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CT‑based deep learning enables 
early postoperative recurrence 
prediction for intrahepatic 
cholangiocarcinoma
Taiichi Wakiya1*, Keinosuke Ishido1, Norihisa Kimura1, Hayato Nagase1, Taishu Kanda1, 
Sotaro Ichiyama3, Kenji Soma3, Masashi Matsuzaka2, Yoshihiro Sasaki2, Shunsuke Kubota1, 
Hiroaki Fujita1, Takeyuki Sawano4, Yutaka Umehara4, Yusuke Wakasa5, Yoshikazu Toyoki5 & 
Kenichi Hakamada1

Preoperatively accurate evaluation of risk for early postoperative recurrence contributes to 
maximizing the therapeutic success for intrahepatic cholangiocarcinoma (iCCA) patients. This study 
aimed to investigate the potential of deep learning (DL) algorithms for predicting postoperative early 
recurrence through the use of preoperative images. We collected the dataset, including preoperative 
plain computed tomography (CT) images, from 41 patients undergoing curative surgery for iCCA at 
multiple institutions. We built a CT patch‑based predictive model using a residual convolutional neural 
network and used fivefold cross‑validation. The prediction accuracy of the model was analyzed. We 
defined early recurrence as recurrence within a year after surgical resection. Of the 41 patients, early 
recurrence was observed in 20 (48.8%). A total of 71,081 patches were extracted from the entire 
segmented tumor area of each patient. The average accuracy of the ResNet model for predicting 
early recurrence was 98.2% for the training dataset. In the validation dataset, the average sensitivity, 
specificity, and accuracy were 97.8%, 94.0%, and 96.5%, respectively. Furthermore, the area 
under the receiver operating characteristic curve was 0.994. Our CT‑based DL model exhibited high 
predictive performance in projecting postoperative early recurrence, proposing a novel insight into 
iCCA management.

Primary liver cancer was the third leading cause of cancer death worldwide in 2020, with 830,180 deaths con-
tributing to 8.3% of worldwide cancer-related deaths. In 2020, 905,677 liver cancer diagnoses were made glob-
ally, comprising 4.7% of worldwide cancer  cases1. Intrahepatic cholangiocarcinoma (iCCA) is the second most 
common primary liver cancer after hepatocellular carcinoma and accounts for 10–15% of primary liver  cancer1. 
Incidences of iCCA have been increasing over the last three  decades2,3. However, the prognosis of iCCA, unfor-
tunately, remains extremely poor, with a 5-year overall survival of 9%4. This cancer presents a substantial health 
problem worldwide, so treatments to improve survival are urgently needed.

In tackling this lethal disease, surgical resection has been the most fundamental and only treatment with the 
potential for  cure2,5. Unfortunately, only about 20–40% of patients present with potentially operable  disease3,6. 
In addition, recurrence following surgical resection of iCCA remains a big concern. Several studies have dem-
onstrated that around 50% of patients recurred after curative-intent  surgery5,7,8. In short, the number of patients 
who benefit from surgical resection alone is limited.

Preoperatively accurate evaluation of risk for postoperative recurrence contributes to maximizing the thera-
peutic success for iCCA patients. Several lines of evidence from the clinical studies have demonstrated that factors 
associated with a higher risk for recurrence include large tumor size, multiple tumors, vascular invasion, lymph 
node metastasis, and R1  resection7–9. These reports provided us with significant insight. However, definitive 
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preoperative diagnosis of the above factors, especially lymph node metastasis, remains  challenging10. Further-
more, these reports were analyzed using multivariable logistic regression modeling to identify the independent 
risk factors for postoperative recurrence. This method has been traditionally performed in clinical studies, but 
there have been certain limitations, such as selection of variables, confounding factors, and multicollinearity.

To resolve the above issues, in this study, we created a prediction model for early postoperative recurrence 
using artificial intelligence (AI). AI has the potential to revolutionize disease diagnosis and management in the 
medical  field11. Deep learning (DL) has recently gained extensive attention as a technique for realizing the full 
potential of  AI12. Convolutional neural networks (CNNs), which are a DL approach, are especially recognized 
as demonstrating high performance in image  recognition13,14. Indeed, there have been some successful reports 
in applying DL to the assessment and prediction of radiological images in clinical  settings13,15,16.

In the field of iCCA, a recent study using DL has demonstrated the feasibility of applying it to liver tumor 
 diagnoses17. Moreover, Jeong et al. showed its usefulness in the prognostic estimation and stratification of sus-
ceptible individuals for adjuvant treatment after  resection18. However, there has been no report applying DL to 
recurrence prediction in patients with iCCA after resection. Thus, this study aimed to investigate the potential 
of DL algorithms for predicting early postoperative recurrence through the use of preoperative iCCA images. 
Here, we have successfully developed a prediction model using CNNs and propose a novel concept in iCCA 
management from a completely different perspective.

Methods
Patients and study design. This multi-institutional, retrospective, observational study was approved by 
the Committee of Medical Ethics of Hirosaki University Graduate School of Medicine (Aomori, Japan; refer-
ence no. 2020-230-1). Informed consent was obtained in the form of opt-out on our website (https:// www. med. 
hiros aki-u. ac. jp/ hospi tal/ outli ne/ resar ch/ resar ch. html), with the approval of the Committee of Medical Ethics 
of Hirosaki University Graduate School of Medicine. Our study did not include minors. This study was designed 
and carried out in accordance with the Declaration of Helsinki.

Between January 2001 and December 2019, 41 patients undergoing liver surgery for iCCA at three institu-
tions were included in this study. Details of the surgical procedure are described in Supplemental content 1. All 
patients had a confirmed pathologic diagnosis. In this study, the exclusion criteria were as follows: patients who 
had not undergone CT examination before surgery or patients with missing postoperative course data. Recur-
rence after surgery was diagnosed using enhanced CT and/or MRI. In this study, early recurrence was defined 
as recurrence within a year after liver surgery.

CT acquisition and tumor segmentation. Our workflow is shown in Fig. 1. Preoperative axial plain 
CT images for each case were obtained from multiple institutions and were used for this study. Radiological 

Figure 1.  The study workflow and methodological process.

https://www.med.hirosaki-u.ac.jp/hospital/outline/resarch/resarch.html
https://www.med.hirosaki-u.ac.jp/hospital/outline/resarch/resarch.html
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assessment was performed by board-certified radiologists who were blind to the outcome of the patients. Board-
certified surgeons and medical students performed CT acquisition and tumor segmentation based on the radio-
logical assessment. Using a commercial viewer (ShadeQuest/ViewR, Fujifilm, Japan), the CT image showing the 
largest tumor area was selected. The entire tumor region was manually segmented with Adobe Illustrator and 
saved.

Preparation of dataset. We trimmed a patch with a size of 128 × 128 pixels with 32 pixel stride from the 
entire segmented tumor area. Finally, 71,081 patches were obtained from 41 patients in the current study.

Architecture of the CNN. ResNet5019 and Pytorch (a python library) were utilized (Available at: https:// 
github. com/ pytor ch/ pytor ch). We did not use a pretrained model. The original acquired images of 128 × 128 
pixels were converted into images of 224 × 224 pixels. We tuned the hyperparameters as follows: number of train-
ing epochs, 50; batch size, 128; learning rate, 0.00025 via trial and error; and number of outer layers, 2 classes. 
Cross-entropy was used as loss function and the Adam as optimizer.

Evaluation methods. We used cross-validation to obtain more accurate results with less bias in the 
machine learning  studies20. In this study, the dataset is split into five folds, one fold of which is for validation 
and the other folds are for training. The proportion of patients with versus without early recurrence was equal 
in each fold. The training and validation processes were repeated five times using different folds each time. The 
final results were then averaged and the standard deviation was calculated. The accuracy, sensitivity, specificity, 
positive predictive values, and negative predictive values were evaluated. The model was also evaluated using the 
area under the receiver operating characteristic (ROC) curve (AUC).

Heatmap. The probability of early recurrence of the patches calculated by the trained model over the entire 
tumor area was modulated in gray scale from 0 to 255, which was assigned to pseudo-coloring; blue for a low-
risk patch and red for a high-risk one on CT imaging. Heatmaps were generated by applyColorMap in OpenCV 
to visualize the most indicative region for the risk of early recurrence. Prediction of the probability of early recur-
rence was visualized by pseudo-coloring; COLORMAP_JET was applied to the grayscale CT images.

Statistical analyses. Continuous variables were expressed as medians (ranges) and analyzed using non-
parametric methods for non-normally distributed data (Mann–Whitney U-test). Categorical variables were 
reported as numbers (percentages) and analyzed using the chi-squared test or Fisher’s exact test, as appropriate. 
Variables with a significant relationship to early recurrence in univariate analysis were used in a binary logistic 
regression model. A difference was considered to be significant for values of P < 0.05. The statistical analyses were 
performed using IBM SPSS Statistics for Windows, Version 26.0 (IBM Corp, Armonk, NY, USA).

Ethics approval and consent to participate. This study was approved by the Committee of Medical 
Ethics of Hirosaki University Graduate School of Medicine (Aomori, Japan; reference no. 2020–230-1). Informed 
consent was obtained in the form of opt-out on our website (https:// www. med. hiros aki-u. ac. jp/ hospi tal/ outli ne/ 
resar ch/ resar ch. html), with the approval of the Committee of Medical Ethics of Hirosaki University Graduate 
School of Medicine. This study was designed and carried out in accordance with the Declaration of Helsinki.

Consent for publication. Informed consent was obtained in the form of opt-out on our website (https:// 
www. med. hiros aki-u. ac. jp/ hospi tal/ outli ne/ resar ch/ resar ch. html), with the approval of the Committee of Medi-
cal Ethics of Hirosaki University Graduate School of Medicine.

Results
Comparison of the perioperative characteristics of the non‑early recurrence and early recur-
rence groups. The clinical characteristics of the 41 enrolled patients are shown in Table 1. Of the 41 patients, 
early recurrence was observed in 20 (48.8%). The early recurrence group demonstrated increased levels of tumor 
biomarkers such as carbohydrate antigen 19–9 and carcinoembryonic antigen (Table 1). However, there were no 
significant differences in the biomarkers between the groups. Univariate analysis indicated that Union for Inter-
national Cancer Control (UICC) N category was the only significant predictor of early recurrence (P = 0.002). 
The odds ratio (OR) was 11.611 (95% confidence interval (CI): 2.116–63.726).

Binary logistic regression analysis. To predict early recurrence, we performed a binary logistic regres-
sion analysis, which is one of the traditional methods. We set early recurrence as the dependent variable. N cat-
egory, which was found as a significant predictor through univariate analysis, was entered into a binary logistic 
regression analysis. Furthermore, we entered the UICC T category and surgical margin status, which have been 
reported as factors associated with a higher risk for recurrence.

Binary logistic regression indicated that UICC N category was a significant predictor of early recurrence 
(Chi-Square = 11.952, and P = 0.063). The result of the Hosmer–Lemeshow test was P = 0.879. UICC N category 
was significant at the 5% level (Wald = 7.430, P = 0.006). The OR was 11.840 (95% CI: 2.002–70.008). The model 
correctly predicted 85.7% of cases without early recurrence and 60.0% of cases with early recurrence, giving an 
overall correct prediction rate of 73.2%. The model achieved an AUC of 0.770 (95% CI: 0.624–0.916) (Fig. 2).

https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://www.med.hirosaki-u.ac.jp/hospital/outline/resarch/resarch.html
https://www.med.hirosaki-u.ac.jp/hospital/outline/resarch/resarch.html
https://www.med.hirosaki-u.ac.jp/hospital/outline/resarch/resarch.html
https://www.med.hirosaki-u.ac.jp/hospital/outline/resarch/resarch.html


4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8428  | https://doi.org/10.1038/s41598-022-12604-8

www.nature.com/scientificreports/

Performance of the ResNet50 model. A total of 25,765 patches were obtained from the 21 patients 
without early recurrence. Furthermore, a total of 45,316 patches were obtained from the 20 patients with early 
recurrence after surgery. Finally, a total of 71,081 patches were extracted from the 41 patients in the current 
study.

The average accuracy of the ResNet model for predicting early recurrence was 98.2% for the training dataset. 
The average sensitivity, specificity, and positive and negative predictive values were 98.9%, 97.0%, 98.3%, and 
98.0%, respectively (Table 2). The model achieved an AUC of 0.9983 (95% CI: 0.9982–0.9985) in the training 
dataset.

Table 1.  Comparison of the perioperative characteristics of the non-early recurrence and early recurrence 
groups. CA19-9 carbohydrate antigen 19-9, CEA carcinoembryonic antigen, UICC union for international 
cancer control.

All cases (n = 41) Non-early recurrence (n = 21) Early recurrence (n = 20) P value

Gender 0.879

Male, n 20 (48.8) 10 (47.6) 10 (50.0)

Female, n 21 (51.2) 11 (52.4) 10 (50.0)

Age, year 69 (39–81) 72 (39–81) 68 (46–81) 0.388

Body height, cm 157.0 (133.0–178.0) 157.5 (133.0–177.0) 156.0 (140.5–178.0) 0.814

Body weight, kg 54.0 (34.0–81.6) 53.0 (34.0–81.6) 54.0 (38.9–73.5) 0.629

Body mass index, kg/m2 21.9 (16.6–29.3) 22.1 (17.0–29.3) 21.6 (16.6–27.4) 0.506

Child–Pugh score 0.232

A, n 39 (95.1) 21 (100) 18 (9.0)

B, n 2 (4.9) 0 2 (10.0)

C, n 0 0 0

CA19-9, U/mL 152.0 (3.8–80,355.0) 128.6 (5.0–3120.0) 314.0 (3.8–80,355.0) 0.371

CEA, ng/mL 3.5 (0.5–61.6) 2.6 (0.5–43.1) 3.7 (0.5–61.6) 0.438

Surgical procedure 0.570

Right hepatectomy, n 12 (29.3) 5 (23.8) 7 (35.0)

Left hepatectomy, n 18 (43.9) 9 (42.9) 9 (45.0)

Right anterior sectionectomy, n 3 (7.3) 2 (9.5) 1 (5.0)

Right posterior sectionectomy, n 1 (2.4) 0 1 (5.0)

Partial resection, n 7 (17.1) 5 (23.8) 2 (10.0)

Lymph node dissection, n 11 (26.8) 5 (23.8) 8 (40.0) 0.266

Tumor factors

Tumor size, mm 50.0 (16.0–150.0) 50.0 (16.0–150.0) 55.0 (25.0–150.0) 0.347

Solitary tumor, n 28 (68.3) 17 (81.0) 11 (55.0) 0.074

UICC 8th edition

T category, n 0.703

 T1a 6 (14.6) 2 (9.5) 4 (20.0)

 T1b 3 (7.3) 2 (9.5) 1 (5.0)

 T2 24 (58.5) 14 (66.7) 10 (50.0)

 T3 5 (12.2) 2 (9.5) 3 (15.0)

 T4 3 (7.3) 1 (4.8) 2 (10.0)

N category, n 0.002

 N0 28 (68.3) 19 (90.5) 9 (45.0)

 N1 13 (31.7) 2 (9.5) 11 (55.0)

M category, n 1.000

 M0 41 (100) 21 (100) 20 (100)

TNM Stage, n 0.055

 IA 3 (7.3) 2 (9.5) 1 (5.0)

 IB 3 (7.3) 2 (9.5) 1 (5.0)

 II 17 (41.5) 12 (57.1) 5 (25.0)

 IIIA 3 (7.3) 2 (9.5) 1 (5.0)

 IIIB 15 (36.6) 3 (14.3) 12 (60.0)

 IV 0 0 0

Intrahepatic metastasis, n 12 (29.3) 4 (19.0) 8 (40.0) 0.141

Positive surgical margin, n 3 (7.3) 2 (9.5) 1 (5.0)  > 0.999
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Likewise, the model showed high predicting performance in the validation dataset. The average sensitivity, 
specificity, and positive and negative predictive values were 97.8%, 94.0%, 96.7%, and 96.1%, respectively. In the 
validation dataset, the ResNet model achieved an accuracy of 96.5% (Table 3). The model achieved an AUC of 
0.994 (95% CI: 0.993–0.995) in the validation dataset (Fig. 2).

Figure 2.  The receiver operating characteristics curves of logistic regression analysis and the DL model. ROC 
curves show the performance of logistic regression analysis and the ResNet model in the validation dataset 
in detecting early recurrence. The AUC of logistic regression analysis is 0.770, and the average AUC of the 
convolutional neural network (CNN) model is 0.994.

Table 2.  Performance of the DL model in the training data set. AUC  the area under the receiver operating 
characteristic curve, SD standard deviation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average SD

Sensitivity, % 99.0 98.5 99.0 99.6 98.4 98.9 0.5

Specificity, % 94.4 97.9 96.6 99.1 97.1 97.0 1.7

False negative rate, % 1.0 1.5 1.0 0.4 1.6 1.1 0.5

False positive rate, % 5.6 2.1 3.4 0.9 2.9 3.0 1.7

Positive predictive value, % 96.9 98.8 98.1 99.5 98.4 98.3 1.0

Negative predictive value, % 98.1 97.5 98.2 99.3 97.1 98.0 0.9

Accuracy, % 97.3 98.3 98.1 99.4 97.9 98.2 0.8

AUC 0.997 0.999 0.998 1.000 0.998 0.998 0.1

Table 3.  Performance of the DL model in the validation data set. AUC  the area under the receiver operating 
characteristic curve, SD standard deviation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average SD

Sensitivity, % 97.9 97.6 97.8 98.4 97.5 97.8 0.3

Specificity, % 90.6 95.9 92.5 96.6 94.6 94.0 2.5

False negative rate, % 2.1 2.4 2.2 1.6 2.5 2.2 0.3

False positive rate, % 9.4 4.1 7.5 3.4 5.4 6.0 2.5

Positive predictive value, % 94.8 97.7 95.8 98.1 96.9 96.7 1.3

Negative predictive value, % 96.2 95.8 95.9 97.1 95.5 96.1 0.6

Accuracy, % 95.3 97.0 95.9 97.7 96.4 96.5 1.0

AUC 0.990 0.996 0.993 0.998 0.994 0.994 0.3
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Highlighting areas with the risk of early recurrence by heatmap. A representative heatmap of the 
tumor area on a preoperative plain CT based on probability calculated using our prediction model is shown 
in Fig.  3. The heatmap can be superimposed on the input image to highlight the areas the model considers 
important in making its diagnosis. In short, the heatmap can contribute to assisting physicians before surgery by 
highlighting areas with the risk of early recurrence.

Factors that can influence misprediction. We further investigated factors that can influence mispredic-
tion. Using our own model, we calculated the prediction accuracy of each case based on the patches in each one. 
In this study, we defined cases with prediction accuracy of the first quartile or less (96.0%), as occurrences of 
misprediction. Table 4 reveals a comparison of the perioperative characteristics of the cases with an accuracy of 
96.0% or less and the cases with over 96.0% accuracy. Univariate analysis showed that smaller tumor size was a 
significant factor in misprediction (P = 0.025). Likewise, looking at tumor size only, also showed a significant dif-
ference in the comparison of the two groups when divided by the median value of prediction accuracy (97.8%). 
Collectively, these data suggested that our prediction model can perform excellently, particularly with larger 
iCCA.

Discussion
We applied the DL model to predict postoperative early recurrence of iCCA. We have successfully demonstrated 
high performance in the prediction of early postoperative recurrence using plain preoperative CT images. The 
accuracy of the DL model far exceeded that of the binary logistic regression analysis (AUC, 0.994 vs. 0.770). This 
report represents the first study in which a DL model based on CT images is used to predict early postoperative 

Figure 3.  A heatmap of iCCA on a preoperative plain CT using our prediction model. The color bar illustrates 
the degree of probability the model paid to it. Red areas represent a high risk of early recurrence; blue areas 
represent a low risk of early recurrence. (A) original image of a non-early recurrence case; (B) original image of 
an early recurrence case; (C) heatmap of a non-early recurrence case; (D) heatmap of an early recurrence case.
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recurrence in iCCA. Our results may yield a novel insight into personalized treatment strategies, including 
neoadjuvant and adjuvant chemotherapy, in iCCA management.

Adjuvant chemotherapy is certainly expected to increase the survivorship of patients with iCCA 21–23. Isolating 
results has been a challenge as past prospective randomized trials have included not only iCCA but also other 
bile duct  cancers23–25. Furthermore, the indication for adjuvant chemotherapy in those studies was heterogene-
ity. In short, the selection criteria of susceptible individuals for adjuvant chemotherapy is not well established. 
To address this issue, Jeong et al. showed the usefulness of an AI framework in the prognostic estimation and 

Table 4.  Comparison of perioperative characteristics depending on prediction accuracy. CA19-9 carbohydrate 
antigen 19-9, CEA carcinoembryonic antigen, UICC union for international cancer control.

Under 25% (n = 11) Over 25% (n = 30) P value

Gender 0.159

Male, n 3 (27.3) 17 (56.7)

Female, n 8 (72.7) 13 (43.3)

Age, year 68 (60–77) 70 (39–81) 0.755

Body height, cm 154.0 (133.0–173.5) 158.5 (140.5–178.0) 0.333

Body weight, kg 51.0 (34.0–73.5) 55.3 (38.0–81.6) 0.547

Body mass index, kg/m2 22.1 (19.2–26.0) 21.7 (16.6–29.3) 0.937

Child–Pugh score 0.380

A, n 11 (100) 28 (93.3)

B, n 0 2 (6.7)

C, n 0 0

CA19-9, U/mL 39.1 (5.0–3120.0) 179.0 (3.8–80,355.0) 0.526

CEA, ng/mL 4.1 (0.5–43.1) 3.0 (0.5–61.6) 0.706

Surgical procedure 0.661

Right hepatectomy, n 3 (27.3) 9 (30.0)

Left hepatectomy, n 5 (45.5) 13 (43.3)

Right anterior sectionectomy, n 0 3 (10.0)

Right posterior sectionectomy, n 0 1 (3.3)

Partial resection, n 3 (27.3) 4 (13.3)

Lymph node dissection, n 4 (36.4) 9 (30.0) 0.698

Tumor factors

Tumor size, mm 42.0 (16.0–60.0) 57.5 (17.0–150.0) 0.025

Solitary tumor, n 8 (72.7) 20 (66.7)  > 0.999

UICC 8th edition

T category, n 0.482

 T1a 1 (9.1) 5 (16.7)

 T1b 0 3 (10.0)

 T2 8 (72.7) 16 (53.3)

 T3 2 (18.2) 3 (10.0)

 T4 0 3 (10.0)

N category, n  > 0.999

 N0 8 (72.7) 20 (66.7)

 N1 3 (27.3) 10 (33.3)

M category, n 1.000

 M0 11 (100) 30 (100)

TNM Stage, n 0.406

 IA 1 (9.1) 2 (6.7)

 IB 0 3 (10.0)

 II 5 (45.5) 12 (40.0)

 IIIA 2 (18.2) 1 (3.3)

 IIIB 3 (27.3) 12 (40.0)

 IV 0 0

Intrahepatic metastasis, n 3 (27.3) 9 (30.0)  > 0.999

Positive surgical margin, n 1 (9.1) 2 (6.7)  > 0.999

Early recurrence, n 4 (36.4) 16 (53.3) 0.484

Prediction accuracy, % 95.4 (85.6–96.0) 98.4 (96.2–100)  < 0.001
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stratification of susceptible individuals for adjuvant treatment after resection in iCCA patients. Though they 
reported applying DL to recurrence prediction, they did not use CT and did not specifically predict early recur-
rence. In contrast, we intended to predict early postoperative recurrence directly by CT. Our model, which can 
directly predict early recurrence, would be used to predict who should receive adjuvant chemotherapy based 
on their risk of recurrence.

Liang et al. conducted a single-center retrospective study and built a radiomics nomogram to predict early 
recurrence of iCCA after surgical  resection26. Their nomogram, using preoperative arterial-phase contrast-
enhanced magnetic resonance imaging (MRI), achieved an AUC of 0.82 and 0.77 in the training and validation 
cohorts, respectively. They used manual engineered features and selected the earlies recurrence-related features 
using a least absolute shrinkage and selection operator logistic regression analysis. Zhao et al. used radiomics 
from MRI to predict early recurrence. Their radiomics model showed a preferable predictive performance (AUC 
0.889)27. Compared with the previous radiomics model using MRI, our model, which is based on DL features, 
achieved higher predictive performance (AUC 0.994).

Based on our results, which perform in such a highly predictive manner with the model addressing postop-
erative early recurrence, we propose a new concept in iCCA management. Though we need to discuss further 
which population, patients, those with or without early recurrence, is fit for adjuvant chemotherapy, achieving 
quite high levels of predictive accuracy, compared to conventional methods, can provide valuable information for 
determining adjuvant therapy and developing surgical plans, thereby facilitating pretreatment decisions. Moreo-
ver, this model can help optimize postoperative surveillance intervals for early detection of recurrence based on 
the risk of early recurrence.

Thanks to the advantages reaped from DL, we physicians, can easily apply computer-aided  diagnosis16,28. 
Deep learning algorithms, such as CNN, have been widely used in the field of image diagnosis and prediction 
owing to their being fast, accurate, and  reproducible28,29. CNN can uncover details in medical images that human 
experts cannot find, and automatically render a quantitative  assessment30. Generally, even expert radiologists 
and surgeons cannot always access meaningful findings that would enable physicians to decide on a treatment 
strategy from plain CT images. In fact, there have been no reports or guidelines that recommend using plain CT 
images for risk assessment of postoperative recurrence in iCCA. Several lines of evidence, including our study, 
can lead to a paradigm shift in the recognition of AI in the field of iCCA treatment.

The present study has several limitations. This is a retrospective study. In addition, although this is a pilot 
study, the patient population was small. Part of the reason is because it is still challenging to detect iCCA at an 
early stage. Patients are often diagnosed in advanced stages, not indicated for surgery. As a result, the number of 
iCCA patients included in this study, which focused on recurrence after surgery, was low. However, our model 
achieved high predictive performance. If we had access to additional training data from a large cohort, we could 
achieve even higher prediction accuracy and generality. To establish clinical applications, sufficient datasets 
are fundamental requirements. A novel AI approach based on analyzing a huge database, such as national or 
regional datasets, would be attractive to both clinicians treating iCCA and their patients. An accurate and robust 
prediction model can ultimately contribute to a better prognosis in iCCA patients. We expect that future studies 
will expand this approach.

There was the question of possible lack of homogeneity in CT techniques over the past 20 years that has 
been a point of contention (Supplementary Table 1). Nevertheless, our model achieved high predictive perfor-
mance. These results suggested that relative heterogeneity of CT techniques may not be a big issue because of 
the handling of huge information from CT images through DL. Certainly, homogeneity of CT techniques would 
be preferable. However, it would not be practical in a real clinical setting for all patients to undergo CT exams 
using the same scanner and technique. In short, the use of a diverse set of CT acquisitions was not a limitation, 
it was a benefit to the study.

In conclusion, our DL model, using plain preoperative CT images of iCCA, exhibited high predictive per-
formance in projecting postoperative early recurrence. The present multicenter study has provided a novel 
approach to predict early recurrence after surgery. This model may help clinicians in the selection of patients 
for neoadjuvant and/or adjuvant therapy. Furthermore, this model may help optimize risk-based postoperative 
surveillance intervals for early detection of recurrence. In short, this approach can contribute to personalized 
strategies in iCCA treatment. To establish a clinical application, conducting a study using a huge dataset, such 
as national dataset, is the hope for the future.

Data availability
The data generated or analyzed during this study are included in this published article and its supplementary 
information files. Some datasets generated and/or analyzed during the current study are not publicly available 
due to privacy but are available from the corresponding author on reasonable request.
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