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Neurotrophic factors (NTF) are small, versatile proteins

that maintain survival and function to specific neuronal

populations. In general, the axonal transport of NTF is

important as not all of them are synthesized at the site of

its action. Nerve growth factor (NGF), for instance, is

produced in the neocortex and the hippocampus and

then retrogradely transported to the cholinergic neurons

of the basal forebrain. Neurodegenerative dementias like

Alzheimer’s disease (AD) are linked to deficits in axonal

transport. Furthermore, they are also associated with

imbalanced distribution and dysregulation of NTF. In

particular, brain-derived neurotrophic factor (BDNF)

plays a crucial role in cognition, learning and memory

formation by modulating synaptic plasticity and is,

therefore, a critical molecule in dementia and neurode-

generative diseases. Here, we review the changes of NTF

expression and distribution (NGF, BDNF, neurotrophin-3,

neurotrophin-4/5 and fibroblast growth factor-2) and

their receptors [tropomyosin-related kinase (Trk)A, TrkB,

TrkC and p75NTR] in AD and AD models. In addition, we

focus on the interaction with neuropathological hall-

marks Tau/neurofibrillary tangle and amyloid-b (Abe-

ta)/amyloid plaque pathology and their influence on

axonal transport processes in order to unify AD-specific

cholinergic degeneration and Tau and Abeta misfolding

through NTF pathophysiology.
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From ‘healthy’ aging to Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disorder that

is characterized by global cognitive decline including a pro-
gressive loss of memory, orientation and reasoning. The

neurologist and psychiatrist Alois Alzheimer extensively
described a dementia syndrome of his patient D. Auguste,

whom he treated in Frankfurt am Main, Germany at the
beginning of the past century (Jarvik & Greenson 1987). He

recorded a rapidly progressingmemory loss of the 52-year-old
woman. After her death, he examined her brain and found

histological changes that are specific for AD.
Age-associated dementias like AD are becoming more and

more important in industrialized countries as life expectancy

increased by 2 years per decade during the recent 20 years
(Klenk et al. 2007). The incidence of age-associated demen-

tias is about 1.3% of the total population of Western Europe;
among them, AD is the most common, affecting 50% of all

demented patients (Ferri et al. 2005; Hofman et al. 1991). This
is likely to increase dramatically in the next 35 years. Accord-

ing to recent estimations, the number of people with demen-
tia over the age of 60 will be approximately doubled in 2040.

An irreversible loss of cognitive and mental abilities is the
prognosis of this disorder. In later stages, demented patients

are helpless and require full-time nursing care. Besides the
personal and familial tragedies that are an aspect of dementia,

AD and other dementias are a financial problem for the health
service and, thereby, a burden for the whole social commu-

nity. And this cost will rise in future as more and more
persons are aging and becoming older.

Neuropathological changes in the AD brain

Histologically, the neurodegeneration is distinguished by

neuropathological changes and deposits of misfolded pro-
teins, mainly consisting of hyperphosphorylated Tau in neu-

rofibrillary tangles and amyloid-b (Abeta) in the form of senile
plaques and deposits in cerebral blood vessels.

Neurofibrillary tangles

Neurofibrillary tangles consist of hyperphosphorylated Tau
proteins that aggregate inside neurons along neurites –

observed as neuropil threads – and finally in the soma. Tau
proteins belong to the microtubule-associated protein family.

They are mainly found in neurons. Nonneuronal cells usually
display trace amounts, but in some diseases, accumulation of

tau in glial cells is detected (Bergeron et al. 1997).
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The human Tau gene is located on chromosome 17 and
contains 16 exons. Alternative splicing of three of these

exons (exons 2, 3 and 10) allows for six combinations
(2�3�10�; 2þ3�10�; 2þ3þ10�; 2�3�10þ; 2þ3�10þ
and 2þ3þ10þ) in the human brain. Tau proteins constitute
a family of six isoforms, which range from 352 to 441 amino

acids and have a high number of phosphorylation sites. Tau
proteins bind microtubules through repetitive regions in their

C-terminal part. These repetitive regions are the repeat
domains (R1–R4) encoded by exons 9–12. The three (3R) or

four copies (4R) are made of a highly conserved 18-amino acid
repeat separated from each other by less conserved 13- or

14-amino acid interrepeat domains. Furthermore, the six Tau
isoforms appear not to be equally expressed in neurons (for

detailed review, see Sergeant et al. 2005). Tau proteins are
known to act as promoters of tubulin polymerization in vitro

and are involved in axonal transport.
A couple of evidences support a role for the microtubule-

binding domain in the modulation of the phosphorylation state
of Tau proteins. In a low phosphorylated state, Tau binds to

microtubules through the microtubule-binding domains and
stabilizes their polymerization and assembly. However,

microtubule assembly depends partially upon the phosphor-
ylation state as phosphorylated Tau proteins are less effective

than nonphosphorylated Tau proteins on microtubule poly-
merization. Phosphorylation insideandoutside themicrotubule-

binding domains can strongly influence tubulin assembly by

modifying theaffinitybetweenTauandmicrotubules.However,
properly assembled microtubules are essential to maintain

axonal transport processes.
Most of the kinases involved in Tau phosphorylation include

mitogen-activated protein kinase (MAPK), Tau-tubulin kinase
and cyclin-dependent kinase. Stress-activated protein kinases

have also been recently linked to Tau phosphorylation.
Glycogen synthase kinase-3b (GSK-3b) is a Tau kinase that

is able to phosphorylate both non-Ser/Thr-Pro sites and Ser/
Thr-Pro sites.

In numerous neurodegenerative disorders, Tau proteins
aggregate into intraneuronal filamentous inclusions. In AD,

these filaments are named paired helical filaments (PHF).
Few phosphorylation-dependent antibodies such as AT100,

AP422 or TG3/MC1 antibodies only detect PHF-tau, demon-
strating the presence of abnormal phosphorylated sites. With

the exception of Ser422, these phosphorylated sites found in
PHF-tau are in addition conformation-dependent epitopes

(Sergeant et al. 2005). There is a direct relationship between
hyperphosphorylation, abnormal phosphorylation and Tau

aggregation, but it remains to be determined whether phos-
phorylation is a cause or a consequence in the aggregation

process.
During normal aging, Tau hyperphosphorylation occurs in the

transentorhinal cortex and spreads from here through the
entorhinal cortex to the hippocampus (Braak & Braak 1991;

Delacourte et al. 2002). Once the hippocampus is reached,
amyloid plaquesmayoccur, and then the Tau pathology spreads

over to the basal forebrain and several cortical areas in a distinct
pattern along neuronal projections. Only the coexistence of Tau

and amyloid pathologies is determined as AD.
To comprehend the role and mechanism of Tau pathology

in AD, it is important to understand the normal function and

processing of the Tau protein and the abnormal posttransla-
tional processing of Tau in tauopathies. Mutations in the Tau

gene have been found in several non-AD tauopathies and
autosomal-dominant neurodegenerative disorders that

exhibit extensive neurofibrillary pathology. However, Tau
pathology observed in aging and AD is sporadic and not

related to any mutation.

Amyloid plaques

A major feature of both sporadic and familial forms of AD is
the accumulation and deposition of Abeta – a peptide of

39–43 residues – within the brain tissue of AD sufferers. The
accumulation of Abeta is thought to play a pivotal role in

neuronal loss or dysfunction through a cascade of events that
include the generation of free radicals, mitochondrial oxida-

tive damage and inflammatory processes. The primary event
that results in the abnormal accumulation of Abeta is thought

to be the dysregulated proteolytic processing of its parent
molecule, the amyloid precursor protein (APP) located on

chromosome 21 (Selkoe 2001). The APP molecule is a trans-
membrane glycoprotein that is proteolytically processed by

two competing pathways, the nonamyloidogenic and the
amyloidogenic (Abeta-forming) pathways. How these path-

ways are regulated remain unclear. Three major secretases
are postulated to be involved in the proteolytic cleavage of

APP. These include a-secretase (of which the metallopro-

teases a disintegrin and metalloprotease (ADAM)17/TNF-
alpha converting enzyme (TACE) and ADAM10 are likely

candidates), beta APP cleaving enzyme (BACE, formally
known as b-secretase) and the g-secretase. The a-secretase
cleaves within the Abeta domain of APP, thus precluding the
formation of Abeta and generating nonamyloidogenic frag-

ments and a secreted form of APP (a-APPs). In the amyloido-
genic pathway, BACE cleaves near the N-terminus of the

Abeta domain on the APPmolecule, liberating another soluble
form of APP, b-APP, and a C-terminal fragment (C99) con-

taining the whole Abeta domain. The last step in the amyloi-
dogenic pathway is the intramembranous cleavage of the C99

fragment by g-secretase, to liberate a number of Abeta
isoforms of 39- to 43-amino acid residues in length (Verdile

et al. 2004). The same g-secretase complex that generates
Abeta may also generate the APP intracellular domain. The

most common isoforms are Abeta40 and Abeta42; the shorter
form is typically produced by cleavage that occurs in the

endoplasmic reticulum, while the longer form is produced by
cleavage in the trans-Golgi network. The Abeta40 form is the

more common of the two, but Abeta42 is the more fibrillo-
genic because of its more hydrophobic nature and is, thus,

associated with disease states. The g-secretase enzyme is
thought to be an aspartyl protease that has the unusual ability

to regulate intramembrane proteolysis (for review, see Wolfe
& Kopan 2004). The mechanism of g-secretase activity is not

yet known. Four components of the g-secretase complex,
presenilins, nicastrin, anterior pharynx defective (aph-1) and

presenilin enhancer 2 (pen-2), have been identified.
Recently, it was shown that Abeta42 aggregates into

oligomers within endosomal vesicles and along microtubules
of neuronal processes, in cultured neurons, in APP transgenic

mice and in human AD brain (Takahashi et al. 2004). The
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oligomers that form on the amyloid pathway may be the
cytotoxic species rather than the mature fibrils (Kayed et al.

2003). Subsequently, anterograde axonal transport delivers
Abeta to plaques (Lazarov et al. 2002; Stokin et al. 2005).

The sites of APP processing and Abeta release have yet
remained unclear. Some studies speculate that the axon is

the site of Abeta production (Muresan and Muresan, 2006).
According to this, amyloid deposition would increase if poor

axonal transport delays the progress of APP and its process-
ing enzymes through the axon (Stokin et al. 2005) but

decreases when overexpression of BACE shifts Abeta gen-
eration away from the axon and synapse into the cell soma

(Lee et al. 2005a). But not all reports can reproduce part of this
model, in which APP is cotransported with its processing

enzymes (Goldsbury et al. 2006; Lazarov et al. 2005). Some
Abeta release occurs at synapses (Lazarov et al. 2005; Sheng

et al. 2002) and appears to be dependent on synaptic activity
(Cirrito et al. 2005). However, the occurrence of plaques in

white matter tracts that lack synaptic input and the release of
Abeta in primary neuronal cultures that lack synapses suggest

that Abeta might be released from more proximal sites too
(Qiu et al. 2001; Wirths et al. 2007). Indeed, if all Abeta re-

lease were at presynaptic endings, impairing axonal transport
should decrease amyloid deposition instead of increasing it.

Autosomal-dominant mutations in APP cause hereditary
early-onset AD, likely as a result of altered proteolytic

processing. Increase in either the total Abeta levels or the

relative concentrations of both Abeta40 and Abeta42 has been
implicated in the pathogenesis of both familial and sporadic

AD (Lue et al. 1999).

Three hypotheses for the pathogenesis of AD

The underlying molecular mechanisms of AD pathogenesis
have not yet been identified; therefore, three major hypoth-

eses have been advanced regarding the primary cause. The
earliest hypothesis suggests that deficiency in cholinergic

signaling initiates the progression of the disease. Two alter-
native misfolding hypotheses instead propose that either Tau

protein or Abeta initiates the cascade.
The oldest hypothesis is the ‘cholinergic hypothesis’. A

particular hallmark of AD is the specific neurodegeneration of
cholinergic neurons leading to a loss of the neurotransmitter

acetylcholine (ACh). Loss of cholinergic neurons seems to be
specifically associated with typical clinical symptoms, like

memory deficits, impaired attention, cognitive decline and

reduced learning abilities (Hasselmo & Stern 2006; Kar et al.
2004). All the first-generation therapeutics against AD were

based on this hypothesis and work to preserve ACh by
inhibiting its degrading enzyme acetylcholine esterase

(AChE). These medications have not led to a cure. In all
cases, they have served to only treat symptoms of the

disease and can delay the progression of AD by 1–2 years
but failed to reverse it. Therefore, it was concluded that ACh

deficiencies may not be directly causal. More recently,
cholinergic effects have been proposed as a potential caus-

ative agent for the formation of plaques and tangles (Shen
2004).

Later theories center on the effects of the misfolded and
aggregated proteins Tau and Abeta. The hypothesis that Tau

is the primary causative factor has been grounded on the fact
that AD neuropathology starts in most individuals with hyper-

phosphorylated Tau and neurofibrillary tangles long before the
first signs of Abeta occur (Braak & Braak 1991; Delacourte

et al. 2002). Nevertheless, accumulations of amyloid are
frequently found in the cortex of nondemented individuals

in the absence of neurofibrillary changes. A mechanism for
neurotoxicity could be that hyperphosphorylated and aggre-

gated Tau impairs axonal transport in murine Tau transgenic
models (Ishihara et al. 1999; Lewis et al. 2000; Probst et al.

2000), invertebrate models (Chee et al. 2005; Kraemer et al.
2003; Mudher et al. 2004) and cellular models (Mandelkow

et al. 2004; Seitz et al. 2002; Stamer et al. 2002). Problems
with axonal transport are believed to be a major cause leading

to the symptoms and pathology observed in AD and other
neurodegenerative dementias (Adalbert et al. 2007). How-

ever, up to now, the preexistence of Tau pathology before the
occurrence of Abeta pathology has not been shown in any

experimental Tau model.
Abeta protein is a key molecule in the pathogenesis of AD.

The tendency of Abeta to aggregate, its reported neurotox-
icity and genetic linkage studies has led to the amyloid

cascade hypothesis (Hardy & Allsop 1991). In this hypothesis,
an increased production of Abeta results in neurodegenera-

tion and ultimately dementia through a cascade of events
(Verdile et al. 2004). Amyloidogenic mouse models have

established that overproduction of Abeta leads to dystrophic

axons and dendrites around amyloid plaques (Brendza et al.
2003; Tsai et al. 2004a). Treatment of cultured neurons with

fibrillar Abeta results in an increase of Tau phosphorylation,
leading to a loss of microtubule-binding capacity and accumu-

lation of Tau in the somatodendritic compartment (Busciglio
et al. 1995). Moreover, apolipoprotein E4 (ApoE4), the major

genetic risk factor for AD, leads to excess amyloid build up in
the brain before AD symptoms arise. Thus, Abeta deposition

precedes clinical AD (Polvikoski et al. 1995).
Advances in the understanding of AD pathogenesis provide

strong support for a modified version of the amyloid hypoth-
esis, which is now often referred to as the Abeta cascade

hypothesis. The basic tenant of this modified hypothesis is
that an intermediate misfolded form of Abeta, neither a solu-

ble monomer nor a mature aggregated polymer but an
oligomeric species, triggers a complex pathological cascade

leading to neurodegeneration (Barghorn et al. 2005; Kokubo
et al. 2005).

The relationship between APP, axonal transport and aber-
rant Abeta processing is not as easy as for Tau. Axonopathy

and transport deficit can be detected long before extracellular
Abeta deposition in AD patients and in a mutant APP mouse

model (Stokin et al. 2005). Overexpression of human APP695
also impairs specific components of axonal transport in

Drosophila and mice (Gunawardena & Goldstein 2001; Salehi
et al. 2006). In mice, this leads to degeneration of basal

forebrain cholinergic neurons (BFCN). Conversely, Abeta
itself might impair axonal transport, possibly as oligomeric

Abeta42 in microtubule-associated endosomal vesicles
(Hiruma et al. 2003; Maloney et al. 2005; Takahashi et al.

2004). In conclusion, impairment of axonal transport might be
a cause or an effect of aberrant Abeta production or, in some

cases, result from APP overexpression (Adalbert et al. 2007).
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The latter two theories point out the relevance of axonal
transport for proper neuronal function. Finally, ApoE4, the

major risk factor for sporadic AD, may directly disrupt the
cytoskeleton and hence impair axonal transport also (Mahley

et al. 2006). Here, we give some insights into how neuro-
trophins may be the actors allowing to link between cholin-

ergic degeneration, amyloid and Tau pathologies and axonal
transport.

Neurotrophins: the NGF family

The most prominent members of the mammalian neuro-
trophin family are nerve growth factor (NGF), brain-derived

neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and
neurotrophin-4/5 (NT-4/5). They activate various cell signal-

ing pathways by activating two types of membrane-bound
receptors, Trk (actually ‘tropomyosin-related kinase’ but

recently ‘tyrosine receptor kinase’ is also used: TrkA, TrkB
and TrkC) and p75NTR. These neurotrophins are synthesized

as proneurotrophins that all bind to the p75NTR. In their active
cleaved form, each neurotrophin selectively activates one of

three types of Trk receptors (Fig. 1), NGF activates TrkA, NT-
3 activates TrkC, while both BDNF and NT-4 activate TrkB

receptors (Patapoutian & Reichardt 2001). The role of
proneurotrophins and neurotrophins appears to be contra-

dictory: while neurotrophins maintain survival and function,
to certain neuronal populations, proneurotrophins trigger cell

death through p75NTR (Friedman 2000).
These neurotrophic factors (NTF) are small, versatile pro-

teins that maintain neuronal survival, axonal guidance, cell
morphology and play key roles in cognition and memory

formation. During embryonic development, NTF are essential
for the proper architecture and function of the brain. Knockout

mice for NGF, BDNF and NT-3 are all fatal and exhibit severe
neural defects. Subsequent to neuronal injury and lesions (like

cerebral ischemia), NTFs are upregulated and are involved in
healing and neurogenesis.

Axonal transport processes are essential for proper NTF
signaling. Nerve growth factor, for example, is synthesized

far away from its site of action. Vesicles containing NTF and
their relevant receptors are shipped along neuronal projec-

tions throughout the brain as summarized in Table 1. How-
ever, most neurodegenerative dementias are linked to

failures in axonal transport and – not surprisingly – the
majority of them are associated with impaired regulation

and imbalance of NTF.

Neurotrophins and their receptors in AD

Nerve growth factor

Pro-NGF is the predominant form of NGF in the human and

rodent brain, whereas mature NGF can be hardly detected.
In AD, pro-NGF is increased in frontal and occipital cortex

(Crutcher et al. 1993; Fahnestock et al. 2001; Hellweg et al.
1998; Peng et al. 2004) and in hippocampus (Hock et al.

2000a; Narisawa-Saito et al. 1996; Scott et al. 1995), while
a loss is observed in the basal forebrain (Mufson et al. 1995;

Scott et al. 1995). The amount of NGF messenger RNA
(mRNA) is not altered in AD (Fahnestock et al. 1996; Goedert

et al. 1986, 1989; Jette et al. 1994). A decrease of retrograde
transport could explain this observation, leading to an accu-

mulation of NGF at the sites of its production (hippocampus
and neocortical areas) and a deficiency at the NGF transport

terminus, the BFCN.
In the absence of NGF, cholinergic neurons show cell

shrinkage, reduction in fiber density and downregulation of
transmitter-associated enzymes [e.g. choline-acetyl transfer-

ase (ChAT) and AChE], resulting in a decrease of cholinergic
transmission (Svendsen et al. 1991). In parallel, rats show

a decrease in ChAT and TrkA mRNA after fimbria transection
that can be restored by NGF treatment (Venero et al. 1994).

In AD, a reduction of ChAT and AChE activity and BFCN size
and number was observed (Arendt et al. 1983; Kasa et al.

1997; Loy et al. 1990; Perry et al. 1992; Treanor et al. 1991),
implicating a severe cholinergic degeneration. Therefore, the

classical AD therapy was treatment with AChE inhibitors that

enhance neuronal transmission by increasing the availability
of ACh at the receptors. This effect is beneficial to stabilize

cognitive function and to improve or stabilize many behavioral
symptoms of AD at a steady level during a 1-year period of

treatment (Giacobini 2003; Wynn & Cummings 2004). Cur-
rently, there is an ongoing gene therapy trial using NGF-

grafted autologous fibroblasts that were injected into the
basal nucleus of Meynert (nbM) (Tuszynski et al. 2005) with

the aim to rescue the BFCN of AD patients.
Moreover, a loss of the NGF receptor TrkA was found in the

basal forebrain (Boissiere et al. 1997; Chu et al. 2001;
Ginsberg et al. 2006a; Mufson et al. 1997, 2000; Salehi

et al. 1996) and in the cortex (Counts et al. 2004; Hock
et al. 1998; Savaskan et al. 2000) of AD brains.Figure 1: The neurotrophins and their receptors.
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The reports about p75NTR in AD are not that clear: one study
observed an upregulation of p75NTR in hippocampal tangle-

bearing neurons (Hu et al. 2002), another unchanged cortical
levels without referring to tangle pathology (Counts et al. 2004;

Hock et al. 1998; Perry et al. 1993), while in nbM, p75NTR

appears to be unchanged (Ginsberg et al. 2006b; Mufson et al.

2003) or decreased (Kerwin et al. 1992; Mufson et al. 2002;
Salehi et al. 2000). Moreover, during aging, a switch from TrkA

to p75NTR occurs, resulting in increased amyloidogenic pro-
cessing of APP (Costantini et al. 2005, 2006).

However, there is another interesting link between NGF
and APP: neuronal cell cultures upregulate APP expression

when treated with NGF (Mobley et al. 1988; Robakis et al.
1991; Villa et al. 2001). In fact, it was shown that NGF acts on

the APP promoter mediated by p75NTR and upregulates APP
transcription and the secretion of secreted amyloid precursor

protein (sAPP) (Ge & Lahiri 2002; Rossner et al. 1998),
although intraparenchymal NGF delivery did not significantly

increase Abeta deposition in monkeys (Tuszynski et al. 1998).
However, neuronal cell models secrete more NGF and

downregulate TrkA and p75NTR when treated with Abeta or
H2O2 (Olivieri et al. 2002). Excitingly, the receptor levels of

p75NTR increase initially, indicating that vesicular stores of
p75NTR appear to fuse to the plasma membrane. The toxicity

of Abeta is mediated by p75NTR through p75-like apoptosis-
inducing death domain (PLAIDD), inhibitory G protein, C-Jun

N-terminal kinases (JNK), reduced nicotinamide adenine
dinucleotide phosphate oxidase and caspase-9 and caspase-

3 (Costantini et al. 2005; Hashimoto et al. 2004; Tsukamoto
et al. 2003). Moreover, NGF potentiates Abeta toxicity shift-

ing the half maximal effective concentration (EC50) from
0.1 mM to 1 pM (Yankner et al. 1990).

Table 1: Axonal transport and function of NFT

Neurotrophin Site of synthesis Transported to (neuronal population) Transport Function

NGF Neocortex ChAT-positive neurons of the nbM Retrograde Survival and maintenance of

cholinergic, sensory and

sympathetic neurons

Hippocampus ChAT-positive neurons of the MS,

VDB, HDB and sum

BDNF Frontal cortex Parietal, cingulate, infralimbic, orbital,

perilimbic and occipital cortices,

contralateral frontal cortex, nbM,

hypothalamus, locus coeruleus,

thalamus and HDB

Retrograde Survival and maintenance

(of dopaminergic neurons),

synaptic plasticity (long-term

potentiation, neuronal firing rate,

neurotransmitter release and

synaptic transmission) and

metabolic effects

Occipital cortex Retrosplenial, perirhinal, temporal,

entorhinal and frontal cortices,

Raphe nucleus, VDB (HDB),

thalamus, lateral geniculate nucleus

and hypothalamus

Hippocampus Ipsi- and contralateral subfields of

hippocampus, MS, sum and VDB (HDB)

Entorhinal cortex Subiculum, CA1 and CA3 hippocampal

subfields, amygdala, MS and VDB

Amygdala Temporal, parietal and occipital,

entorhinal, cingulate, infralimbic,

insular piriform and perirhinal cortices,

thalamus, dorsal Raphe, (pre)subiculum

and CA1 subfields of hippocampus,

medulla, HDB, hypothalamus, nbM

and substantia nigra pars compacta

Striatum Frontoparietal cortex, TH-positive

neurons of the substantia nigra,

Raphe and thalamus

Amygdala Stria terminalis Anterograde

Neocortex Striatum

Dentate gyrus CA3 subfield of hippocampus

(through mossy fibers)

Pons Amygdala

NT-3 Hippocampus MS, VDB, thalamus and

sum of hypothalamus

Retrograde Survival and maintenance

HDB, horizontal limb of diagonal band of Broca; MS, medial septum; sum, supramammilary nucleus; TH, tyrosine hydroxylase; VDB, vertical limb

of diagonal band of Broca.
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The interaction between NGF and Tau in AD or tauopathies
is less clear: NGF-induced neuronal differentiation of the

neuroblastoma cell line pheochromocytoma celline-12 (PC-
12) exhibits an increase in Tau promoter activity and sub-

sequently elevated Tau protein levels (Sadot et al. 1996). In
addition, NGF also regulates Tau phosphorylation: stimulation

of differentiated PC-12 with NGF caused a dephosphorylation
of Tau proteins (Fisher et al. 1996), and NGF deprivation

induced hyperphosphorylation of Tau (Nuydens et al. 1997;
Shelton & Johnson 2001). Moreover, NGF induces ubiquiti-

nation of Tau in cultured cells (Babu et al. 2005), indicating
that NGF may regulate Tau protein levels by inducing protea-

somal degradation of Tau.
According to the hypothesis that NGF deprivation is one of

the factors involved in the etiology of sporadic forms of AD,
a mouse model (AD11 anti-NGF mice) had been developed,

based on the expression of transgenic antibodies neutralizing
NGF. The model is characterized by a progressive neurode-

generative phenotype defined by the deposition of amyloid
peptide, by intracellular neurofibrillary tangles and by amarked

cholinergic depletion (Capsoni et al. 2002). In addition, spatial
memory and neocortical long-term potentiation are impaired

in AD11 mice at an age corresponding to early neurodegen-
erative stage characterized by the first observed decrease in

the number of BFCNs without overt cortical neurodegenera-
tion. Acute pharmacological treatment with NGF, ACh or an

AChE inhibitor can rescue these symptoms (De Rosa et al.

2005; Origlia et al. 2006).
Nerve growth factor expression is regulated by cholinergic

innervation from the basal forebrain (da Penha Berzaghi et al.
1993) and by hippocampal N-methyl-D-aspartate (NMDA) re-

ceptors (Thoenen et al. 1991) to maintain the normal levels.
Kainic acid induces an increase of NGF transcription that can be

blocked by benzodiazepine. In that light, it is exciting that
treatment with the NMDA antagonist memantine had no effect

on the regulation of NGF in a lesion model (Lang et al. 2004).
But NGF is not found in neuronal cells only in the AD brain.

Astrocytes and microglia show high levels of NGF (Siegel &
Chauhan 2000). Inflammatory signals (cytokines and comple-

ment factors) as well as Abeta25-35 are potent stimulators of
human microglial NGF synthesis (Heese et al. 1998). In

addition, hippocampal astrocytes incubated with Abeta upre-
gulate NGF expression and its release to the culture medium.

Moreover, these astrocytes display increased Tau phosphor-
ylation and reduce the survival of cocultured hippocampal

neurons (Saez et al. 2006).

Brain-derived neurotrophic factor

Brain-derived neurotrophic factor regulates synaptic plasticity

and thus plays a key role in memory formation and storage
(Hellweg & Jockers-Scherubl 1994). Therefore, the involve-

ment of BDNF in dementia has been discussed extensively.
In that light, it is not surprising that mRNA (Connor et al. 1997;

Garzon et al. 2002; Holsinger et al. 2000; Phillips et al. 1991)
and protein (Ferrer et al. 1999; Hock et al. 2000a; Michalski &

Fahnestock 2003; Peng et al. 2005) levels of BDNF are
decreased in hippocampus and neocortex of AD brains (for

review, see Murer et al. 2001; Siegel & Chauhan 2000).

Three out of six transcripts, which code for BDNF, are down-
regulated (Garzon et al. 2002). Excitingly, two of these are

controlled by a cyclic adenosine 50-phosphate response ele-
ment-binding protein (CREB) responsive promoter. However,

CREB deregulation appears to be involved in the pathogenesis
of AD (Yamada et al. 1997; Yamamoto-Sasaki et al. 1999).

Not only is BDNF diminished, but also its full-length receptor
TrkB is analogously reduced in hippocampus and frontal cortex

in AD (Allen et al. 1999; Ferrer et al. 1999). The fate of TrkB in
BFCN remains to be elucidated: there are two studies report-

ing a decrease (Ginsberg et al. 2006b; Salehi et al. 1996) and
another indicating no changes (Boissiere et al. 1997).

Alzheimer’s disease is tightly associated to neuroimmuno-
logical processes (Heneka & O’Banion 2007). Regulation of

TrkB in glia differs from that in neurons. Upregulation of
truncated TrkB receptors has been found in association with

senile plaques (Allen et al. 1999; Connor et al. 1996; Ferrer
et al. 1999). In addition, increase of full-length TrkB was

observed in glial-like cells in hippocampus and increase of
BDNF in dystrophic neurons surrounding senile plaques

(Ferrer et al. 1999). This was confirmed in the APP23 mouse
model and shown to be related to neuronal sprouting

(Burbach et al. 2004).
Only a few studies do not support the loss of BDNF or TrkB

in AD (Durany et al. 2000; Hock et al. 1998; Savaskan et al.
2000). However, most data above refer to mRNA or protein

levels in neurons. In activated glia, the regulation of BDNF and

truncated TrkB is induced. One of these studies reporting an
increase of BDNF in AD was performed using an enzyme-

linked immunosorbent assay and so, no data were available
concerning plaque densities. Possibly, this study population

presented a rather high plaque concentration in hippocampus,
resulting in high glial BDNF reactivity. Other brain areas that

were examined with the same method showed the reported
loss of BDNF (Durany et al. 2000).

The role of single-nucleotide polymorphism in AD is still
a matter of debate. Polymorphism of the BDNF has been

implicated with higher risk for AD. Especially for non-ApoE4
carriers and in specific ethnic groups, this effect is well

documented (Akatsu et al. 2006; Desai et al. 2005; Forero
et al. 2006; Huang et al. 2007; Kunugi et al. 2001; Matsushita

et al. 2005; Nishimura et al. 2005; Olin et al. 2005;
Riemenschneider et al. 2002; Tsai et al. 2004b, 2006).

Other studies observed no association with BDNF poly-
morphism (Bian et al. 2005; Chuu et al. 2006; Combarros et al.

2004; Lee et al. 2005b; Li et al. 2005; Nacmias et al. 2004;
Saarela et al. 2006; Vepsalainen et al. 2005); so, it remains to

be elucidated whether or not this effect is mainly restricted to
the Asian population. Compared with wild-type populations,

the polymorphisms C270T and V66M appear to be over-
represented in AD. The first is located in a noncoding region

and is responsible for the transcription of BDNF mRNA
transcript 4, the latter affects BDNF transport and secretion.

But there are more interactions of AD and BDNF: a specific
loss of BDNF was found in tangle-bearing neurons (Ferrer

et al. 1999; Murer et al. 1999), and BDNF dephosphorylates
Tau including the most crucial sites for microtubule binding

through TrkB activation and a PI3-kinase/Akt-dependent
mechanism in a cellular model (Elliott et al. 2005), implicating

a direct Tau–BDNF interaction.
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A very interesting link is the fact that during aging and in
AD, Tau pathology starts in the entorhinal cortex and pro-

ceeds along the retrograde transport pathways of BDNF to
the subiculum and the CA1 subfield and then to the basal

forebrain, amygdala and finally to several cortical regions.
The interaction of BDNF and the APP promoter is still not

that clear as it is for NGF: one study denies an upregulation of
APPmRNA after BDNF treatment (Rossner et al. 1998), while

other reports state upregulation in SH-SY5Y cells mediated by
MAPK/Ras and PI3/Akt (Ruiz-Leon & Pascual 2004) or pro-

moter activity in PC12 cells (Ge & Lahiri 2002). In addition, the
latter group showed in a neurologic disorder associated with

increased cerebral BDNF-enhanced plasma levels of full-
length APP and nonamyloidogenic APP (Sokol et al. 2006).

Oligomeric Abeta but not fibrillar Abeta42 decreases spe-
cifically phospho-CREB and the BDNF transcripts IV and V

in differentiated SH-SY5Y neuroblastoma cells (Garzon &
Fahnestock 2007), confirming the data that sublethal doses

of Abeta without specifying the aggregation form down-
regulate BDNF and CREB in cultured cortical neurons (Tong

et al. 2001b, 2004). In contrast, another study found out that
differentiated SH-SY5Y cells treated with Abeta upregulate

full-length TrkB and BDNF and downregulate truncated TrkB.
This effect can be reversedwith an antioxidant, indicating that

this is mediated by oxidative stress (Olivieri et al. 2003).
Another link combining BDNF and AD pathogenesis is BDNF

as a regulator of GSK-3b: BDNF increases the phosphorylation of
S9-GSK-3b, which turns the kinase activity off (Mai et al. 2002).
Physical andcognitiveactivity andhousingmice inanenriched

environment increases BDNF and other neurotrophin levels
(Chen & Russo-Neustadt 2005; Tong et al. 2001a). However,

the effect of this on amyloid pathology in murine APP trans-
genic models remains to be elucidated: two studies report

a decrease of amyloid burden (Ambree et al. 2006; Lazarov et
al. 2005), one reports no changes (Wolf et al. 2006) although

demonstrating a raise of BDNF and NT3 and finally, one study
observes even an increase of amyloid pathology (Jankowsky

et al. 2003). Curiously, a decrease of BDNF regulation was
observed during training on spatial navigation in the APP23

mouse, whereas wild-type mice show an increase (Hellweg
et al. 2006). Nevertheless, it should be kept in mind that

enriched housing, cognitive training and wheel running act also
on many factors other than BDNF only, so the outcome can be

additionally related to aspects other than BDNF.
BDNF regulation is maintained through cholinergic innerva-

tion and through NMDA receptors (da Penha Berzaghi et al.
1993; Thoenen et al. 1991). The maintenance of normal BDNF

mRNA levels appears to be mediated predominantly by
NMDA receptors, whereas the increases in BDNF above

normal levels are mediated by non-NMDA receptors. Inter-
estingly, the NMDA receptor antagonist memantine used as

treatment against AD increases the levels of BDNF and TrkB
in rats (Marvanova et al. 2001).

NT-3 and NT-4/5

Neurotrophin-3 mRNA and protein levels are unchanged in
the AD brain (Durany et al. 2000; Hock et al. 1998, 2000a;

Murase et al. 1994; Phillips et al. 1991), besides a minor
reduction of NT-3 in the motor cortex of AD patients, a brain

structure often preserved in AD (Narisawa-Saito et al. 1996).
In addition, cerebrospinal fluid (CSF) levels of NT-3 are not

changed either (Hock et al. 2000b).
A possible association of missense mutation (G63E) of the

NT-3 gene with AD was found in a Japanese cohort. This
association was more prominent among those who did not

carry the ApoE4 allele than thosewho carried the ApoE4 allele
(Kunugi et al. 1998).

PC12 cells show increased APP promoter activity sub-
sequent to NT-3 treatment; however, compared with NGF,

this effect is rather mild (Ge & Lahiri 2002). In primary cultures
of cortical neurons, NT-3 protects neurons against Abeta

toxicity by limiting caspase-8, caspase-9 and caspase-3
cleavage. This neuroprotective effect of NT-3 was concomi-

tant to an increased level of Akt phosphorylation and medi-
ated through phosphoinositide 3-kinase (PI-3K). Moreover,

NT-3 induces an upregulation of neuronal apoptosis inhibitory
protein-1 expression in neurons that promote the inhibition of

Abeta-induced neuronal apoptosis (Lesne 2005). In contrast
to NGF, NT-3 does not induce apoptosis through p75NTR in

neuroblastoma cells (Kuner & Hertel 1998). Finally, NT-3
prevents the degeneration of noradrenergic neurons of the

locus coeruleus in a lesion model that resembles the pattern
of cell loss found in AD (Arenas & Persson 1994).

Protein levels of NT-4/5 appear to be slightly decreased in
hippocampus and cerebellum, but mRNA levels are not

altered in the parietal cortex of AD patients (Hock et al.

1998, 2000a).
Neurotrophin-4/5 induces Tau dephosphorylation through

TrkB, while NT-3 mediated by TrkC does not show the same
effect (Elliott & Ginzburg 2006). Therefore, one can speculate

that a lack of endogenous TrkB or impaired BDNF/NT-4/5
signaling may lead to Tau hyperphosphorylation.

Curiously, differentiated SH-SY5Y cells treated with Abeta
upregulate NT-4/5 (Olivieri et al. 2003).

Fibroblast growth factor-2

Although not belonging to the neurotrophin family, fibroblast

growth factor-2 (FGF-2 or formally known as basic FGF)
shares many similarities with the classical neurotrophins.

Fibroblast growth factor-2 is important in neuronal develop-
ment and neuroprotection after neuronal lesions (Cheng &

Mattson 1992). Interestingly, it regulates BDNF and vice versa
(Johnson-Farley et al. 2007; Kiprianova et al. 2004; Soto et al.

2006).
Increased levels and enhanced binding of FGF-2 were

detected in senile plaques and neurofibrillary tangles in AD
brains (Gomez-Pinilla et al. 1990; Kato et al. 1991; Siedlak

et al. 1991; Stieber et al. 1996) and in CSF from AD patients
(Hanneken et al. 1995). Moreover, it was shown that FGF-2

increases the neuritic involvement of plaques (Cummings
et al. 1993). Immunoreactivity of the FGF receptor-1 that

binds FGF-1 and FGF-2 is increased in AD in reactive
astrocytes surrounding senile plaques (Ferrer & Marti 1998;

Takami et al. 1998).
Incubation of neuronal cultures with FGF-2 results in

increased Tau phosphorylation (Burack & Halpain 1996) by
increasing the levels of the Tau kinase GSK-3b and Tau itself
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(Butt & Dinsdale 2005; Jin et al. 2003; Tatebayashi et al. 1999,
2003, 2004).

Fibroblast growth factor-2 acts also on the APP promoter
mediated by p75NTR, upregulates APP transcription and the

secretion of sAPP (Ge & Lahiri 2002; Rossner et al. 1998; Villa
et al. 2001), but somewhat weaker than NGF does. Glial cells

exposed to Abeta produce more FGF-2 (Araujo & Cotman
1992; Pike et al. 1994). Double transgenic mice overexpress-

ing APP and FGF-2 display a higher mortality than mice
expressing APP alone (Carlson et al. 1997). But FGF-2

expression does not act by increasing the amyloidogenic
processing of APP to Abeta peptides. In contrast, FGF-2

inhibits Abeta-induced neurotoxicity mediated by p75NTR in
neuronal cultures (Costantini et al. 2005; Hashimoto et al.

2004; Tsukamoto et al. 2003).

Conclusions

Neurotrophic factors are key regulators not only for develop-

ment, maintenance and survival but also for cognition,
formation and storage of memory. In AD, NTF are dysregu-

lated and because of impaired axonal transport, unevenly
distributed.

In aging, Tau proteins are becoming increasingly hyper-
phosphorylated, leading to the formation of neurofibrillary

tangles in the transentorhinal and entorhinal cortex. As not

only Tau but also APP and ApoE4 play a key role in axonal
transport (Adalbert et al. 2007), it would not be surprising that

even at this early stage, deficits in transport processes can
occur. Fascinatingly, the progression of neurofibrillary pathol-

ogy in aging and in AD is identical to the retrograde transport
pathways of BDNF in this neuroanatomical region. Under

physiological conditions, BDNF is produced in the entorhinal
cortex and shipped from here through the CA3 to the CA1–

subiculum area, basal forebrain and amygdala, the next
stations of neurofibrillary degeneration through the AD brain.

One cannot exclude impaired transport of BDNF or down-
regulation of BDNF in tangle-bearing neurons in the aged

brain, both leading to deficits in BDNF levels associated with
possibly subclinical insufficiency in cognition and memory.

Moreover, Tau pathology is the first visible occurrence of
brain aging, but APP or low doses of Abeta or ApoE4

pathology may also influence the axonal transport of NTF at
this stage. Furthermore, once the neurofibrillary pathology

reaches the basal forebrain (occasionally already in Braak
stage I), impaired retrograde transport of NGF could be the

consequence, leading to an accumulation of NGF where it is
synthesized (hippocampus and neocortex) and to a loss of

NGF in the basal forebrain (Fig. 2). The well-known degener-
ation of BFCN in AD could be the outcome of this scenario.

Additionally, cholinergic degeneration leads to a decrease in
cholinergic innervation from fibers projecting from the basal

forebrain to hippocampus and neocortex and thereby, to
a decline of basal levels of BDNF expression with all its

possible consequence on Tau phosphorylation. But what is
more, NGF accumulation in the target regions may upregulate

APP, but also may lead to increased signaling of pro-NGF
through p75NTR, which is increasingly expressed in the aged

brain, and thus mediates cell death. Tau could function

upstream to Abeta to modify APP transport. Blocking APP

transport in vivo increases Abeta generation and deposition.
Some studies implicate that tau is required for Abeta toxicity,

suggesting that tau lies downstream of Abeta.
Not surprisingly, all major proteins involved with AD

pathology (APP and Tau) or risk for sporadic AD (ApoE4) are
associated somehow with axonal transport. However, using

this knowledge for the development of therapy is not as
simple.

The most important concern regarding a future therapy
with NTF is the mode of delivery. Being small proteins with

roughly no penetration of the blood–brain barrier, new ave-
nues for therapy need to be found. An ongoing gene therapy

focusing on NGF-grafted autologous fibroblasts that are
implanted into the basal forebrain of AD patients predicts

a slower progression of the dementia, some cognitive

improvement and sprouting of axons on the site of injection
(Tuszynski et al. 2005). Nevertheless, this therapy includes

brain surgery and gene therapy and does not appear to be
suitable as prophylactic cheap treatment for millions of aging

people worldwide. Probably, NTF signaling is more likely
a target for AD therapy than the NTFs themselves.

More data and support are needed to elucidate the
mechanisms of NTF imbalance and dysregulation in AD. With

this knowledge, we will be able to target pathways upstream
NTF deregulation or deficits in axonal transport, thus starting

the therapy before pathological imbalance of NTF occurs. This
could include inhibitors of Tau kinases to avoid pathological

Tau hyperphosphorylation that interferes with axonal trans-
port processes and BDNF regulation. Unfortunately, chronic

Figure 2: Retrograde transport of NGF from the hippocam-

pus to the basal forebrain. Nerve growth factor maintains

survival and function of BFCN. Cholinergic projections (in blue)

innervate the neocortex and hippocampus and regulate transcrip-

tion of BDNF. HDB, horizontal limb of diagonal band of Broca; LV,

lateral ventricle; MS, medial septum; sum, supramammilary

nucleus; VDB, vertical limb of diagonal band of Broca.
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GSK-3b inhibition with lithium ions, which are used in therapy
against bipolar disorder, appears not to have the predicted

protective effect against AD (Bauer et al. 2003; Chuang 2004;
Manji et al. 1999), although it had been shown to regulate

endogenous BDNF and NGF levels (Frey et al. 2006a,b).
Nevertheless, the potentials of neurofibrillary tangles (NFT)

or drugs that act on their distribution or signaling should be
considered carefully as future AD therapy.
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A., Mann, A.H., Mölsä, P.K., Morgan, K., O’Connor, D.W., Sulkava,
R., Kay, D.W.K., Amaducci, L. & For The Euroderm Prevalence
Research Group. (1991) The prevalence of dementia in Europe:
a collaborative study of 1980-1990 findings. Eurodem Prevalence
Research Group. Int J Epidemiol 20, 736–748.

Holsinger, R.M., Schnarr, J., Henry, P., Castelo, V.T. & Fahnestock, M.
(2000) Quantitation of BDNF mRNA in human parietal cortex by com-
petitive reverse transcription-polymerase chain reaction: decreased
levels in Alzheimer’s disease. Brain Res Mol Brain Res 76, 347–354.

Hu, X.Y., Zhang, H.Y., Qin, S., Xu, H., Swaab, D.F. & Zhou, J.N. (2002)
Increased p75(NTR) expression in hippocampal neurons containing
hyperphosphorylated tau in Alzheimer patients. Exp Neurol 178,
104–111.

Huang, R., Huang, J., Cathcart, H., Smith, S. & Poduslo, S.E. (2007)
Genetic variants in brain-derived neurotrophic factor associated
with Alzheimer’s disease. J Med Genet 44 e66.

Ishihara, T., Hong, M., Zhang, B., Nakagawa, Y., Lee, M.K., Troja-
nowski, J.Q. & Lee, V.M. (1999) Age-dependent emergence and
progression of a tauopathy in transgenic mice overexpressing the
shortest human tau isoform. Neuron 24, 751–762.

Jankowsky, J.L., Xu, G., Fromholt, D., Gonzales, V. & Borchelt, D.R.
(2003) Environmental enrichment exacerbates amyloid plaque
formation in a transgenic mouse model of Alzheimer disease.
J Neuropathol Exp Neurol 62, 1220–1227.

Jarvik, L. & Greenson, H. (1987) About a peculiar disease of the
cerebral cortex. By Alois Alzheimer, 1907 (Translated by L. Jarvik
and H. Greenson). Alzheimer Dis Assoc Disord 1, 3–8.

Jette, N., Cole, M.S. & Fahnestock, M. (1994) NGF mRNA is not
decreased in frontal cortex from Alzheimer’s disease patients.
Brain Res Mol Brain Res 25, 242–250.

Jin, K., Sun, Y., Xie, L., Batteur, S., Mao, X.O., Smelick, C., Logvinova,
A. & Greenberg, D.A. (2003) Neurogenesis and aging: FGF-2 and
HB-EGF restore neurogenesis in hippocampus and subventricular
zone of aged mice. Aging Cell 2, 175–183.

Johnson-Farley, N.N., Patel, K., Kim, D. & Cowen, D.S. (2007)
Interaction of FGF-2 with IGF-1 and BDNF in stimulating Akt,
ERK, and neuronal survival in hippocampal cultures. Brain Res
1154, 40–49.

Kar, S., Slowikowski, S.P., Westaway, D. & Mount, H.T. (2004) Inter-
actions between beta-amyloid and central cholinergic neurons: impli-
cations for Alzheimer’s disease. J Psychiatry Neurosci 29, 427–441.

Kasa, P., Rakonczay, Z. & Gulya, K. (1997) The cholinergic system in
Alzheimer’s disease. Prog Neurobiol 52, 511–535.

Kato, T., Sasaki, H., Katagiri, T., Sasaki, H., Koiwai, K., Youki, H.,
Totsuka, S. & Ishii, T. (1991) The binding of basic fibroblast growth
factor to Alzheimer’s neurofibrillary tangles and senile plaques.
Neurosci Lett 122, 33–36.

Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C.,
Cotman, C.W. & Glabe, C.G. (2003) Common structure of soluble
amyloid oligomers implies common mechanism of pathogenesis.
Science 300, 486–489.

Kerwin, J.M., Morris, C.M., Perry, R.H. & Perry, E.K. (1992) Hippocam-
pal nerve growth factor receptor immunoreactivity in patients with
Alzheimer’s and Parkinson’s disease. Neurosci Lett 143, 101–104.

Kiprianova, I., Schindowski, K., von Bohlen und Halbach, O., Krause,
S., Dono, R., Schwaninger, M. & Unsicker, K. (2004) Enlarged
infarct volume and loss of BDNF mRNA induction following brain
ischemia in mice lacking FGF-2. Exp Neurol 189, 252–260.

Klenk, J., Rapp, K., Buchele, G., Keil, U. & Weiland, S.K. (2007)
Increasing life expectancy in Germany: quantitative contributions
from changes in age- and disease-specific mortality. Eur J Public
Health. doi: 10.1093/eurpub/ckm024.

Kokubo, H., Kayed, R., Glabe, C.G. & Yamaguchi, H. (2005) Soluble
Abeta oligomers ultrastructurally localize to cell processes and
might be related to synaptic dysfunction in Alzheimer’s disease
brain. Brain Res 1031, 222–228.

Kraemer, B.C., Zhang, B., Leverenz, J.B., Thomas, J.H., Trojanowski,
J.Q. & Schellenberg, G.D. (2003) Neurodegeneration and defective
neurotransmission in a Caenorhabditis elegans model of tauopathy.
Proc Natl Acad Sci U S A 100, 9980–9985.

Kuner, P. & Hertel, C. (1998) NGF induces apoptosis in a human
neuroblastoma cell line expressing the neurotrophin receptor
p75NTR. J Neurosci Res 54, 465–474.

Kunugi, H., Hattori, M., Ueki, A., Isse, K., Hirasawa, H. & Nanko, S.
(1998) Possible association of missense mutation (Gly[-63]Glu) of
the neurotrophin-3 gene with Alzheimer’s disease in Japanese.
Neurosci Lett 241, 65–67.

Kunugi, H., Ueki, A., Otsuka, M., Isse, K., Hirasawa, H., Kato, N.,
Nabika, T., Kobayashi, S. & Nanko, S. (2001) A novel polymorphism
of the brain-derived neurotrophic factor (BDNF) gene associated
with late-onset Alzheimer’s disease. Mol Psychiatry 6, 83–86.

Lang, U.E., Muhlbacher, M., Hesselink, M.B., Zajaczkowski, W.,
Danysz, W., Danker-Hopfe, H. & Hellweg, R. (2004) No nerve
growth factor response to treatment with memantine in adult rats.
J Neural Transm 111, 181–190.

Lazarov, O., Lee, M., Peterson, D.A. & Sisodia, S.S. (2002) Evidence
that synaptically released beta-amyloid accumulates as extracellu-
lar deposits in the hippocampus of transgenic mice. J Neurosci 22,
9785–9793.

Lazarov, O., Robinson, J., Tang, Y.P., Hairston, I.S., Korade-Mirnics,
Z., Lee, V.M., Hersh, L.B., Sapolsky, R.M., Mirnics, K. & Sisodia,
S.S. (2005) Environmental enrichment reduces Abeta levels and
amyloid deposition in transgenic mice. Cell 120, 701–713.

Lee, E.B., Zhang, B., Liu, K., Greenbaum, E.A., Doms, R.W.,
Trojanowski, J.Q. & Lee, V.M. (2005a) BACE overexpression alters
the subcellular processing of APP and inhibits Ab deposition in vivo.
J Cell Biol 168, 291–302.

Lee, J., Fukumoto, H., Orne, J., Klucken, J., Raju, S., Vanderburg,
C.R., Irizarry, M.C., Hyman, B.T. & Ingelsson, M. (2005b)
Decreased levels of BDNF protein in Alzheimer temporal cortex
are independent of BDNF polymorphisms. Exp Neurol 194, 91–96.
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