only a
small fraction of current across the horizontal direction. Hence, the electric field distribution
is zero in that direction. When the voltage increases, the IDZ area becomes more extensive,
causing the cations to move downwards. Since the FE of Mg2+ ions is significantly greater
than other ions, most move to the downside reservoir. The effect of the Mg2+/Li+ separation
is significant before reaching the unstable fluid motion caused by the electric instability
(Figure 5) [38–42].

3.2. Effect of the Velocity uout

As shown in Figure 6, when the horizontal speed uout increases, the Mg2+/Li+ flux
ratio increased. Although the flux of Li+ ions increases, there is not enough time for Mg2+

to reach the downside reservoir, resulting in a significant rise in the average flux of Mg2+

and poor separation effect, specifically reflected in the increase in the Mg2+/Li+ flux ratio.
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Figure 5. The dependence of the average flux of Li+, the average flux of Mg2+ and the Mg2+/Li+ flux
ratio on V. Values of other parameters are: V = 30VT, uout = 1 mm/s, u1 = 0.63 mm/s, u2 =1 mm/s,
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Figure 6. The dependence of the average flux of Li+, the average flux of Mg2+ and the Mg2+/Li+

flux ratio on uout. Values of other parameters are: V = 30VT, u1 = 0.63 mm/s, u2 =1 mm/s,
18 µm ≤ y ≤ 31.5 µm, x = 96 µm.

3.3. Effect of the Velocity u1

When the speed u1 increases, as shown in Figure 7, in this case, the separation effect
becomes better due to the competition of the co-ions [32]. The Na+ supplemented from
below increase, the electrophoretic mobility of Na+ is between the Li+ and Mg2+, it would
behave as an electrophoretic spacer.
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Figure 7. The dependence of the average flux of Li+, the average flux of Mg2+ and the Mg2+/Li+

flux ratio on u1. Values of other parameters are: V = 30VT, uout = 0.5 mm/s, u2 = 1 mm/s,
18 µm ≤ y ≤ 31.5 µm, x = 96 µm.

3.4. Effect of the Velocity u2

The velocity u2 plays a crucial role in this system. As shown in Figure 8, when
the u2 increases, the enrichment effect of Li+ ions becomes better. As Li+ ions have the
lowest electrophoretic mobility, they have the largest upward FD than the downward FE.
Therefore, they tend to focus near the AEM. Ions with higher valence, i.e., Mg2+, are driven
to the downside reservoir by the FE.
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Figure 8. The dependence of the average flux of Li+, the average flux of Mg2+ and the Mg2+/Li+

flux ratio on u2. Values of other parameters are: V = 30VT, uout = 0.5 mm/s, u1 = 0.63 mm/s,
18 µm ≤ y ≤ 31.5 µm, x = 96 µm.

3.5. Advantages and Limitations

The advantage of this system is that the analytes are continuously flowed through the
system by a PDF while vertically separated and concentrated by ICP. Compared to other
focusing systems [43], it has a simple structure. More significantly, this method does not
involve the chemical reaction of ions in the brine. Compared with other methods such as
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nanofiltration membrane [14]. Li et al. increased the Li+ yield and improved the separation
effect of Mg2+ and Li+ by increasing the operating pressure. The Mg2+ rejection rate of 92%
was observed at a high-pressure level. Nevertheless, membrane fouling often occurs in
nanofiltration separation, and after prolonging the operation time, the separation efficiency
is reduced [31]. The typical channel size of our system is the order of tens of microns, so it
will not suffer from clogging problems. Zhang et al. added new material to the extraction
system of polymer inclusion membrane to extract Li+ from the Mg2+ rich solution (the
initial Mg2+/Li+ molar ratio is 15) [44]. They have increased the extraction rate of Li+ by
20%. However, it is necessary to reduce the loss of chemicals additive further to enhance
the stability of the membrane. Our system can operate stably without worrying about
material loss.

However, some limitations of this work should be noted. First of all, this work is
based on first-principles numerical simulation (no experience/parameter approximation).
Therefore, the proposed system should be finally verified through experiments. Secondly,
in the conventional electro-membrane process, high current density usually produces
various nonlinear effects (permeation selectivity loss, heating, over-limit behavior, water
splitting effect) [38,45–47]. When the electric convection operates in the overcurrent mode,
it will form near the ion-selective membrane. The size of these vortices increases with
electric potential, which eventually leads to fluid instability. The system can only operate
under a certain electric field strength to maintain stability.

4. Conclusions

We have proved the feasibility of continuous separation of Mg2+ and Li+ ions through
numerical simulation based on FF-ICPF. This method could perform enrichment perpen-
dicular to the flow direction of the analyte. Furthermore, the maximum Mg2+/Li+ ratio
can be decreased by ~85% under the electroneutrality limit. However, after trying various
channel structures and parameters, the enrichment factor cannot be increased, which is
the inherent disadvantage of this system. Numerical simulation shows that this limiting
behavior is confined by the accumulation of the charged particles, which affects the shape
of the electric field gradient. In the future, if the Joule heating is added, the simulation
would be more accurate.
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