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Very preterm newborns have an increased risk of developing an inflammatory cerebral

white matter injury that may lead to severe neuro-cognitive impairment. In this study

we performed functional connectivity (fc) analysis using resting-state optical imaging of

intrinsic signals (rs-OIS) to assess the impact of inflammation on resting-state networks

(RSN) in a pre-clinical model of perinatal inflammatory brain injury. Lipopolysaccharide

(LPS) or saline injections were administered in postnatal day (P3) rat pups and optical

imaging of intrinsic signals were obtained 3 weeks later. (rs-OIS) fc seed-based analysis

including spatial extent were performed. A support vector machine (SVM) was then used

to classify rat pups in two categories using fc measures and an artificial neural network

(ANN) was implemented to predict lesion size from those same fc measures. A significant

decrease in the spatial extent of fc statistical maps was observed in the injured group,

across contrasts and seeds (∗p = 0.0452 for HbO2 and ∗∗p = 0.0036 for HbR). Both

machine learning techniques were applied successfully, yielding 92% accuracy in group

classification and a significant correlation r = 0.9431 in fractional lesion volume prediction

(∗∗p= 0.0020). Our results suggest that fc is altered in the injured newborn brain, showing

the long-standing effect of inflammation.

Keywords: white matter injury, inflammation, prematurity, resting state functional connectivity, optical imaging of

intrinsic signals, support vector machines, artificial neural networks

INTRODUCTION

Functional connectivity, defined as the coordination of activity across anatomically distinct regions
of the brain (Aertsen et al., 1989; Friston et al., 1993), is based on assessment of neuronal activity,
either directly, through electrophysiological signals, or indirectly, via hemodynamics ormetabolites
fluctuations.

Functional MRI (fMRI), arguably the most commonly used technique to assess brain activation,
relies on the measurement of blood-oxygen-level-dependant (BOLD) signals. It reflects changes
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of blood volume and deoxyhemoglobin (HbR) concentrations
(Buxton, 2013). fMRI was first described by Ogawa in
1990 (Ogawa and Lee, 1990; Ogawa et al., 1990) and has
since revolutionized human neuroscience by allowing the
identification of brain areas responsible for diverse cognitive
task or processing various stimuli (Belliveau et al., 1991; Raichle,
2009). Resting-state fMRI (rs-fMRI) introduced a few years later
(Biswal et al., 1995) corresponds to the measurement of low
frequency fluctuations (0.009 < f < 0.1 Hz) in the BOLD
signal in the absence of a task or stimulus. It has also greatly
contributed to the neuroscience field by revealing the existence
of multiple spatially distributed large-scale networks in the brain,
the resting-state networks (RSN). Lewis and al. have shown that
a possible function of RSN could be related to the consolidation
of previous experience (Lewis et al., 2009). According to another
hypothesis, the networks functioning during active processing
are maintained during rest (and therefore become the RSN) in
order to allow rapid activation when needed for active processing
(Smith et al., 2009). However, the true function of the RSN
remains unknown.

The application of fMRI or rs-fMRI in animal models has
been scarce and mostly limited to rats and monkeys, because
smaller models such as mice or neonatal rats require a very
high intensity magnetic field to obtain sufficient signal-to-
noise ratio and spatial resolution to assess their small brains
(Benveniste and Blackband, 2002; Jonckers et al., 2011). Given
the tremendous number of already well-characterized models
that can’t be readily studied because of this limitation, interest
for the other functional neuroimaging techniques, alone or in
combination with fMRI, has increased over the past years (Cang
et al., 2005; He and Liu, 2008; Ye et al., 2016). Optical imaging
of intrinsic signals (OIS) was shown to be a potent alternative
to fc-MRI, also by measuring changes in blood oxygenation
(Grinvald et al., 1986; Frostig et al., 1990; Ts’o et al., 1990). In
this technique, two wavelengths based on the absorption spectra
of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR), are
shone upon exposed nervous tissue and fluctuations in reflected
light intensity are recorded. Those fluctuations represent changes
in blood oxygenation/volume and, therefore, can be used to
infer changes in neuronal activity. Advantages of OIS over
(rs-)fMRI include a much higher spatial resolution (in the order
of tens of micrometers for OIS vs. 200–400 µm for fMRI) and
temporal resolution (30 Hz for OIS vs. 0.5 s for high-resolution
fMRI sequences; Pouratian and Toga, 2002; Jonckers et al.,
2015; Pan et al., 2015), providing an interesting tool to assess
functional connectivity in small animals models. Unlike fMRI,
OIS is not prone to artifacts related to mechanical vibrations and
spurious responses arisen from loud acoustic stimuli. Moreover,
OIS also uses non-ionizing radiation and is much more cost-
effective than fMRI. However, one major limitation of OIS is
its inability to assess subcortical structures (Hillman, 2007).
The resting state data, acquired with this technique, is hence
2 dimensional. Nevertheless, most of the RSN have some, if
not all, of their brain regions in the cortex (Rosazza and
Minati, 2011), making OIS a suitable method to study RSNs
in small models, like rodents (Li et al., 2012; Guevara et al.,
2013c).

The study of alterations in RSN via rs-fMRI has improved
our understanding of many neurological and psychiatric diseases
such as epilepsy (Wang Z. et al., 2011; Mankinen et al.,
2012; Tracy and Doucet, 2015), depression (Mulders et al.,
2015), autism (Farrant and Uddin, 2016; Mevel and Fransson,
2016), schizophrenia (Sheffield and Barch, 2016), and dementia
(Greicius et al., 2004; Gili et al., 2011; Peraza et al., 2015). The
impact of prematurity on neurocognitive development has also
been, more recently, studied through fMRI and rs-fMRI. Studies
have identified resting state network maturation in the growing
brain with evidence of networks as early as 30 weeks of gestational
age with a fast maturation leading to adult-like network at term
equivalent age (Doria et al., 2010; Smyser et al., 2010; Lee et al.,
2013; van den Heuvel et al., 2015; He and Parikh, 2016). The
consequences of prematurity itself was revealed by showing a
decreased functional connectivity of RSN in (very preterm) VPT-
born patients (Smyser et al., 2010, 2013; Ye et al., 2016), best seen
using correlation and covariance matrix analyses demonstrated
by Smyser et al. (2016b). In other words, the topography of
RSN in VPT-born children seems preserved, but quantitative
parameters, such as the synchronicity between networks (White
et al., 2014; Ye et al., 2016), the amplitude of BOLD signal
fluctuations (Smyser et al., 2013, 2016b) or the number of voxels
in a RSN (Smyser et al., 2010), appeared to be decreased with a
more pronounced reduction in higher order RSN (Default mode,
executive control, and frontoparietal networks; Smyser et al.,
2016b). Most studies reported that primary RSN (somatosensory,
motor, and visual) are almost fully formed (i.e., adult-like) before
week 30 of PMA while higher order networks mature during the
last trimester (Doria et al., 2010).

The exploration of RSN in VPT children is still in its very first
steps. Studies have investigated connectivity in the first 4 years
of life of children born preterm (Lee et al., 2013) and in adults
and older children born preterm (White et al., 2014; Ye et al.,
2016). In spite of the useful information obtained through cohort
studies, preclinical models are crucial to test neuroprotective
treatment. However, as stated earlier, the data on rodents or other
small models remain scarce because of the intrinsic limitations of
fMRI. In this study, we characterized using rs-OIS, resting state
networks in a preclinical model of diffuse white matter injury
that consists in the intra-cerebral injection of lipopolysaccharide
(LPS) (Cai et al., 2003; Pang et al., 2003; Lodygensky et al.,
2010, 2014; Guevara et al., 2013a). LPS is known to mimic every
hallmark of inflammatory white matter injury, in the immature
brain such as seen in preterm infants following necrotizing
enterocolitis or born in the context of severe chorioamnionitis
e.g., hippocampal volume impairment (Wang et al., 2013),
ventricle dilation, apoptosis, pre-olygodendrocite cell necrosis,
white matter rarefaction, hypomyelination, microglial reaction
(Cai et al., 2003; Pang et al., 2003) as well as neurobehavioral
deficits (Fan et al., 2005).

METHODS

Animal Model
All procedures were sanctioned by the Institutional Committee
for Animal Care in Research of the CHU Sainte-Justine and
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Montreal Heart Institute Research Centers, and conducted under
isoflurane anesthesia to minimize pain and distress, following the
recommendations of the Canadian Council on Animal Care.

A total of 15 Sprague-Dawley pups coming from two litters
(7.96 ± 0.45 g weight, Charles River, Senneville, Qc, Canada)
were randomized in two different groups: LPS (n= 6) which were
injected at postnatal day 3 (P3, equivalent to human gestational
age of about 24–28 weeks (Sizonenko et al., 2003; Lodygensky
et al., 2014) with a solution of lipopolysaccharide diluted in saline
(1 mg/kg in 0.5 µL, E. Coli, serotype 055:B5, Sigma St Louis,
MO) and a sham control group NaCl (n = 9), injected with
saline alone. Injection site was the left corpus callosum at a level
equivalent to P-7, c9 (Lodygensky et al., 2014). All injections were
performed with an ultrasound-guided micro injector (Micro4
fromWorld Precision Instruments) at a rate of 0.1µL/min. From
these rat pups 2 animals were rejected, one from each group,
due to a technical error during data acquisition that was only
identified later on; so the final population is LPS (n= 5; 1 female,
4 males) and NaCl (n= 8; 2 females, 6 males).

Resting-State Optical Imaging of Intrinsic
Signals (rs-OIS)
Animal Preparation
At postnatal day 24 or 25 (P24 or P25, equivalent to
human pre-puberty (Chen et al., 2016) the rat pups were
fixed onto a small animal physiological monitoring station
(Small Animal Monitoring System 75-501 Harvard Apparatus,
Holliston, MA) which allowed the restriction of head motion and
continuous recording of respiration, heart rate, and closed-loop
thermoregulation at 37± 0.5◦C.

In addition to urethane (2 g/kg), a local anesthetic (Xylocaine
0.2%) was injected and scalp was carefully removed to expose the
skull covering the cortex. Artificial cerebrospinal fluid (Bélanger
et al., 2016) was poured over the skull to prevent drying and
minimize specular reflections due to skull bone. Urethane was
chosen over isoflurane due to concerns of its negative impact on
resting state activity (Wang K. et al., 2011). Ideally resting state
activity should be performed awake but sedation was required
due to the surgery. Urethane was chosen as an alternative as it has
been used and recommended in fMRI studies (Huttunen et al.,
2008; Paasonen et al., 2016) and in previous resting state studies
(Wilson et al., 2011; Kozberg et al., 2013).

Optical Imaging
Imaging was carried out according to previous rs-OIS studies in
rodents (Guevara et al., 2013b,c; Bélanger et al., 2016). Briefly,
multi-spectral rs-OIS (λ = 525, 590, 630 nm) was performed
under anesthesia. Seven minutes of resting state activity were
recorded. Time multiplexed illumination (3.5W LED, LZ4-
00MA00, Led Engin) yielded a full-frame sampling frequency of
5 Hz. Furthermore, illumination intensity was adjusted to avoid
under or over saturated spots of the brain with an exposure time
of 30 ms. A charge-coupled device (CCD) camera (MV-D1024E-
160-cl, PhotonFocus) with a 12-bit ADC and 1,024× 1,024 pixels
in the image area acquired the images through a macro lens
(EF-S 60 mm f/2.8, Macro USM, Canon) over a field-of-view of
(14.7 mm)2. Using an aperture of 2.8, a depth of field of 1.2 mm

was obtained. Image acquisition via a frame grabber (Neon-CLB,
Bitflow) was controlled by a custom-made graphical interface
developed in MATLAB (The MathWorks, Natick, MA).

Seed-Based Functional Connectivity (fc) Analysis of

rs-OIS
Using the incident light I0 and the reflected light I intensities,

multispectral optical density (1OD = log
(

I0
I

)

) images were

converted to HbO2 and HbR measures Ci (t) using the modified
Beer–Lambert law and a Moore–Penrose pseudoinverse,
according to Delpy et al. (1988):

1OD (λ, t) =
∑

i
ǫi (λ)Ci (t)D(λ) (1)

Where the differential path length factor D(λ) values were
obtained from the literature (Kohl et al., 2000; Dunn et al., 2005)
and hemoglobin extinction coefficients ǫi (λ)were obtained from
Prahl (1999). OD values were corrected for the wavelength-
dependent response of the CCD sensor and convolved with the
LEDs profile (Brieu et al., 2010).

In order to minimize the influence of physiological artifacts
on the resting state signal, a general linear model (GLM) (Friston
et al., 2006) was used with multiple physiological regressors
X(t): heart rate, respiratory signal, ECG, respiration rate, and the
average signal of all those pixels identified as belonging to the
cortex:

βX = X(t)+Ci (t) (2)

Then the weights βX are used to obtain the residual of the
regression Ci

′ (t), that is then used for the fc analysis:

C
′

i (t) = Ci (t) − X (t) βX (3)

HbO2 and HbR measures, i.e., Ci
′ (t) were spatially smoothed

using an 11 × 11 pixels (∼150 × 150 µm) gaussian kernel
with a 3 pixels (43 µm) standard deviation. These chromophore
signals were then temporally filtered between 0.009 and 0.08
Hz, using a fourth-order Butterworth filter with zero-phase shift,
according to previous fc studies (Guevara et al., 2013c). Images
were aligned to a reference atlas through a projective registration
using Matlab and anatomical landmarks as the control points for
such registration.

Regions of interest, also called seeds in the context of fc, were
obtained from previous studies in the rodent brain that have
identified a series of cortical regions that exhibit alterations in
fc in several conditions, such as ischemic stroke (Bauer et al.,
2014), epilepsy (Guevara et al., 2013b), arterial stiffness (Guevara
et al., 2013c), cortical spreading depression (Li et al., 2012), and
amyloid-β deposition (Bero et al., 2012).

All the seeds were placed using atlas coordinates, using
data shown by Jung et al. (2013) as shown in Figure 5A.
Time series of every seed were computed as the average
value of 17 pixels (∼0.21 mm) around the seed locus. The
Pearson correlation values r between each seed time trace
were used as the metric for seed-to-seed analysis, converted

to Fisher Z-values using Z (r) = 1
2 ln

[

1+r
1−r

]

before doing group
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level comparisons. Statistical significance was determined by
one-sample Wilcoxon rank sum test and p-values were false
discovery rate (FDR) adjusted (Benjamini and Hochberg,
1995). Effect size was computed with Hedges’ g (Hedges
and Olkin, 1985). Group-mean connectivity matrices were
computed from average seed-to-seed correlation values for both
contrasts (HbO2 and HbR). Since this model follows a unilateral
modification, interhemispheric connectivity values are expected
to change, therefore seed-based homotopic connectivity was
also investigated as a metric to corroborate those changes, as
previous studies (Bero et al., 2012; Guevara et al., 2013a). Seed-
to-pixel analysis was carried out by computing the functional
correlation between each seed time trace and the time course
of the pixels marked as belonging to the brain cortex. Fisher Z
transformation was applied to single subject correlation maps,
then normalization by subtraction of the mean and division by
the standard deviation was performed (Greene et al., 2015). For
each normalized seed-based fc map, two-tailed, one sample t-
test was implemented to characterize the connectivity patterns
of each group, assessing its strength relative to zero (Zhan et al.,
2014). In order to correct for false positives, a height-threshold
of p < 0.05, FDR-corrected, was implemented (Genovese et al.,
2002). Furthermore, clusters with fewer pixels than 5% of the
total number of height-threshold surviving pixels were removed
(Warren et al., 2009). In this work we define spatial extent as
the ratio of the number of pixels that survived the threshold
(FDR-corrected p < 0.05 in height and <5% in extent) to
the number of pixels marked as belonging to the brain cortex
in our anatomical atlas. Fisher’s exact mid-P method was
implemented to find out if gender was a confounding factor
(Thorvaldsen et al., 2010).

Machine Learning
Machine learning plays an ever increasingly important role in
the neuroimaging field, especially in computer assisted diagnosis
(Suzuki et al., 2012). Machine learning techniques may be
valuable tools in recognizing connectivity patterns that arise from
an inflammatory injury. Therefore, in this paper we apply two
different machine learning techniques to assess its value in the
context of white matter injury.

Support vector machine
A support vector machine (SVM) classifier was used to assign
labels automatically to rat pups in a blind evaluation, allowing
us to explore the research question: Does blind segmentation of
subjects using SVM reflect injury status?

Seed-to-seed fc values were chosen as the set of features (56,
comprised of both contrasts HbO2 and HbR) used as inputs to
the SVM classifier depicted in Figure 5B, which separated the
data into two groups: NaCl and LPS. A radial basis function
kernel was chosen and sequential minimal optimization was
the method used to find the separating hyperplane. Both the
box constraint parameter and the kernel sigma were optimized
through a grid-search to obtain better accuracy (Gaspar et al.,
2012). The performance of the classifier was determined in
terms of sensitivity (Se, the proportion of LPS pups identified as
such), specificity (Sp, the proportion of control animals correctly

identified), positive predictive value (PPV, the proportion of
LPS-labeled pups that are actual lesioned animals), negative
predictive value (NPV, the ratio of pups labeled as NaCl that
actually belong to the control group), and accuracy (Acc, the
proportion of correct labels), which were computed by averaging
the results of ten 10-fold cross-validation runs. In each one
of the runs, the data was split into 10 approximately equal
partitions, and each in turn was used for training while the
remainder is used for validation and testing, i.e., the samples
were randomly divided as follows: 70% for training (9–11
samples), 15% for validation (1, 2 samples), and 15% (1, 2
remaining samples) as a completely independent testing, for each
run, until all samples were independently tested. A choice of
k = 10 was chosen, as proposed by Borra et al. (Borra and Di
Ciaccio, 2010), the number of folds was limited by our sample
size.

Artificial neural network
An artificial neural network (ANN) was designed to answer the
following research question: do fc patterns correlate with lesion
size? A set of 56 features comprised of the seed-level connectivity
matrix of HbO2 and HbR measures was the input to the ANN
as shown on Figure 5D, i.e., the same set of features used in
the SVM classifier described above. A two-layer feed-forward
ANN with 20 sigmoid hidden neurons and one linear output
neuron maps the fc measures to the lesion size. The number
of neurons in the hidden layer was chosen according to the
method proposed by Huang (2003). The network was trained
using Bayesian regularization, which is more robust to small
data sets, as in our case (Burden and Winkler, 2008). Samples
from both groups were randomly divided as follows: 70% for
training (7 samples), 15% for validation (1 sample), and 15%
as a completely independent testing (1 sample). The ANN was
trained to a maximum of 1,000 epochs and the mean square
error goal was assigned to 0.00001. Accuracy of the ANN was
evaluated using correlation coefficient (r) and root-mean square
error (RMSEP).

Histology
Rat pups were perfused through the heart with phosphate-
buffered saline solution (PBS) followed by 4% paraformaldehyde.
LPS and sham-injected brains were removed and immersed in
paraformaldehyde at 4◦C for 24 h and then transferred to 30%
sucrose solution for 2 days prior to cryo-sectioning.

Measurements were performed on coronal rat brain sections,
300 µm apart, stained with cresyl violet and scanned with
Axioscan Z1 (Carl Zeiss Inc, ON, Canada). Each coronal section
(50 µm thick) was thresholded, binarized, and holes were
filled in order to delineate the ventricular region using Fiji
(Schindelin et al., 2012). Pixels were counted and converted to
linear units (228 pixels/mm), the area was multiplied by the
slice thickness and all slices were added to find the ventricular
volume (Wang et al., 1997). Fractional measurements were
performed in order to account for variability in brain size and
deformation of histological slices. Due to the fact that ventricles
were barely discernable in NaCl pups, only four of them were
analyzed.
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RESULTS

The optical intrinsic signal obtained from young rat allowed
the characterization of resting state homeostasis in normal
and inflammatory conditions. Three complementary approaches
were used: (i) Seed-based functional connectivity analysis of rs-
OIS; (ii) Support vector machine; (iii) Artificial Neural Network.

Seed-Based Functional Connectivity
Analysis of rs-OIS
Connectivity matrices for both groups and both contrasts (HbO2

and HbR) were evaluated (Figure 1). When identifying seed
based functional connectivity analysis of rs-OIS in sham animals,
connectivity matrices were better identified in HbR contrast
(Figure 1).

The association between gender and fc measures was not
statistically significant (p = 0.7552). As displayed on the
connectivity matrices, our results show that homotopic fc values
in the motor cortex and cingulate region are impaired in the
injured group; for HbR contrast homotopic connectivity in

retrosplenial region is decreased as well. Positive connections
are less numerous in the LPS group, and this diminution is
more remarkable in HbR connectivity matrices, as shown in
Figure 1D. This decrease of fc was also present in the anti-
correlated edges. Yet, there were no statistical differences in seed-
to-seed connectivity between the groups, after FDR correction
(data not shown).

Spatial Connectivity Extent
To further characterize the impact of cerebral inflammation in
the developing brain we studied the spatial extent of networks.
We generated group-averaged fc maps for HbR and HbO2

contrasts with seeds placed in the motor cortex, the cingulate
cortex, the somatosensory cortex and the retrosplenial cortex
(Figures 2, 3). Inflammation caused a significant decrease of
spatial extent across cortical regions, when compared to the
NaCl group (LPS = 1.5 ± 1% vs. NaCl = 45.9 ± 0.6%,
∗∗p = 0.0036, Hedges’ g = 1.0861, as shown in Figure 4A).
A similar reduction is observed in HbO2 fc maps displayed
in Figure 3 (LPS = 1.1 ± 0.6% vs. NaCl = 12.7 ± 4.1%,

FIGURE 1 | Group mean connectivity matrices visualized with Circos (Krzywinski et al., 2009). (A,B) Show the connectivity matrices for HbO2 contrast from the NaCl

and LPS groups, respectively. (C,D) Same as (A,B) but for HbR. Supra-threshold edges are shown (FDR-corrected p < 0.05). M, motor cortex; C, cingulate cortex; S,

somatosensory cortex; R, retrosplenial cortex. Subscripts L and R indicate hemisphere side. Note the significant reduction in connectivity in animals exposed to

inflammation with a larger effect on HbR contrast.
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FIGURE 2 | Seed-based correlation maps for HbR contrast. T-statistics are encoded as transparency, while the correlation values are encoded as hue values (Allen

et al., 2012). A height-threshold of p < 0.05, FDR-corrected, was implemented. Clusters with fewer pixels than 5% of the total number of suprathreshold pixels were

removed (Warren et al., 2009). A black contour is shown for FDR-corrected p < 0.05 and spatial extent threshold >5%. Note the decrease of significantly correlated

pixels in the LPS group. M, motor cortex; C, cingulate cortex; S, somatosensory cortex; R, retrosplenial cortex. Subscripts L and R indicate hemisphere.

∗p = 0.0452, Hedges’ g = 0.9338, as shown in Figure 4A).
A large effect size was detected in both contrasts. Moreover,
this decrease is consistent across seed locations and intrinsic
contrasts, as shown in Figures 4B,C. These results indicate
decreased functional connectivity following white matter injury
across different regions and contrasts.

Machine Learning Analysis of rs-OIS Using
Support Vector Machine to Identify Injury
Separating the data into two groups: sham animals and injured
ones, we built a confusion matrix for the SVM binary classifier
using the set of HbO2+ HbR features (Figure 5B), following the
cross-validation procedure mentioned in the Methods Section.
Only one subject from LPS group was incorrectly classified as
belonging to NaCl group. This resulted in a 92.3% accuracy
(Figure 5C). Other kernels, such as a linear kernel did not yield
higher accuracy and therefore are not presented in this work.

Machine Learning Analysis of rs-OIS Using
an Artificial Neural Network to Quantify
Injury
The implementation of an ANN model (Figure 5D) enabled
the prediction of fractional lesion volume based on fc-OIS

measures. In similar fashion to SVM classifier described above,
the connectivity matrix comprised of both HbO2 and HbR
contrast, totaling 56 seed-to-seed connectivity values, was used as
input to our ANN. Using Bayesian regularization as our training
algorithm, we found a good agreement between the results
predicted by this model and the degree of ventricular dilatation,
(regression coefficient r = 0.9431, p = 0.0020, and a RMSEP =

2.25%; Figure 5E). Other back-propagation algorithms such as
Levenberg–Marquardt training failed to predict injury accurately
(results not shown). The number of neurons in the hidden layer
was chosen as a compromise in prediction error and computation
time. An increase in the number of neurons did not result in
better performance, and architectures with fewer neurons did not
yield accuracy >90%, thus 20 neurons was a justifiable choice.

DISCUSSION

Optical intrinsic signal represents a major advantage over
fcMRI due to a very high temporal and spatial resolution. It
is straightforward to setup compared to MRI, with neither
associated mechanical vibrations nor loud sounds, thus avoiding
vibration and acoustic noise-related artifacts; while providing
better access to the animal, thus facilitating its manipulation. It is
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FIGURE 3 | Seed-based correlation maps for HbO2 contrast. T-statistics are encoded as transparency, while the correlation values are encoded as hue values (Allen

et al., 2012). A height-threshold of p < 0.05, FDR-corrected, was implemented. Clusters with fewer pixels than 5% of the total number of suprathreshold pixels were

removed (Warren et al., 2009). A black contour is shown for FDR-corrected p < 0.05 and spatial extent threshold >5%. Note the decrease of significantly correlated

pixels in the LPS group. M, motor cortex; C, cingulate cortex; S, somatosensory cortex; R, retrosplenial cortex. Subscripts L and R indicate hemisphere.

FIGURE 4 | (A) Spatial extent differences between NaCl and LPS groups. The shape of each distribution is plotted, overlaid with data points and lines denoting 25,

50, and 75 percentiles. *P = 0.0452 and Hedges’ g = 0.9338 for HbO2; **p = 0.0036 and Hedges’ g = 1.0861 for HbR. (B) Spatial extent by individual networks for

HbO2 contrast (C) Spatial extent by individual networks for HbR contrast. M, motor cortex; C, cingulate cortex; S, somatosensory cortex; R, retrosplenial cortex.

Subscripts L and R indicate hemisphere.
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FIGURE 5 | (A) Functional regions on the rat cortex, seed placement and size, manually constructed from data shown by Jung et al. (2013). Black circles indicate

seed position and size. Injection site is denoted by the “×” symbol, lambda denoted by λ and bregma indicated by triangle symbol. M, motor; C, cingulate; S,

somatosensory; R, retrosplenial. (B) Block diagram of the proposed classifier (C) Confusion matrix for the SVM classifier. (D) Graphical diagram of the ANN. (E)

Regression plot for ANN predicted ventricular size vs. measured ventricular size.

obviously restricted to 2Dmapping and not a technique of choice
for deep brain structures. This is an important limitation when
performing regression on rs-OIS data; there is the possibility that
global signal regression leads to spurious negative correlations
(Murphy et al., 2009; Saad et al., 2012), although some works
suggest a physiological basis for anticorrelated networks (Fox
et al., 2009). Unfortunately, a viable alternate option is not
provided by the OIS technique. Further work is needed on this
issue.

As shown in adult mice (Guevara et al., 2013c) we found also
that HbR contrast appears to be more sensitive to uncover resting
state networks in the young rat brain (Figure 1). Interestingly
HbR has been shown to closely match the BOLD contrast in fMRI
experiments (Huppert et al., 2006).

When compared to adult mice (Guevara et al., 2013c), rs-
OIS in young rats detected similar functional correlation maps,
across different seeds, showing high degree of inter-hemispheric
symmetry in control animals.

In the developing rat brain, an inflammatory brain injury was
found to cause significant long standing disruption of resting
state activity using rs-OIS with a reduction of connectivity in
several networks particularly on motor and cingulate networks.
The clear impact of inflammation on these networks is not
unexpected considering the site of LPS injection. Nevertheless,
the identification of persisting deficits is remarkable as these
results are in agreement with preterm infants with substantial
white matter injury, with a significant reduction on motor
networks and in the vicinity of clear injury (Smyser et al., 2013).

When studying averaged seed-based correlation maps,
inflammation was shown to cause a significant decrease of spatial
extent across cortical regions, that was highly significant on
HbR maps (Figures 2–4). This difference in HbR with respect to
HbO2 may be explained by the higher contribution of HbR to
absorption at 590 and 630 nm wavelengths. As mentioned in the
introduction similar reduction of correlated voxels where found

in preterm infants when compared to term infants imaged at term
equivalent age (Smyser et al., 2010). Translating this approach on
pre-clinical fcMRI in young developing rat or mice brains might
prove difficult as partial volume effect might dampen differences
between groups especially in small correlated regions such as in
the cingulate cortex, where fc-OIS was able to find a difference
of ∼0.6 mm2. This small, albeit significant difference might be
challenging to unravel using fcMRI in rodents, where voxel size
is usually between 0.5mm3 (Liang et al., 2012) and 1mm3 (Harris
et al., 2015).

The use of a SVM allowed us despite the limited sample
size, to efficiently classify injured from intact developing brains
with accuracy above 90%. In contrast to seed based analysis it
provides a categorical result with no indication regarding the
type of changes. The advantages and limitations still need to be
properly addressed especially if used to determine therapeutic
efficiency. Nevertheless, it is a first step in detecting injury
through optical imaging, since SVMwas shown to identify injury
with high accuracy, using rs-OIS data. Similarly, Vergara et al.
have used SVM with a leave-one-out cross validation to classify
mild traumatic brain injury based on fcMRI with an accuracy
of 84.1 % that was superior to DTI analysis (Vergara et al.,
2017). This approach was also successfully applied in a cohort
of preterm infants also using fcMRI with an 84% accuracy and a
specificity of 78% (Smyser et al., 2016a). The range of accuracy
probably depends on the severity of injury. It is noteworthy
that this approach remains extremely efficient in the setting of
mild traumatic brain injury and in a cohort of healthy preterm
infants at termwith no overt brain injury. The increased temporal
resolution of rs-OIS over fcMRI may increase the quality of
resting state assessment. It is possible that in young rodent,
rs-OIS might reveal itself superior in comparative studies with
fcMRI.

The use of an ANN allowed us to assess the degree of injury
with a highly significant correlation with the degree of ventricular
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dilation. Machine learning approaches have proven useful in
neonatal populations, e.g., using SVM to predict gestational age
(Smyser et al., 2016a), ANN to assess mortality risk (Zernikow
et al., 1998) or heuristic methods to detect seizures (Ansari
et al., 2016). One limitation of ANN, and machine learning in
general, is the fact that the only observed states are the inputs
and the outputs, making interpretation of their inner functions
exceedingly difficult (Castelvecchi, 2016). Considering the small
number of animals, rs-OIS appears to be a highly reliable tool,
sensitive enough to pick up differences in lesion load.

CONCLUSIONS

An analysis of resting state networks in the developing rodent
brain together with the impact of inflammatory white matter
injury was presented using fc measurements and machine
learning techniques. Our approach was based on creating
group-level fc statistical maps where a significant decrease in
connectivity was observed in the case of the injured group;
furthermore, seed-based fc measures were analyzed through
SVM to identify connectivity patterns differences between NaCl
and LPS groups. Those same fc measures were fed to an
ANN that allowed the prediction of fractional lesion volume.
Different fc approaches (ICA, graph theory, clustering, etc.) and
alternatives to the chosen machine learning algorithms need
further investigation on the basis of a larger sample. Another
drawback of this study is the assumption of stationarity in fc,
thus requiring the consideration of dynamic models in future

studies (Hansen et al., 2015). Nevertheless, the translation of both

machine-learning approaches, to a bedside optical monitoring
system, such as fNIRS, could be helpful in providing early
diagnosis in preterm infants especially when evaluating small
cohorts.
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