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Abstract

Many areas of the United States have air pollution levels typically below Environmental Pro-

tection Agency (EPA) regulatory limits. Most health effects studies of air pollution use mete-

orological (e.g., warm/cool) or astronomical (e.g., solstice/equinox) definitions of seasons

despite evidence suggesting temporally-misaligned intra-annual periods of relative asthma

burden (i.e., “asthma seasons”). We introduce asthma seasons to elucidate whether air pol-

lutants are associated with seasonal differences in asthma emergency department (ED) vis-

its in a low air pollution environment. Within a Bayesian time-stratified case-crossover

framework, we quantify seasonal associations between highly resolved estimates of six cri-

teria air pollutants, two weather variables, and asthma ED visits among 66,092 children

ages 5–19 living in South Carolina (SC) census tracts from 2005 to 2014. Results show that

coarse particulates (particulate matter <10 μm and >2.5 μm: PM10-2.5) and nitrogen oxides

(NOx) may contribute to asthma ED visits across years, but are particularly implicated in the

highest-burden fall asthma season. Fine particulate matter (<2.5 μm: PM2.5) is only associ-

ated in the lowest-burden summer asthma season. Relatively cool and dry conditions in the

summer asthma season and increased temperatures in the spring and fall asthma seasons

are associated with increased ED visit odds. Few significant associations in the medium-

burden winter and medium-high-burden spring asthma seasons suggest other ED visit driv-

ers (e.g., viral infections) for each, respectively. Across rural and urban areas characterized

by generally low air pollution levels, there are acute health effects associated with particulate

matter, but only in the summer and fall asthma seasons and differing by PM size.

1.0 Introduction

Emergency department (ED) visits for asthma have complex drivers influenced by disease

severity, access to and utilization of various preventive care services [1], and numerous
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environmental factors [2]. Asthma exacerbations and ED visits have been associated with mul-

tiple ambient air pollutants, complex mixtures, and temporal lags [3–6]. While there is evi-

dence of seasonality, previous studies have used several common season definitions, such as

astronomical seasons defined by equinoxes and solstices (i.e., winter, spring, summer, fall),

meteorological seasons (e.g., cool, warm), and 3-month simplifications (e.g., winter: December

January, and February) to name a few. When exacerbations were linked with non-environ-

mental factors, such as body mass index (BMI), researchers employed traditional astronomical

seasons [7]. In studies focused on ambient air pollution exposures, scholars tend to define time

periods by warm and cold seasons, reflective of temporal patterns in the exposures [8–10]. In

addition, some acute health effects of air pollution studies used simplified 3-month seasonal

blocks [11, 12]. Air pollution, pollen, and viruses are several examples of seasonally-varying

environmental exposures exacerbating asthma symptoms [13–17]. Some of these exposures

may co-occur over time, while others may only partially overlap, if at all. Viral infections tend

to increase in cooler periods such as the fall and winter [18]. Seasonal associations between

rain events or thunderstorms and asthma exacerbations have been found in warmer months,

such as the spring and summer in the US, with a likely mechanism being the release of grass

pollen [19–21].

Air pollution and other place-based ambient environmental factors can interact in complex

ways among people with asthma [2]. Most short-term analyses of air pollution and asthma ED

visits focus on highly urbanized areas [8, 10, 22, 23] that tend to have higher air pollution levels

than suburban or rural areas and are monitored more thoroughly [24]. Acute health effects

studies of air pollution have been predominantly designed to estimate associations and dose-

response relationships in such urban environments. They assume that temporal variation in

asthma ED visits are driven by seasonal patterns among ambient pollutants, themselves,

despite evidence of temporally-misaligned patterns in the asthma ED visits. At the national

level, aggregated asthma ED visits peak in the fall, but there are differing regional and local sea-

sonal burdens [25–27]. Thus, study type, objectives, location, exposures, exposure levels, and

exposure timing are elements that should be considered when defining seasons for an asthma

outcome, such as emergency department visits, that can exhibit large temporal differences

within a given year.

Though controlled exposure studies of air pollutants are important for understanding dis-

ease pathways [28, 29], they are ethically untenable for a relatively severe outcome such as ED

visits. As such, epidemiologists must contend with various observational designs that attempt

to infer disease patterns in study populations. Case-crossover studies inherently control for

time-invariant characteristics and are therefore useful for studying short-term, time-varying

exposures affecting health [30]. They are additionally useful when only case data are known,

such as in administrative health datasets (e.g., ED visits), in which there are no contrasting

non-case events to provide outcome variability to develop a data model. With care, case-cross-

over models can be developed for individuals in case-only datasets because non-case events

(i.e., referents) can be strategically selected and temporally matched to the case events for each

person. Case-crossover designs do not need to be aggregated over space and therefore permit

spatially explicit exposure estimates, unlike time-series designs [31]. While time series designs

serve as a primary option for case-only data in environmental epidemiology, they apply only

one exposure estimate to all study participants in each time period. Bayesian case-crossover

models have been equally or more accurate than frequentist versions [32], and are attractive

for their robustness to model misspecification, efficiency, flexibility, and the ability to include

informative prior information. Despite their potential, at the time of writing we found only

two studies led by Li et al. (2013) and Guo et al. (2014) that had developed Bayesian case-cross-

over models for studies of acute health effects of air pollution [32, 33].
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According to the US Environmental Protection Agency (EPA), annual average particulate

matter<2.5 μm (PM2.5) levels are deemed “safe” when they are below 12 μg/m3 [34]. For par-

ticulate matter <10 μm (PM10), the average annual safety standard is 50 μg/m3 [34]. Many

rural areas with low air pollution levels (below these EPA regulatory limits) can have a rela-

tively high burden of asthma ED visits [35–37], but the environmental drivers of asthma ED

visits across urban-rural areas are understudied. In addition, few researchers have reconsid-

ered seasonal definitions to focus on the intra-annual periods of relative burden, “asthma sea-

sons”, and the unique ambient environmental drivers of those burdens across urban-rural

subpopulations.

Our specific objectives are to 1) detail trends in pediatric asthma ED visits in a large and

diverse study population and geography, and subsequently to 2) define asthma seasons to iden-

tify ambient air pollutants associated with seasonal burdens. We hypothesize that associations

between ambient air pollution and asthma ED visits vary by specific asthma seasons in a low

air pollution environment. To address our hypothesis, we estimate associations in South Caro-

lina’s (SC) asthma seasons between EPA criteria air pollutants, weather, and asthma ED visits

for children living in South Carolina from 2005 to 2014 using a Bayesian time-stratified case-

crossover design.

2.0 Methods

2.1 Health outcome

This research was approved (Pro00068172) by the Medical University of South Carolina insti-

tutional review board as a part of the SocioEnvironmental Associations with Asthma Increased

Risk (SEA-AIR) study. Consent for study participation was not required as the health out-

comes used in this study were obtained as secondary, anonymized administrative health data.

The health outcome data consisted of 66,092 ED visits with a primary diagnosis of asthma

(International Classification of Disease 9, ICD9, codes 493.XX) among children ages 5–19

years residing in South Carolina from 2005 to 2014. The South Carolina Revenue and Fiscal

Affairs (SCRFA) office linked records from multiple payor sources. To the best of our knowl-

edge, the data have population wide coverage, capturing all pediatric ED visits for asthma in

SC during the 10-year study period. Basic demographic information, diagnostic codes, dates of

admittance and discharge, and geographic identifiers were included. Records included geo-

graphic identifiers of both ZIP codes and census tracts. Records with missing census tract

identifiers (>20%) were assigned to a census tract using a novel geographic identifier assign-

ment algorithm [38]. ED records were assigned exposure and weather estimates of their billing

code census tract, respectively.

There are 1,103 census tracts in SC (2010 US Census geography), and 1,085 of them are not

water-only (i.e., off the coast) or institutional-only (e.g., correctional facility) [39]. The children

in this study lived in 1,079 of these 1,085 regular census tracts. Census tracts in SC average 70.6

sq km, or approximately half of a 12 by 12 km (144 sq km) grid cell utilized by the EPA Com-

munity Multiscale Air Quality (CMAQ) model [40]. However, census tracts vary widely in size

because they are proportional to population density, as evidenced by their range in SC from

0.42 to 819 sq km with a standard deviation of 106.8 among the 1,085 regular census tracts.

2.2 Air pollutant estimates

Estimates of air pollutant exposure were “fused” from a chemical transport model, the CMAQ

model, and monitored values at a 12 km resolution for the US by other researchers [40, 41].

Daily estimates were available for six EPA criteria pollutants: carbon monoxide (CO), nitrogen

oxides (NOx), ozone (O3), and sulfur dioxide (SO2), PM2.5, and PM10. We included NOx over
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nitrogen dioxide (NO2) because it incorporated both nitrogen oxides (NO and NO2) that have

been previously linked with asthma [42]. Furthermore, we calculated the fraction of coarse

particulate matter (PM10-2.5) by subtracting the PM2.5 estimates from the PM10 estimates,

which we included in statistical modeling instead of PM10 that incorporates fine particulates as

well.

Using ArcGIS (Environmental Systems Research Institute, Redlands, CA), the national

daily gridded air pollutant estimates were first clipped to a grid encompassing SC and a sur-

rounding 12 km buffer extending into neighboring North Carolina (NC) and Georgia (GA) to

leverage nearby grid points across state lines. The daily gridded estimates were then spatially

interpolated to population weighted census tracts in SC using inverse distance weighting

(IDW). While estimates interpolated from a 12 km grid were likely spatially smoothed by this

procedure, IDW estimates have previously been employed for the purpose of capturing tempo-

ral (i.e., daily) variation [43], which is consistent with the objectives of our acute health effects

study design.

2.3 Weather estimates

Air temperature and dewpoint temperature data were obtained from the PRISM Climate

Group in the form of daily national smooth surfaces [44]. The daily national surfaces were first

clipped to the spatial extent or SC, and we then calculated the daily spatial average for each

census tract by block kriging. Temporal trends in census tract air pollution and weather esti-

mates were assessed using box and whisker plots by season over time. Seasonal correlation pat-

terns among air pollutants were assessed by collapsing air pollution and weather estimates

over the entire study period by day of the year, sub-setting by season, calculating Spearman

correlations for estimate rankings, and visualizing in the form of heat maps.

2.4 Case and referent window selection

We used a time-stratified case-crossover design. Time-stratification of case events by year,

month, and day of the week helps control for short-term, seasonal, and long-term temporal

trends [32, 45]. Relative to other strategies, time-stratification has been shown to be the least

biased referent selection strategy in case-crossover models because of lower time trend and

“overlap” biases, respectively [46, 47]. We calculated a 3-day moving average (3DMA) over lag

days 0 (day of), 1 (1 day prior), and 2 (2 days prior) for each of the pollutant exposures and the

weather variables for every ED visit (i.e., case), respectively [8, 48, 49]. These 3DMAs repre-

sented the case windows. 3DMA referent windows were created by matching to each 3DMA

case window on year, month, and day of the week, per the time-stratified design. If a 3DMA

case window had more than three separate 3DMA referent window matches available

(depending on the count of a particular day of week within a given month), we randomly sam-

pled three 3DMA referent windows from those available. For example, the 3DMAs for respec-

tive pollutants and weather factors at the respective patient’s billing address for a hypothetical

pediatric asthma ED visit on the second Tuesday of February in 2010 (case window) would be

matched to three of the 3DMAs for the remaining Tuesdays in February of 2010 (referent win-

dows). The 3DMA referent windows provided contrasts to the 3DMA case windows for times

when each child was not admitted to the ED for asthma, respectively.

2.5 Asthma seasons

To differentiate local asthma seasons from each other and from other commonly-used defini-

tions (e.g., astronomical seasons), we graphed individual ED visits over time. To further eluci-

date intra-annual patterns indicative of relative ED visit burdens, we collapsed all ED visits
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over 2005–2014 ED by day of the year into a single graph. Visual patterns in the graphs were

used to identify short-term and long-term trends, and seasonal means were also calculated.

2.6 Statistical analysis

Our Bayesian hierarchical model (BHM) framework was constructed as follows:

yij � BernoulliðpijÞ

logitðpijÞ ¼ aþ dc þ β0pXij þ β0wW ij ð1Þ

ðb�jt�Þ � Normalð0; t� 1

�
Þ

t� � Gammað2; 1Þ

ðajtaÞ � Normalð0; t� 1

a
Þ

ta ¼
1

sda2

sda � uniformð0; 4Þ

ðdcjtdÞ � Normalð0; t� 1

d Þ

td � Gammað2; 0:5Þ

in which the log of the probability (πij) of an ED visit (yij) was modeled for i = 1,2,. . .66,092 ED

visit records and j = 1,2,3,4 case/referent windows for each record. The conditional logistic

regression model (Eq 1) at the second level of the hierarchy, included an intercept (α), and a

set of beta coefficients (βp) for each criteria pollutant (Xij), respectively. A set of respective beta

coefficients (βw) for air temperature, dewpoint temperature, and their interaction (Wij) were

also included. In statistical modeling, including an interaction between temperature and dew-

point temperature generally improved model fit. We helped control for temporal clustering by

including a random effect for each unique year-month-day combination (dc) of our study

period, which was indexed by c = 1,2,. . .840 combinations. The combination random effect

accounted for temporal patterns such as those induced by holidays or days of the week. Coeffi-

cients and random effects were assumed to follow normal distributions, each having τ preci-

sion parameters that followed gamma distributions at the next level of the hierarchy, which

were weakly informative [50, 51]. We sought to make few prior assumptions because the

effects of low-level exposures to air pollution are lesser known. But, one of the benefits of con-

ducting Bayesian analysis is the ability to incorporate prior information that can be leveraged

in future research. To improve convergence of the α intercept term, another level was added to

the hierarchy, allowing the precision term τα to be determined from a uniformly distributed

sda term. Air pollutant and weather estimates were mean-centered to improve computational

efficiency.

2.7 Model fitting and building

We fit models in the NIMBLE package in R [52–54]. NIMBLE conducts Markov chain Monte

Carlo (MCMC) sampling by recompiling models written in Bayesian Using Gibbs Sampling

PLOS ONE Associations between air pollution and “asthma seasons” in a low air pollution environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0260264 December 8, 2021 5 / 21

https://doi.org/10.1371/journal.pone.0260264


(BUGS) language (e.g., WinBUGS) into C++ language, which greatly increases computational

efficiency and stability. We fit models on all the data and season subsets, using the timing of

the case day to determine the season. We removed variables that induced variable inflation

due to high collinearity during model fitting. For instance, in all models CO was removed

because it was highly collinear with NOx, likely because their main respective sources are both

fuel combustion emissions [55]. In addition, CO estimates were calibrated using only one

monitor in all of SC and was prone to temporal gaps [56], which may have introduced more

error in its estimates relative to those of other pollutants that were monitored more compre-

hensively. In the overall, summer, and fall models, dewpoint temperature was removed due to

its high collinearity with temperature, respectively. In the summer model, SO2 was additionally

removed because it was highly collinear with NOx. We reported exponentiated β coefficients

[57] in interquartile ranges (IQR) overall and by season, and interpreted them as the odds of

an IQR increase/decrease either overall or by season (ORIQR), respectively. Analytic data and

code to reproduce the analyses using non-identifiable data are available at https://github.com/

mbozigar/asthma-seasons.

2.8 Sensitivity analyses

We assessed numerous ways to control for potentially unmeasured confounding factors via

random effects. The inclusion of spatial (structured and unstructured) and individual (i.e.,

linking records over time) factors did not improve model fit by deviance information criterion

(DIC). Defining seasons and strategies to control for seasonal trends in the overall model was

challenging. We assessed multiple temporal cut points, indicators, non-linear effects, prior dis-

tributions, and random effects. Many referent day strategies, including unidirectional asym-

metric, bidirectional symmetric, and time-stratified designs were assessed. There were minor

differences across the strategies, but main findings were consistent. Results were similar for

PM10 and PM10-2.5. We opted for the latter in statistical modeling to better differentiate it from

PM2.5 and to capture changes in the PM10-2.5 fraction over time and space from differential

local sources and contexts that have previously been found to occur in a similar geographic

area [58].

3.0 Results

3.1 Descriptive results

Fig 1 shows the study area of SC, its regions, main urban areas, 12 km CMAQ grid point loca-

tions, and population weighted census tract centroids. Regions in SC generally delineate

unique geologic and geographic features. The Lowcountry encompasses the low, coastal plain,

while the Midlands region is characterized by a somewhat sandy, hilly landscape conducive to

agriculture, and the Upstate consists of foothills of the Blue Ridge Mountains.

Table 1 shows the asthma ED visit and SC populations for children ages 5–19 years. Con-

trasted with the SC pediatric population of the same age range, the asthma ED visit population

was more male (58.5 to 51.0%), younger (46.9 to 32.1%), African American (68.0 to 28.4%),

and lived more in the Midlands region (52.4 to 49.9%) than other regions. The ED visit popu-

lation was also predominantly on public insurance such as Medicaid (58.3%) and visited an

ED in the fall (47.5%). For age-sex subgroups in the ED visit population, there were 20,034

males and 10,989 females ages 5–9 years, 11,494 males and 7,547 females ages 10–14 years, and

7,133 males and 8,895 females ages 15–19 (tabular/graphical results not shown).

Fig 2 showed that ED visits may not mirror commonly used seasonal definitions, such as

astronomical seasons. SC’s asthma seasons tended to start and end earlier, with the exception

of winter, and were thus misaligned with astronomical seasons. We defined a medium burden
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(16.5 visits/day/year) winter asthma season from January 1st to the end of February that paral-

leled the much cooler mid-winter months when children were in school. The relative increase

in ED visits indicative of medium-high burden (18.9 visits/day/year) from March 1st through

May 31st, mirroring rising, albeit fluctuating, temperatures and highly variable conditions typi-

cal of the spring allergy season when children were still in school, helped us define the SC

spring asthma season. The summer asthma season was characterized by low burden (9.4 visits/

day/year) and an earlier June 1st start and August 19th end when children were generally not in

school. Exhibiting the largest seasonal disparity (23.5 visits/day/year), the fall asthma season

was defined as starting on August 20th, the approximate beginning of the school year in SC.

This period begins with warm temperatures and then cools during a secondary allergy season

ending December 31st.

The top center panel of Fig 3 shows the repeating seasonal pattern and a slowly increasing

annual average of daily ED visits for asthma. In the remaining panels, large disparities in ED

Fig 1. Study area of South Carolina showing its regions, main urban areas, 12 km CMAQ grid point locations, and population weighted census tract centroids

(2010 US Census population estimates and geography).

https://doi.org/10.1371/journal.pone.0260264.g001
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visits were observed for males, the youngest children (ages 5–9 years), African Americans, chil-

dren on public insurance, children living in the Midlands, and seasonally in the fall asthma

season. The fall asthma season had the greatest comparative burden, including a spike effect

during the “back-to-school” period at the end of August and beginning of September. For

most groups, disparities appeared to be increasing over the study period.

Except for O3 and potentially PM10-2.5, air pollutant levels seemed to decrease over the

study period as shown in Fig 4. Each pollutant exhibited variation across seasons, with NOx,

O3 and, to a lesser extent the PM measures, having the greatest between asthma season varia-

tion. Many correlations between the pollutants differed by asthma season for all years aggre-

gated (Fig 5). For example, O3 was positively correlated with the NOx in the spring and

summer asthma seasons, but they were negatively correlated in fall and winter asthma seasons.

3.2 Statistical results

Results from the overall model of all SC ED visits for asthma among children showed increased

odds of an ED visit from elevated levels of NOx (ORIQR: 1.018, 95% CI: 1.002, 1.032) and

PM10-2.5 (ORIQR: 1.054, 95% CI: 1.026, 1.063), controlling for other time-varying and invariant

factors (Table 2). Results changed by asthma season, as air pollutants were not significantly

Table 1. Population characteristics of the age 5–19 year populations that used the emergency department (ED) for asthma from 2005 to 2014 and for the state of

South Carolina.

Age 5–19 Asthma Emergency Department Visit

Population

Age 5–19 South Carolina Population (2010 US Census

Estimates)

Stratum n (frequency %) n (frequency %) p-Value

Total 66,092 921,428 N/A

Sex

Male 38,661 (58.5) 470,072 (51.0) <0.0001

Female 27,431 (41.5) 451,356 (49.0)

Age Group

5–9 31,023 (46.9) 295,850 (32.1) <0.0001

10–14 19,041 (28.8) 297,263 (32.3)

15–19 16,028 (24.3) 328,315 (35.6)

Race

White 17,672 (26.7) 604,871 (65.6) <0.0001

African American 44,921 (68.0) 261,315 (28.4)

Other 3,499 (5.3) 55,242 (6.0)

Payor Status

Public Insurance 38,516 (58.3) Data Unavailable N/A

Private Insurance 16,835 (25.5) Data Unavailable

Other 10,723 (16.2) Data Unavailable

Asthma Season

Winter (Jan 1–Feb 28) 9,763 (14.7) N/A N/A

Spring (Mar 1–May 31) 17,414 (26.3) N/A

Summer (Jun 1–Aug

19)

7,616 (11.5) N/A

Fall (Aug 20 –Dec 31) 31,299 (47.5) N/A

Region

Upstate 13,720 (20.7) 238,341 (25.9) <0.0001

Midlands 34,616 (52.4) 459,390 (49.9)

Lowcountry 17,756 (26.9) 223,697 (24.2)

https://doi.org/10.1371/journal.pone.0260264.t001
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associated with increased ED visit odds within the medium-burden winter and medium-high-

burden spring asthma seasons. However, recognizing a small magnitude (often an order of

magnitude lower than either’s independent association, respectively; results not shown) but

statistically significant interaction between temperature and dewpoint temperature in each

model, increased temperature was associated with asthma ED visits overall and in the spring

and fall asthma seasons, respectively. Lower temperatures were significantly associated with

increased ED visits in the low-burden summer asthma season. In the summer asthma season,

there were statistically significant associations with two air pollutants: a negative association

for NOx (ORIQR: 0.954, 95% CI: 0.915, 0.991) and a positive association for PM2.5 (ORIQR:

1.162, 95% CI: 1.105, 1.222). In the high-burden fall, we found statistically significant associa-

tions with asthma ED visits that were positive for NOx (ORIQR: 1.034, 95% CI: 1.009, 1.060),

negative for PM2.5 (ORIQR: 0.970, 95% CI: 0.942, 0.998), and positive for PM10-2.5 (ORIQR:

1.144, 95% CI: 1.114, 1.177). Thus, the magnitude of the association between asthma ED visits

and PM10-2.5 was thus nearly three times greater in fall relative to an entire year.

4.0 Discussion

Our first objective was to detail trends in asthma ED visits in SC. The trends we found are

indicative of disparities over time and for specific subpopulations. Disparities generally

Fig 2. Asthma emergency department (ED) visits for ages 5–19 years from 2005 to 2014 in South Carolina grouped by admittance day of the year and

asthma season (winter: January 1 –February 28/29; spring: March 1 –May 31; summer: June 1 –August 19; fall: August 20 –December 31). Seasonal

mean daily ED visits were 16.5 visits/day/year in winter (medium burden), 18.9 visits/day/year in spring (medium-high burden), 9.4 visits/day/year in

summer (low burden), and 23.5 visits/day/year in fall (high burden).

https://doi.org/10.1371/journal.pone.0260264.g002
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increased for particular groups, including males, young children, African Americans, children

on public insurance, and children living in the Midlands in SC from 2005 to 2014 (Fig 3).

These results are partially consistent with national trends, as there are large disparities in

asthma rates and outcomes across numerous factors including race, urban-rural status, socio-

economic status (SES), and others [59–61]. But the increasing disparities in SC over time are

inconsistent with recent evidence that disparities may be plateauing in the US [62]. Further-

more, asthma ED visit disparities existed for males in the youngest age group (5–9 years) and

among females in the oldest age group (15–19 years), which reinforces evidence that puberty

and sex hormones likely play a role in asthma differences as children age [63, 64]. In addition,

Fig 3. Asthma emergency department (ED) visits for ages 5–19 years from 2005 to 2014 in South Carolina by asthma season (winter: January 1 –

February 28; spring: March 1 –May 31; summer: June 1 –August 19; fall: August 20 –December 31), sex, age group, race, payor, and geographic region.

https://doi.org/10.1371/journal.pone.0260264.g003
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the specific subpopulation that visited the ED for asthma was notably different than the SC

population of the same age 5-19-year group (Table 1). Sociodemographic and geographic dis-

parities in asthma ED visits mirror broader health disparities in SC [65–69]. Further attention

to the drivers of health disparities, including for asthma, are needed in places such as SC that

may not follow national patterns.

To address our second objective of detailing the seasonal ambient environmental drivers of

asthma ED visits, we introduced the concept of asthma seasons, defined by intra-annual peri-

ods of asthma ED visit burden. Our study location spanned both rural and urban areas, and

we sought to avoid assuming that ambient air pollutants and weather patterns were necessarily

the key seasonal influences. Overall, ED visits seemed to be increasing over time (Fig 3). ED

visit patterns in SC seem to have four discernable asthma seasons that are similar to but still

distinct from astronomical seasons, with particularly high burdens in the fall and spring

asthma seasons (Figs 2 and 3). We were especially interested in the environmental drivers of

fall and spring ED visits, given the relative disparities.

Asthma seasons should hypothetically differ by location based on geography, atmospheric

chemistry, weather, land use, ecology, viral oscillation, and other factors, but not all acute

health effects studies of air pollution adequately detail intra-annual temporal patterns of

asthma outcomes locally. Those studies that do, for example in Shanghai, found that the intra-

annual asthma burden similarly peaks over October, November, and December [9], but

Fig 4. Estimated air pollution levels over time by pollutant and asthma season (winter: January 1 –February 28; spring: March 1 –May 31; summer: June 1 –

August 19; fall: August 20 –December 31) in South Carolina from 2005 to 2014.

https://doi.org/10.1371/journal.pone.0260264.g004
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asthma ED visits there exhibit differing patterns in the remaining months of the year when

contrasted with SC. Though not a study of environmental drivers, researchers identified a

back-to-school peak when detailing asthma-related primary care provider visits by week and

by subpopulation groups in Israel [70]. Back-to-school and other intra-annual patterns in

asthma hospitalizations, in addition to exacerbation triggers, were detailed in a study in Texas

[71]. Furthermore, when using SC’s asthma seasons, pollutants similarly varied by season (Figs

4 and 5).

We observed statistically significant, positive overall associations between both NOx and

PM10 and asthma ED visits in our overall model (Table 2), even though SC is generally

Fig 5. Heatmaps showing daily correlations between estimated pollutant levels in South Carolina for 2005–2014

by asthma season (winter: January 1 –February 28; spring: March 1 –May 31; summer: June 1 –August 19; fall:

August 20 –December 31).

https://doi.org/10.1371/journal.pone.0260264.g005

Table 2. Fully adjusted estimated odds ratios for interquartile range (IQR) increases in 3-day moving averages (3DMAs) of air pollutants (ORIQR), 95% credible

intervals, and IQRs (overall and season-specific) for asthma emergency department (ED) visits among children ages 5–19 years in South Carolina (SC) from 2005 to

2014 by asthma season (winter: January 1 –February 28; spring: March 1 –May 31; summer: June 1 –August 19; fall: August 20 –December 31).

Model

Variable Overall Winter Spring Summer Fall

n = 66,092 n = 9,763 n = 17,414 n = 7,616 n = 31,299

Pollutants

NOx 1.018 0.997 1.002 0.954 1.034

(1.002,1.032) (0.958,1.039) (0.975,1.032) (0.914,0.991) (1.009,1.060)

14.641 ppb 17.482 ppb 12.006 ppb 8.327 ppb 16.639 ppb

O3 1.001 1.000 0.997 1.010 0.999

(0.987,1.018) (0.988,1.012) (0.976,1.012) (0.988,1.043) (0.983,1.016)

0.017 ppm 0.008 ppm 0.012 ppm 0.015 ppm 0.014 ppm

PM10-2.5 1.054 1.015 0.983 1.012 1.144

(1.026,1.063) (0.975,1.057) (0.951,1.015) (0.975,1.052) (1.114,1.177)

4.479 μg/m3 3.813 μg/m3 4.617 μg/m3 3.343 μg/m3 4.329 μg/m3

PM2.5 1.014 1.007 0.999 1.162 0.970

(0.997,1.031) (0.966,1.050) (0.963,1.034) (1.105,1.222) (0.942,0.998)

4.599 μg/m3 4.052 μg/m3 4.124 μg/m3 5.441 μg/m3 4.734 μg/m3

SO2 0.998 1.025 1.012 N/A 0.994

(0.984,1.012) (0.985,1.071) (0.981,1.044) (0.976,1.013)

3.727 ppb 4.881 ppb 3.723 ppb 3.618 ppb

Weather

Temp.� 1.123 1.074 1.147 0.895 1.204

(1.047,1.204) (0.976,1.177) (1.054,1.258) (0.817,0.989) (1.075,1.332)

14.26˚C 7.30˚C 8.32˚C 2.88˚C 12.77˚C

Dewp.� N/A 1.092 1.091 N/A N/A

(0.964,1.227) (0.975,1.228)

11.15˚C 10.60˚C

Note: Bold font indicates statistical significance at α level 0.05. In each cell, the first line is the ORIQR estimate, the second line is the 95% credible interval of the ORIQR,

and the third line is the overall or season-specific IQR (depending on either overall or seasonal models).

Note: Time-invariant factors, such as sociodemographic characteristics, are controlled by the case-crossover design that contrasts environmental measures for ED visit

case windows with those from referent windows, within individuals.

�Temperature and dewpoint temperature were included in a statistically significant interaction across all five models. The magnitude of effect was small, usually an

order of magnitude smaller relative to the independent associations with either temperature or dewpoint temperature and asthma ED visits.

https://doi.org/10.1371/journal.pone.0260264.t002
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considered a low air pollution state [72] and area, globally [73]. Previous studies have linked

NOx with overall asthma incidence [74], ED visits in cool seasons [3], and repeated visits [42].

Though we removed CO from statistical models because of its high collinearity with NOx, the

main sources of both NOx and CO are assumed to be emissions from fuel combustion [55]. As

such, results suggest overall, season-invariant risks from fuel combustion in SC, even at rela-

tively low overall pollutant levels.

That we found an overall, season-invariant association with PM10-2.5 and not PM2.5 in SC

(Table 2) is somewhat surprising given the wide literature linking PM2.5 with asthma [4]. Nei-

ther daily nor long-term exposure to coarse PM were statistically significantly associated with

respiratory outcomes among elderly Medicare patients [75, 76]. However, long-term exposure

to coarse PM was linked to asthma in a nationwide pediatric Medicaid cohort [77]. Research

has found that the commonly used CMAQ model has limitations in predicting ground-level

PM10 from biogenic sources [78, 79]; consequently, studies that used CMAQ-only estimates

for PM10 may have mischaracterized relationships with health outcomes. This study addresses

the limitations by using estimates from the fusion model that provide more accurate estimates

of daily PM10 [41], which may explain the improved ability for this analysis to detect health

effects for this pollutant, particularly at lower levels.

We hypothesized that associations between asthma ED visits and air pollution varied by

asthma season, and we generally found supporting evidence to corroborate the hypothesis.

Relative to the overall model, the relationship between PM10-2.5 and asthma ED visits was

stronger in the fall. While SC’s fall asthma season is, on average, neither consistently cool nor

warm (Fig 4), others have linked increased PM10 to asthma ED visits in the cool season in

nearby urban Atlanta, but not the warm season [8]. In urban Shanghai, associations between

PM10 and asthma ED visits were null overall and within both warm and cool seasons, respec-

tively. Given the results from this study, future research identifying the seasonally varying

sources and PM10 components may help elucidate those that are key drivers of seasonal differ-

ences in asthma ED visits across urban-rural areas.

A potential seasonal allergenic component of PM10 could be respirable antigenic particles

smaller than 10μm in diameter from larger pollen grains [80, 81]. Allergenic plants, such as

ragweed, release seasonal pollen during the fall season in SC and other eastern and midwestern

states, particularly in more rural and agricultural regions like the SC midlands. Allergenic par-

ticle levels tend to increase after rain events [21]. Agriculture and biomass burning, also com-

mon in the Midlands, should also be further studied as potentially important seasonally

varying sources of PM10, as seasonal variation in PM10 fractions of elemental and organic car-

bon have been attributed to seasonal agricultural activity in other contexts [82]. However,

allergens and other airborne irritants differ in mechanistic triggering of asthma exacerbations

and may interact in complex ways to affect asthma pathogenesis across individuals [2], war-

ranting additional research.

Summer had the lowest asthma burden in all of SC’s asthma seasons, yet two statistically

significant air pollutant associations were found: a negative association with NOx and a posi-

tive association with PM2.5. The estimated positive association with PM2.5, is a relationship

that others have found in warm seasons in different locations [3, 83]. NOx, reaches its lowest

and least variable levels in SC’s summer asthma season, and it may further be involved in com-

plex interactions beyond the scope of this study. The primary source of NOx is fuel combustion

emissions [55] and NOx is subsequently monitored mainly in SC’s urban areas characterized

by high vehicle traffic density [56]. As such, there is little non-urban monitored data for cali-

brating modeled NOx estimates in SC’s suburban and rural areas, which may be reflected by

the fusion model’s somewhat mediocre NOx performance relative to other pollutants [41].

Furthermore, air temperature had a relatively strong negative association, which is highly
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correlated with dewpoint temperature in summer in SC. The association with temperature,

and by extension dewpoint temperature, indicates increased ED visit odds from cooler and

drier conditions that are common in SC after weather fronts, as is similarly seen following

thunderstorms [20].

By defining seasons relative to the outcome, we found that neither criteria pollutants nor

weather were associated with asthma ED visits in a large portion of the year aligned with the

winter and spring asthma seasons (January 1st–May 31st). Additional research is needed to

tease apart drivers of ED visits in the medium-burden winter and medium-high-burden spring

asthma seasons, respectively. However, it is important to contextualize the null associations

with pollutants and weather covariates: outdoor ambient factors may simply play less of a role

during these asthma seasons.

Common viruses, including influenza, usually peak in the coldest months, usually when

people spend more time indoors [18]. Periods of high viral transmission encompass the winter

and well into parts of the fall and spring in many places in the US [18]. In SC, temperatures are

usually mild through fall, with appreciable cold temperatures often beginning only around

early January each year, defined in this study as the winter asthma season. Others have found

that daily viral transmission, annually peaking during the back-to-school portion of the fall

and later in the winter, was the key predictor of asthma hospitalizations among children, and

influenza prevalence was the key predictor of the annual winter surge in adult asthma hospital-

izations [71]. We could not formally test the hypothesis that viruses are the main driver of the

back-to-school surge in SC because we lacked viral transmission data. However, we saw a large

spike each year around the time children went back to school in SC (Figs 2 and 3) that is sug-

gestive of viral transmission as a potential contributor. Of additional interest, recent studies of

the COVID-19 pandemic have found that asthma ED visit rates during this event were signifi-

cantly reduced [84]. Researchers hypothesize that adoption of behaviors to reduce spread of

the COVID-19 virus, such as wearing masks, are mechanisms that reduced transmission of

many other types of viruses shown to exacerbate asthma [84, 85]. Given the mounting evi-

dence of seasonal viral influences on asthma exacerbations, particularly during cold weather

periods, future studies of the environmental drivers of seasonal differences in asthma should

prioritize inclusion of such data.

Neither PM2.5 nor PM10 were significantly associated with ED visits in the spring asthma

season. That no associations were found suggests that antigenic pollen particles from common

spring-blooming plants such as grass and trees may have a minor or negligible role in asthma

ED visits in a state like SC during its spring asthma season. This result contrasts with findings

from many studies that have identified positive associations between asthma exacerbation

events, such as ED visits, and both grass and tree pollen counts [12, 14, 16, 17, 19]. To more

robustly assess hypotheses related to pollen in SC, inclusion of spatio-temporally varying pol-

len counts, species types, and particle size distributions need to be included.

4.1 Limitations

This research did not measure personal exposures, as it relied on interpolated census tract esti-

mates of daily air pollutants and weather. Some air pollutants tend to vary greatly by location

and across and within days (i.e., spatio-temporally). This research could not incorporate indi-

vidual sensitivities to specific allergens, nor other individual asthma case-related information.

We were unable to incorporate spatio-temporally resolved pollen counts or estimates, nor sim-

ilar data for viruses. Time-varying indoor exposures such as environmental tobacco smoke

(ETS) usage was not included. Similarly, children are not static in one location daily, but

spend time indoors and outdoors at home, school, and many other locations. Consequently,
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there was potential for exposure misclassification. In addition, we found a few implausible pro-

tective associations that were potentially indicative of bias introduced by other complex envi-

ronmental factors and synergisms, inaccurate estimates, uncontrolled confounders, or other

factors. It indicated that even with relatively precise spatio-temporal resolution exposure esti-

mates, teasing out independent effects of single environmental factors among many in a low-

ambient air pollution using administrative health data setting remains highly challenging. It

makes a case for incorporating environmental mixtures as opposed to single pollutant study

designs. Finally, though we relied on 3-day moving averages guided by previous research find-

ings, other lag structures may indicate significant associations between the same pollutants we

identified by season, or different combinations.

4.2 Conclusion

We identified increasing asthma disparities across several socio-demographic factors in SC

from 2005–2014, a departure from the plateauing national trend. We uniquely outlined the

concept of asthma seasons that were defined by local intra-annual periods of relative burden.

From such a perspective, the fall asthma season was the most burdensome for ED visits among

children, followed by the spring and winter asthma seasons. The summer asthma season was

the least burdensome. Results from Bayesian case-crossover analyses supported our hypothesis

that associations between air pollution, weather, and asthma ED visits varied by asthma season.

Across urban-rural areas characterized by generally low air pollution levels, there were acute

health effects associated with NOx, particulate matter, and weather. But, associations differed

by asthma season and PM size. With discretion, these results may be somewhat generalizable

to geographically, demographically, and climatically-similar southern states. Our Bayesian

methodology is reproducible for any location and can be tailored to any spatio-temporally-

varying exposures for identifying and elucidating the acute health effects of local environmen-

tal exposures.
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