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Armillaria mellea, an edible fungus, exhibits various pharmacological activities, including antioxidant and antiapoptotic properties.
However, the effects of A. mellea on Alzheimer’s disease (AD) have not been systemically reported. The present study aimed to
explore the protective effects of mycelium polysaccharides (AMPS) obtained from A. mellea, especially AMPSc via 70% ethanol
precipitation in a L-glutamic acid- (L-Glu-) induced HT22 cell apoptosis model and an AlCl3 plus D-galactose- (D-gal-)
induced AD mouse model. AMPSc significantly enhanced cell viability, suppressed nuclear apoptosis, inhibited intracellular
reactive oxygen species accumulation, prevented caspase-3 activation, and restored mitochondrial membrane potential (MMP).
In AD mice, AMPSc enhanced horizontal movements in an autonomic activity test, improved endurance times in a rotarod test,
and decreased escape latency time in a water maze test. Furthermore, AMPSc reduced the apoptosis rate, amyloid beta (Aβ)
deposition, oxidative damage, and p-Tau aggregations in the AD mouse hippocampus. The central cholinergic system functions
in AD mice improved after a 4-week course of AMPSc administration, as indicated by enhanced acetylcholine (Ach) and
choline acetyltransferase (ChAT) concentrations, and reduced acetylcholine esterase (AchE) levels in serum and hypothalamus.
Our findings provide experimental evidence suggesting A. mellea as a neuroprotective candidate for treating or preventing
neurodegenerative diseases.

1. Introduction

Devastating neurodegenerative disorders, such asAlzheimer’s
disease (AD), are caused by neuronal loss and synapse
degeneration. These disorders are clinically characterized
by learning and memory decline, as well as cognitive deficits,
and no cure is currently available [1]. The neuronal losses
observed in neurodegenerative diseases are attributable to
the oxidative death of these oxidative stress-sensitive cells
[2]. Oxidative stress promotes neurotoxicity by increasing
amyloid beta (Aβ) aggregation concomitantly with inflam-
matory events such as reactive oxygen species (ROS) pro-
duction [3]. Additionally, excess extracellular glutamate
levels have been found to correlate with the development
of neurodegenerative disorders by triggering oxidative

glutamate damage, preventing the intracellular antioxidant
synthesis, and ultimately leading to ROS accumulation [4].
The overproduction of ROS and Aβ causes a feedback
loop that results in synaptic dysfunction, as well as
mitochondria-mediated apoptosis [5]. Therefore, antioxi-
dant therapies are being considered as new options for
protecting neurons from the oxidative damage associated
with AD. These antioxidants not only can scavenge free
radicals but may also reduce damage due to oxidative
stress and thus maintain the cellular redox balance [6].

Several types of fungus are currently used as functional
foods. In addition, many exhibit pharmacological activities
with few side effects and are used as medicinal agents.
Encouragingly, many fungal species have been reported to
display neuroprotective properties in the context of
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neurodegenerative diseases [7]. Our group found that a poly-
saccharide isolated from Sparassis crispa protected PC12 cells
against L-glutamic acid- (L-Glu-) induced apoptosis via the
mitochondrial apoptotic pathway [8]. Furthermore, aqueous
extracts ofHericium erinaceus yielded therapeutic effects that
were attributed to both mitochondria-mediated apoptosis
and neurotransmitter modulation in apoptotic cells and in
an AlCl3 plus D-galactose- (D-gal-) induced mouse model
of AD [9]. Armillaria mellea, an edible and medicinal fungus,
has been used for hundreds of years in East Asia. Polysaccha-
rides isolated from A. mellea have been reported to exhibit
antioxidant activities by superoxide radical scavenging [10]
and significant antitumor activities via the mitochondrial
apoptotic pathway and caspase cascade activation [11]. All
previous data have indicated that A. melleamay exert protec-
tive effects against neurodegenerative diseases, especially AD.

The neurotoxin-induced mouse hippocampal neuronal
cell (i.e., HT22 cell) apoptosis model is a well-recognized
in vitro model for screening the neuroprotective effects of
various agents [12]. Additionally, an aging model induced
by D-gal is used in animal studies. This model involves the
blocking of natural physiological features of aging and
exhibits cellular AD phenomena, including a wide range of
astrocytic and neuronal vacuolization, neuronal degenera-
tion or death, and Aβ production and deposition, followed
by cerebral cortex atrophy and cognitive and memory
dysfunction [13]. The use of a combination of AlCl3 and
D-gal in a mouse model induces AD-like behavior and
more readily generates pathological alterations than either
AlCl3- or D-gal-only treatment [14].

In the present study, we used L-Glu-induced HT22
apoptotic cells and D-gal plus AlCl3-induced AD mice to
investigate the neuroprotective effects of A. mellea mycelium
polysaccharides (AMPS). We found that in HT22 cells,
AMPS improved cell viability, restored mitochondrial mem-
brane potential (MMP), and reduced cell apoptosis and
excess caspase-3 activity. Moreover, AMPS treatment regu-
lated the behavior and physiological and biochemical indexes
of AD mice. Taken together, our data suggest the usefulness
of A. mellea as a therapeutic agent or functional food for
the treatment of AD.

2. Materials and Methods

2.1. Preparation of A. mellea Polysaccharides. A. mellea
(CICC 14066; China Center of Industrial Culture Collection,
Beijing, China) mycelium was obtained through submerged
fermentation with the medium consisted of 20 g/L of sucrose,
10 g/L of glucose, 10 g/L yeast extract powder, 10 g/L of pep-
tone, 1.5 g/L of KH2PO4, 0.75 g/L of MgSO4, and 0.01 g/L of
vitamin B1. A. mellea was extracted by hot water at 80°C
for 3 h twice, removed proteins using Sevag reagent (n-buta-
nol and chloroform in 1 : 4 ratio), and then collected after
precipitation using 50%, 60%, 70%, 80%, and 90% ethanol
at 4°C overnight and named AMPSa–e (Figure 1(a)). The
yield of polysaccharides within A. mellea mycelium was
shown in Table 1.

2.2. Cell Culture. The mouse hippocampal neuronal cell line
(HT22; BNCC; 337709) was cultured in Dulbecco’s modified
Eagle’s medium (DMEM; Invitrogen, USA) supplemented
with 10% fetal bovine serum (FBS, Invitrogen, USA),
100μg/mL streptomycin, and 100 units/mL penicillin (Invi-
trogen, USA) in a 5% CO2 and 95% air incubator supplying
a humidified atmosphere at 37°C. Before treatment, HT22
cells were differentiated in Neurobasal medium (Invitrogen)
containing 2mmol/L glutamine and 1×N2 supplement (Invi-
trogen) for 24hours [15].

2.3. Cell Viability Assay. HT22 cells were pretreated with
AMPSa–e at a dose of 40μg/mL or AMPSc at doses of
10, 20, 40, and 80μg/mL for 3 h and then incubated with
25mM of L-GLu for 24 h. 3-(4,5-Dimethyl-2-thiazolyl)-
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Figure 1: (a) The preparation of polysaccharides isolated from A. melleamycelium obtained via submerged fermentation. (b) The process of
AlCl3 combined with D-gal-induced Alzheimer’s disease mouse model establishment and drug administration.

Table 1: Effect of different ratios of ethanol on the polysaccharides
yield from A. mellea mycelium.

Ethanol concentration Name Yield (%)

50% AMPSa 0.93

60% AMPSb 1.30

70% AMPSc 1.93

80% AMPSd 1.60

90% AMPSe 1.00
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2,5-diphenyl-2H-tetrazolium bromide assay (MTT, Sigma-
Aldrich, USA) was applied for cell viability assessment
similarly as previous research [8].

2.4. Cell Apoptosis Assay. HT22 cells were pretreated with
AMPSc at doses of 40 and 80μg/mL for 3 h and then
incubated with 25mM of L-Glu for another 24 h. Cells
were then incubated with propidium iodide (PI) and annexin
V (AV) for 20min at room temperature in darkness. The
intensity of fluorescence was measured utilizing Muse™ Cell
Analyzer from Millipore (Billerica, MA) following manufac-
turer’s instructions.

2.5. MMP Assay. Cells were pretreated with AMPSc (40 and
80μg/mL) for 3 h and then exposed to 25mM of L-Glu
for another 12 h and then incubated with JC-1 (5,5′,6,6′-tet-
rachloro-1,1′,3,3′tetraethylbenzimidazol-ylcarbocyanine iodide)
at 37°C for 20min in darkness. The ratio of green/red
fluorescence analyzed using Muse Cell Analyzer (Millipore;
USA) indicated the value of mitochondrial membrane
potential.

2.6. Intracellular ROS Generation Assessment. HT22 cells
were pretreated with AMPSc (40 and 80μg/mL) for 3 h and
then exposed to 25mM of L-Glu for another 12h. Treated
cells were incubated with 10μmol/L of 2′,7′-dichlorofluores-
cein diacetate (DCFH-DA) at 37°C for 20 minutes. Green
fluorescence intensity detected with a fluorescent microscope
(40x; CCD camera, IX73, Olympus) represented the level of
intracellular ROS.

2.7. Assessment of Caspase Activities. HT22 cells were pre-
treated with AMPSc (40 and 80μg/mL) for 3 h and then
exposed to 25mM of L-Glu for another 24h. The activities
of caspase-3 were analyzed via commercial kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China).

2.8. Experiments Applied on Alzheimer’s Disease Mouse
Model. The experiments were carried out under the
approval of Institution Animal Ethics Committee of Jilin
University. 50 Balb/c male mice (20–22 g; 10 weeks) were
housed in cages in an air-conditioned room under
temperature (23± 1°C) and humidity (40–60%) with suffi-
cient water and food and randomly divided into five
groups (n = 10). 30 mice were subcutaneously injected
with 120mg/kg of D-gal and orally treated with 20mg/kg
of AlCl3 once a day for 8 weeks. Starting from the fifth
week, mice were intragastrically treated with normal saline
(model group) and AMPSc at doses of 25 and 100mg/kg/
day for four weeks. 10 mice serving as control group were
treated with normal saline for 8 weeks. Another 10 mice
were treated with normal saline for 4 weeks, following
with 100mg/kg of AMPSc administration for another 4
weeks (Figure 1(b)).

At the end of behavioral tests as follows, blood was col-
lected from the rats’ tails under anesthesia with 10% chloral
hydrate, and the brains were removed and homogenized
(1 : 9 w/v) in NaCl buffer. The whole hemisphere was
immersed in 4% formaldehyde for pathologic analysis.

2.9. Behavioral Tests

2.9.1. Morris Water Maze Test. Memory ability and spatial
learning were analyzed by Morris water maze (MT-200,
Chengdu, China). After 5-day training, on the 60th day, mice
were put into a circular pool filled with opacified water
containing titanium dioxide (23± 2°C, 10 cm in depth). The
escape latency of mice to find the platform was recorded
within 120 s.

2.9.2. Fatigue Rotarod Test. On the 61st day, after 3 times
training, mice were placed on the turning device (ZB-200,
Chengdu Techman Software Co. Ltd., Chengdu, China) with
15 rpm speed, and the time when mice under induced muscle
fatigue fell off was recorded.

2.9.3. Autonomic Activity Test. On the 62nd day, mice were
placed in the chamber covered with the light-blocking plate
to detect their autonomic activities. The number of mouse
activities including the horizontal movements and the
vertical movements was recorded for 5min.

2.10. Determination of the Levels of Ach, AchE, and ChAT in
Serum and Hypothalamus. The levels of acetylcholine (Ach),
acetylcholine esterase (AchE), and choline acetyltransferase
(ChAT) in serum and hypothalamus were measured by
enzyme-linked immunosorbent assay (ELISA) according to
the procedures provided by the related assay kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China).

2.11. Determination of Oxidation Status in Serum or
Hypothalamus. The levels of superoxide dismutase (SOD),
glutathione peroxidase (GSH-Px), and ROS in serum and/
or hypothalamus were detected by ELISA kit according to
related procedures (Nanjing Jiancheng Bioengineering Insti-
tute, Nanjing, China).

2.12. TUNEL Assay. Apoptosis in the hippocampus was
detected using the terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling (TUNEL). After deparaf-
finization, hippocampus tissue sections were washed twice
in phosphate-buffered saline (PBS) for 5minutes and
completely covered by the permeabilization reagent (Protein-
ase K) for 15min at room temperature. After washing with
PBS, sections were incubated with 50μL of the prepared
TdT reaction mixture at 37°C for 60min in the dark. The
reactions were subsequently terminated, and the tissue sec-
tions were analyzed under a Nikon Eclipse TE 2000-S fluo-
rescence microscope (20x; CCD camera, IX73, Olympus).

2.13. Determination of Levels of Aβ in Serum and
Hippocampus. The levels of Aβ1-42 in serum were detected
by ELISA kit according to related procedures (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China).

Brain coronal sections were deparaffinized, placed in
thioflavin-S solution for 5min, and then differentiated in
70% fresh alcohol for 10min. After washing, images were
captured using a confocal microscope (40x; CCD camera,
IX73, Olympus).
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2.14. Immunohistochemistry.The protein expressions of Aβ1-
40, phospho- (p-) Tau (ser404), and 4-hydroxynonenal
(4-HNE) in the hippocampus of mice were detected via
immunohistochemistry to visualize Aβ deposition, tau
aggregations, and oxidative stress-associated damage. The
paraffin sections were deparaffinized in xylene and rehy-
drated in different graded alcohol. Then, sections were
heated in antigen repair solution (citrate buffer) in a
microwave for 20min to retrieve antigens. After extensive
washing with PBS for 5min, sections were incubated with
3% hydrogen peroxide for 10min at room temperature to
block endogenous peroxidase followed by blocking with
2% goat serum dissolved in PBS. The slides were incu-
bated with polyclonal anti-Aβ1-40 (1 : 200, Bioss bs-
0877R); anti-p-Tau (ser404) (1 : 200, Bioss bs-2392R);
and anti-4-HNE (1 : 800, Abcam: ab46545) antibodies
individually overnight at 4°C. Subsequently, slides were
washed with PBS and incubated with secondary antibody
conjugated horseradish peroxidase (HRP) at room tem-
perature for 1 h. And then, the sections were washed in
PBS and visualized with DAB (3,3′-diaminobenzidine)
(Solarbio, Beijing, China) followed by incubating with
Mayer’s hematoxylin for 3min. Finally, the sections were
dehydrated with dilutions of ethanol and xylene and dig-
itized using an Olympus IX73 microscope (Olympus,
Tokyo, Japan).

2.15. Statistical Analysis. Data were expressed as mean
± S.E.M. A one-way analysis of variance (ANOVA) was used
to detect statistical significance followed by post hoc multiple
comparisons (Dunn’s test). Statistical significance was
accepted for P < 0 05.

3. Results

3.1. AMPS Improved Cell Viability and Apoptosis and
Reduced Caspase-3 Activity. Compared with L-Glu-treated
cells, cells pretreated with 40μg/mL of AMPSb and AMPSc
for 3 h improved HT22 cell viability by 10% and 11%, respec-
tively (P < 0 05; Figure 2(a)), whereas treatment with
AMPSa, d, and e had no effect. Additionally, pretreatment
with 40 or 80μg/mL of AMPSc for 3 h before a 24 h incuba-
tion with 25mM of L-Glu improved HT22 cell viability by
6.9% and 13.7%, respectively (P < 0 05; Figure 2(b)). AV-PI
staining revealed that whereas exposure to 25mM L-Glu
led to an apoptosis rate of 25% in HT22 cells, a 3 h preincu-
bation with AMPSc led to a reduction in apoptosis of >14%
(Figure 2(c)). When compared to L-Glu-damaged HT22
cells, a 3 h AMPSc pretreatment reduced caspase-3 activity
by >24% during a 24 h incubation (Figure 2(d)).

3.2. AMPSc Restored the Dissipation of MMP and Reduced
ROS Accumulation. Altered mitochondrial apoptosis, which
is characterized by disruption of the MMP, is a common fea-
ture of cell apoptosis [8]. Compared with L-Glu-damaged
HT22 cells, AMPSc improved MMP depolarization by nearly
10% after a 12 h incubation (Figure 3(a)). Furthermore, a 3-h
AMPSc pretreatment strongly suppressed L-Glu-induced

ROS accumulation, as indicated by reduced green fluores-
cence (Figure 3(b)).

3.3. AMPSc Affected the Behavior of AD Mice. We next
subjected D-gal plus AlCl3-induced AD model mice for
behavioral testing to further confirm the beneficial activi-
ties of AMPSc against AD. In an autonomic activity test,
AMPSc enhanced the horizontal movements of AD mice
relative to controls (P < 0 05; Figure 4(a)), but failed to
influence vertical movements (P > 0 05; Figure 4(b)). In a
fatigue rotarod test, AMPSc enhanced the endurance times
of AD mice by >25% (P < 0 01; Figure 4(c)) but had no
significant effects on control mice (Figure 4(c)).

The water maze test is commonly used to evaluate learn-
ing and memory in animals [16]. Here, we applied this test to
evaluate the effects of AMPS on the cognitive abilities of AD
mice. We initially observed a >15% enhancement in the
escape latency times of AD mice (P < 0 01; Figure 4(d)). A
4-week course of AMPSc administration led to a nearly
20% decrease in the escape latency times (P < 0 05;
Figure 4(d)). AMPSc failed to influence the escape latency
times of control mice (P > 0 05; Figure 4(d)).

TUNEL staining was used to analyze the apoptotic sta-
tuses of hippocampal neurons. In both control and AMPSc-
treated mice, we observed few TUNEL-positive cells, suggest-
ing that aminority of neuronswere apoptotic. Larger amounts
of TUNEL-positive apoptotic neuronswere noted inADmice,
whereas a 4-week course of AMPSc administration strongly
reduced apoptosis in this population, as demonstrated by the
reduction in green fluorescence intensity (Figure 4(e)).

3.4. AMPSc Regulated Ach, AchE, and ChAT Concentrations
in Serum and Hypothalamus. We noted significant reduc-
tions in the serum and hypothalamic Ach and ChAT concen-
trations, which were accompanied by increased AchE
concentrations, in AlCl3 and D-gal-induced ADmice relative
to control mice (P < 0 05; Figure 5), suggesting disruption of
the central cholinergic function. Compared to AD mice,
AMPSc increased both the Ach and ChAT levels and reduced
the AchE levels in the serum and hypothalamus in a dose-
dependent manner (P < 0 05; Figure 5).

3.5. AMPSc Regulated Oxidative Status in the Serum and
Hypothalamus. Oxidative stress is the basis for an impor-
tant hypothesis regarding the pathophysiology of neurode-
generative disorders. Compared with control mice, AMPSc
alone significantly enhanced the serum and/or hypotha-
lamic levels of SOD and GSH-Px and reduced the levels
of ROS in AD mice (P < 0 05; Table 2). Compared with
AD mice, a 4-week course of AMPSc administration
yielded in >50% and 20% increases in SOD and GSH-Px
activities, resp., and a >45% reduction in ROS levels in
the serum and/or hypothalamus (P < 0 01; Table 2).

3.6. AMPSc Regulated Aβ Levels in the Serum and
Hippocampus. Aβ, which exhibits strong aggregating proper-
ties, is considered the core component of amyloid plaques.
Compared with control mice, we observed no significant
changes in the serum Aβ1-42 levels in AD mice, whereas a
4-week course of AMPSc led to a >20% increase in serum

4 Oxidative Medicine and Cellular Longevity



Aβ1-42 concentrations (P < 0 05; Figure 6(a)). Furthermore,
AMPSc also increased the serum Aβ1-42 levels in control
mice (P < 0 05; Figure 6(a)). In the hippocampus, AMPSc
suppressed the strong expression of Aβ in AD mice, as
indicated by the reduction in green fluorescence intensity
(Figure 6(b)). The suppressive effects of AMPSc on Aβ1-
40 deposition were also confirmed by immunohistochem-
istry (Figure 6(c)).

3.7. AMPSc Regulated Oxidative Damage and p-Tau
Aggregations in Hippocampus. Compared to control mice,
high expression levels of 4-NHE (Figure 7, a) and exces-
sive aggregations of p-Tau (Figure 7, b) in the hippocampus
were noted in AD mice. In contrast, four-week AMPSc treat-
ment strongly reduced the expression levels of 4-NHE
(Figure 7, a) and attenuated the aggregations of p-Tau in AD
mice (Figure 7, b).
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Figure 2: The neuroprotective effects of AMPS against L-Glu-induced cell damage in HT22 cells. (a) 3 h AMPSb and c preincubation
improved cell viability in L-Glu-exposed HT22 cells. (b) 3 h AMPSc (40 and 80 μg/mL) pretreatment improved cell viability in HT22 cells
after 24 h incubation with 25mM of L-Glu. (c) 3 h AMPSc preincubation strongly reduced the apoptotic rate of HT22 cells exposed
to L-Glu for 24 h. (d) 3 h AMPSc pretreatment weakened caspase-3 activations in HT22 cells exposed to 25mM of L-Glu for 24 h.
Data were expressed as a percentage of corresponding control cells and means± S.E.M. (n = 6). #P < 0 05 and ###P < 0 001 versus
CTRL; ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 versus L-Glu-exposed cells. AMPS: A. mellea polysaccharides.
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4. Discussion

By 2050, the number of patients suffering with dementia is
expected to reach 115.4 million [17]. Our present study
successfully confirmed the neuroprotective effects of AMPS
in L-Glu-induced HT22 apoptotic cells and a chemically
induced AD mouse model, as evidenced by the significant
amelioration of nuclear and mitochondrial apoptosis. Fur-
thermore, a clinical decline in short-term memory is consid-
ered a symptom of AD, and AMPS was shown to affect the
behavior of ADmice. In contrast to other agents used to treat
AD, AMPS contains multiple polysaccharides that affect
systemic targets and exert various functions, such as antioxi-
dative and antiapoptotic effects, to eliminate the symptoms
of AD in a much more natural manner.

In our in vitro study, the robust protection provided by
AMPS against apoptosis was associated with the inhibition
of ROS overproduction and the reversal of MMP depolariza-
tion. ROS accumulation causes oxidative stress and thus
leads to cellular dysfunction and apoptosis [18], which are
associated with the opening of the mitochondrial permeabil-
ity transition pore [19]. Within a feedback loop, MMP dissi-
pation leads to further ROS release from the mitochondria to
the cytoplasm [20], while activating other proapoptotic
molecules such as caspase-3 [21]. Caspase-3 is an active com-
ponent of proteolytic cleavage, which directs the execution of
the apoptotic program [22]. Our data obtained from L-
Glu-induced HT22 apoptotic cells suggest an association
between AMPS-mediated neuroprotection and oxidative
stress-mediated mitochondrial apoptotic signaling.
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In the present study, our AlCl3 and D-gal-induced AD
mice exhibited signs of enhanced oxidative stress. As a bio-
marker of oxidative damage, 4-HNE is a cytotoxic end prod-
uct of lipid peroxidation, which is essential for cell survival
signaling [23]. The increase of 4-HNE triggers inflammatory
responses and elevates ROS [24]. Comparatively, AMPS

induced significant antioxidative effects, as shown by the sup-
pression on 4-HNE expressions, the reductions in ROS levels,
and increases in the activities of the endogenous antioxidants
SOD and GSH-Px, which play an important role in removing
oxygen-free radicals. AlCl3 has been reported to induce the
generation of free radicals and neurotoxicity in the brain,
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Figure 4: AMPSc improved AD-like behaviors in AlCl3 and D-gal induced ADmice. AMPSc enhanced (a) horizontal movements, but not (b)
vertical movements in autonomous activity test, (c) prolonged endurance time in rotarod test, and (d) decreased escape latency time in water
maze test in AD mice. Data are expressed as mean± S.E.M. (n = 10). #P < 0 05, ##P < 0 01, and ###P < 0 001 versus normal mice (CTRL);
∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 versus AD mice. (e) AMPSc reduced apoptotic cell rate in the hippocampus of AD mice
determined by TUNEL assay (n = 6). Scale bar: 50 μm. AMPS: A. mellea polysaccharides.
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Table 2: The effects of AMPSc on oxidative statues in serum or hypothalamus in AD mice.

CTRL
CTRL+AMPSc

(mg/kg) AlCl3 +D-gal
AlCl3 +D-gal +AMPSc

(mg/kg)
100 25 100

Serum
SOD (U/mL) 98.6± 7.4 117.0± 5.7# 75.9± 3.9# 110.3± 5.3∗∗ 111.5± 9.0∗∗

GSH-Px (U/mL) 249.8± 13.1 251.3± 5.7 213.4± 10.5## 254.4± 9.0∗∗ 290.9± 16.0∗∗∗

Hypothalamus

SOD (U/mgprot) 44.4± 2.1 55.9± 4.6# 30.1± 2.6## 47.0± 4.8∗∗ 66.1± 6.4∗∗∗

GSH-Px (U/mL) 326.1± 13.9 385.0± 27.2# 282.3± 16.4# 405.7± 31.1∗∗ 501.4± 15.2∗∗∗

ROS (FI/mgprot) 23087.4± 1905.5 15564.8± 3030.9# 34418.8± 3986.2# 14104.1± 1260.5∗∗ 17877.6± 2713.4∗∗∗

Treatment with AMPSc and the levels of SOD, GSH-Px, and ROS in serum and/or hypothalamus were detected via ELISA method. Data are expressed
as mean ± S.E.M. (n = 10). #P < 0 05 and ##P < 0 01 versus normal mice (CTRL); ∗∗P < 0 01 and ∗∗∗P < 0 001 versus AD mice.
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Figure 5: AMPSc enhanced the levels of (a and d) Ach and (b and e) ChAT and reduced the levels of (c and f) AchE in serum and
hypothalamus of AD mice detecting via ELISA method. Data are expressed as mean± S.E.M. (n = 10). #P < 0 05 and ##P < 0 01 versus
normal mice (CTRL); ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 versus AD mice.
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which might lead to degenerative disorders [25]. Over the
long term, D-gal injections not only induce impairments in
learning and memory but also cause mitochondrial dysfunc-
tion and ROS accumulation in the brain [26]. The brain con-
tains large amounts of polyunsaturated fatty acids, and its
structure, which can be damaged by oxidation of proteins
and lipids, is very sensitive to oxidative stress [27]. In AD,
oxidative stress damage causes neuronal cell apoptosis by
destroying the balance between ROS generation and

mitochondrial removal [28]. D-gal induced the dissipation
of MMP, and neurodegeneration is promoted by caspase-
mediated apoptosis, which mainly occurs in the dentate
gyrus (DG) region of the hippocampus [29]. Using TUNEL
staining, we confirmed that AMPS successfully suppressed
neuronal apoptosis in the hippocampus, compared to non-
treated AD mice. Together with our in vitro data, these
results demonstrate that the AMPS-induced improvements
in the cognitive performances of AD mice may be related
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Figure 6: Effect of AMPSc on Aβ clearance in the blood and hippocampus. (a) The levels of Aβ in serum were significantly enhanced by
AMPS. Data are expressed as mean± S.E.M. (n = 10). #P < 0 05 versus normal mice (CTRL), ∗P < 0 05 versus AD mice. AMPS
significantly reduced Aβ aggregates in hippocampus of AD mice analyzed via (b) thioflavin-S fluorescence staining (n = 6; scale bar:
20μm) and (c) immunohistochemistry staining (n = 6; scale bar: 200μm). AMPS: A. mellea polysaccharides.
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Figure 7: The effects of AMPSc on (a) 4-HNE expression levels and (b) p-Tau aggregations in hippocampus of AD mouse via
immunohistochemistry staining (n = 6) (scale bar: 100μm). AMPS: A. mellea polysaccharides.
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to its antioxidant activities, which led to further suppression
of apoptosis.

AMPS also enhanced the serum levels of Aβ while
reducing the hippocampal expression of Aβ. The overpro-
duction of Aβ protein and resulting formation of
intracellular neurofibrillary tangles lead to the generation
of extracellular senile plaques, which serve as the pathologi-
cal index in the brain of a rodent with AD [30]. Aβ aggrega-
tion induces oxidative stress and mitochondrial dysfunction
and leads to the production of ROS, which are involved in
the pathogenesis of AD [31]. In a normal physiological state,
Aβ can be detected in the blood and cerebrospinal fluid as it
is slowly removed from the brain into the periphery via the
transport mechanism and enzyme degradation. In AD
patients, the clearance of Aβ accumulated in the brain
may cause the increased levels of Aβ in the peripheral
blood [32]. As reported, the fruit of Cornus officinalis, a
traditional medicinal agent, exerts neuroprotective activity
and significantly increases the plasma levels of Aβ [33].
On the other hand, the deposits of Aβ trigger the deficits
of memory and synaptic degeneration, which further result
in the neuronal signaling downstream of p-Tau pathology.
The deposition of tau protein due to abnormal phosphor-
ylation and glycosylation modification eventually leads to
the formation of neurofibrillary tangles, which is related
to the existence of excessive Aβ and plaques, proving the
tau pathology in AD. We found that the ability of AMPS
to reduce the hippocampal deposition of Aβ in mice
played a central role in its ability to improve AD-like
behaviors in mice.

The cholinergic system, which involves neurotransmit-
ters such as Ach, is essential for the establishment, storage,
and recovery of long-term memory. As reported, the
decreases in Ach and ChAT release and enhancement of
AchE activity caused by an impaired cholinergic system are
key alterations affecting the cognitive deficit characteristic
of AD pathogenesis [34]. Ach, ChAT, and AchE are among
the neurotransmitters with crucial roles in synaptic transmis-
sion, which is related to memory and learning deficits [35].
H. erinaceus extracts were previously found to improve the
AlCl3 and D-gal-induced impairment of learning and mem-
ory in mice by regulating Ach and ChAT levels [9]. Similarly,
the modulatory effects of AMPS on neurotransmitters might
define an important protective role of cholinergic function in
AD mice.

Our present study had some limitations. First, although
we isolated polysaccharides from A. melleamycelia, we could
not obtain sufficient purity for a structural analysis. Further
investigation is required. Second, the relationships among
oxidative stress, neurotransmitter levels, and Aβ deposition
should be investigated in greater detail.

In conclusion, our results demonstrate that AMPS pro-
tects against L-Glu-induced neurotoxicity in HT22 cells and
mitigates AD-like behaviors in an AlCl3 and D-gal-induced
mouse model of AD. These effects might be largely attribut-
able to the ability of AMPS to modulate oxidative stress.
Our findings provide experimental evidence that A. mellea
might be a useful neuroprotective agent for the treatment
or prevention of neurodegenerative disease.
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