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ABSTRACT

Yeast mother cell-specific ageing is characterized
by a limited capacity to produce daughter cells. The
replicative lifespan is determined by the number
of cell cycles a mother cell has undergone, not by
calendar time, and in a population of cells its distri-
bution follows the Gompertz law. Daughter cells
reset their clock to zero and enjoy the full lifespan
characteristic for the strain. This kind of replicative
ageing of a cell population based on asymmetric cell
divisions is investigated as a model for the ageing of
a stem cell population in higher organisms. The
simple fact that the daughter cells can reset their
clock to zero precludes the accumulation of chro-
mosomal mutations as the cause of ageing, because
semiconservative replication would lead to the same
mutations in the daughters. However, nature is more
complicated than that because, (i) the very last
daughters of old mothers do not reset the clock;
and (ii) mutations in mitochondrial DNA could play a
role in ageing due to the large copy number in the
cell and a possible asymmetric distribution of
damaged mitochondrial DNA between mother and
daughter cell. Investigation of the loss of hetero-
zygosity in diploid cells at the end of their mother
cell-specific lifespan has shown that genomic rear-
rangements do occur in old mother cells. However,
it is not clear if this kind of genomic instability is
causative for the ageing process. Damaged material
other than DNA, for instance misfolded, oxidized or
otherwise damaged proteins, seem to play a major
role in ageing, depending on the balance between
production and removal through various repair
processes, for instance several kinds of proteolysis

and autophagy. We are reviewing here the evidence

for genetic change and its causality in the mother

cell-specific ageing process of yeast.

INTRODUCTION

In this article, we will discuss published evidence for
different kinds of genetic change which occur in senescent
yeast mother cells and compare these facts briefly with the
evidence for genetic change in ageing in higher organisms
and with the evidence for genetic changes in chronologi-
cally ageing (stationary phase) yeast cells. The occurrence
of genetic changes in senescent cells does not necessarily
mean that these genetic changes are a cause (or the cause)
of ageing. Therefore, it is necessary to study the ageing
process in cells and organisms after introducing (in a
reverse genetics fashion) precisely known mutations which
influence the frequency of genetic change and test what
influence on lifespan and the ageing process in general
they might have. Alternatively, natural variants which
display a higher or lower mutation rate can be studied
(including interspecies comparisons) or environmental
conditions can be used that increase or decrease the
mutation rate. Genetic manipulations, which change
the intrinsic mutation rate require advanced methods of
reverse genetics and have only recently been performed.
Experiments to increase mutation rate are documented,
however, experiments to the opposite effect (to decrease
the very low natural mutation rate) have, to our knowl-
edge, not been performed for yeast mother cell-specific
ageing, although those experiments would be the most
useful to test the theory. Below, we list several possible
kinds of genetic/genomic instability, and of course,
all of them must be tested by gene-targeted analysis.
Experiments concerning increased mitochondrial DNA
mutation rate in the mouse have very recently led to quite
unexpected conclusions and have cast doubt on the notion
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that mitochondrial mutations may cause ageing (see also
the part on ageing and the mitochondrial genome) (1,2).

The somatic mutation theory of ageing goes back to the
1950s and 1960s (3,4) and was put forward at the same
time as the ‘free radical theory of ageing’ (5). Both theories
share the tenet that the main cause of ageing is random
damage to cells and organisms and one of these ‘random
damages’ is damage inflicted on the genome. This has been
challenged by researchers who are in favour of a ‘genetic
programme of ageing’, which has been selected during
organismic evolution over the course of millions of years
and has, according to these researchers, a positive
selection value, i.e. it would increase the chance of survival
of the species. Typical examples of such theories have been
put forward, for instance, by Skulachev (6) and de
Magalhaes (7). However, following the convincing argu-
ments of Kirkwood and his colleagues (8,9), Vijg and
colleagues (10,11), and other groups, we suggest here
that the apparent contradiction between ‘random wear
and tear’ and ‘genetic programme’ can be resolved by
considering the role of genetic programmes which do
indeed exist and concern the defence against environ-
mental stress that all cells and organisms have developed
in order to survive. These are simple Darwinian traits
necessary for survival, or in Darwinian terms, for fitness
of the individual. We propose, and we and others have
actually shown, that cellular and organismic ageing
creates intracellular oxidative stress (12) and many other
stresses, most notably in the course of the DNA damage
response [‘replication stress’, (13)]. The cell must respond
to these stresses, and survival depends on the stress
response genes and their alleles, which are present. Certain
gene deletions in the stress response pathways can
therefore shorten the lifespan, but some others can also
increase the lifespan, under laboratory conditions. In this
way, genes in the stress response pathways and their
interrelated metabolic pathways (for instance basic meta-
bolic pathways for the supply of ATP or NADPH) appear
as ‘gerontogenes’. It is generally believed that mutations,
which increase the lifespan tell us more about the defence
pathways relevant for ageing as compared to mutations
which shorten the lifespan. In only a few model organisms
do the genes in which such ageing mutations have been
found, show us a coherent picture of the pathways
involved. This is most clear in Caenorhabditis elegans,
where the pathway including the IGFR (insulin-like
growth factor receptor) is very well represented in ageing
mutants. It is less clear in yeast mother cell-specific ageing
(Figure 1). The IGFR pathway in metazoans is interrelated
with stress response and growth control and provides an
understandable link to the caloric restriction hypothesis of
longevity (14). However, the existence of these geronto-
genes does not mean that evolution has positively selected
genes that cause ageing or which set up an intrinsic clock
that counts away time and tells us when it is time to die.

The somatic mutation theory of ageing was formulated
when the effect of mutagenic ionizing radiation on the
lifespan of mice was studied (3). The evidence available at
that time was hardly convincing for a causal relationship
between mutation rate and lifespan shortening in the mice.
Moreover, the article did not consider the problem of

the protection of the germ line from mutagenic damage.
If the mutation load indeed accumulates in somatic cells
during the lifetime of the individual thereby causing the
ageing process, we must assume that germ line cells are
specially protected against mutations in chromosomal
genes. Otherwise the mutation load would increase in
every generation of individuals during the evolutionary
history of the species, and the species would die out.
The argument obviously depends very much on the germ
line hypothesis of Weismann (15,16). Interestingly, to our
knowledge, no experimental work exists at present
showing that germ line cells are protected from mutagenic
insult or display a smaller mutation rate compared to
somatic cells. Even if it were true that a high dose of
ionizing radiation could cause symptoms that are similar
or identical to the natural ageing process (in other words,
premature ageing), this would not show that the cause of
ageing under natural conditions (with a very low dose of
ionizing radiation) is the accumulation of somatic muta-
tions. Nevertheless, the somatic mutation theory of ageing
has been investigated and discussed over the years, and we
want to critically discuss this hypothesis for the special
case of yeast ageing.
Environmental insults (like the mutagenic actions of

ionizing radiation) not only attack the genome, they also

Figure 1. Yeast mother cell-specific ageing is characterized by a limited
capacity to produce daughter cells. The lifespan is determined by the
number of cell cycles a mother cell has undergone, not by calendar
time, and in a population of cells the lifespan distribution follows the
Gompertz law. Daughter cells reset their clock to zero and enjoy the
full lifespan characteristic for the strain. Reprinted from Ref. (122),
with permission from Elsevier.
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attack proteins, lipids and other biomolecules. Unlike
chromosomal DNA, the other cellular components are
not necessarily duplicated by a semiconservative mechan-
ism during the course of a cell cycle. The evidence of
oxidative and other damage to these non-DNA compo-
nents is overwhelming. The problem of ‘rejuvenation’
(removal of the damaged material) is well recognized by
researchers in the field, but very little research has been
published up to now dealing with a possible mechanism of
this rejuvenation process. In principle, two possibilities
exist: asymmetric segregation between mother and daugh-
ter cell [this is a major and interesting problem in yeast
mother cell-specific ageing; (17)]; and cellular repair
processes which remove the damaged material. The
repair processes include: protein degradation in the
proteosomal pathway, nonsense-mediated mRNA decay,
autophagy, mitophagy and others. Finally, in higher
organisms, apoptosis is a mechanism for rejuvenation,
which removes, unnoticed by the immune system, cells
that are damaged beyond a certain threshold and cannot
return to a normal cell cycle. As long as the maintenance
of cells and tissues works well, damage, in particular
DNA damage, triggers a response (the well-researched
DNA damage response) which arrests the cell cycle until
the damage has been repaired. This is one example of the

checkpoint regulation of the cell cycle, which was
originally discovered by Hartwell and colleagues (18,19).
If there is no repair, or if repair is impossible, the DNA
damage response pathway undergoes a molecular switch
leading to apoptosis. We have indirect evidence that in
very old yeast mother cells this checkpoint mechanism is
inactivated, leading to catastrophic cell cycles (20) during
which very probably gross chromosomal rearrangements
and aneuploidy are produced on a large scale (Figure 2).
In our view, the gradual accumulation and partial repair
going on in the ageing process, leaves cellular function
nearly normal during most of the lifetime of the cell.
But the accumulation of unrepaired damage leads to a
catastrophic event when the terminal stage is reached,
regular cell cycles are no longer possible and the cell
dies, typically through apoptosis. We call this final stage
‘senescence’. Note that apoptosis serves two different
purposes: it is a way of rejuvenation of tissues (mentioned
above) but also the way in which old mother cells finally
die. This dual function interestingly parallels the activity
of a pivotal apoptotic effector, the Endonuclease G,
recently studied by the group of Frank Madeo. They have
discovered that this endonuclease in apoptosis is trans-
ferred from the mitochondria to the nucleus and actually
is the enzyme that degrades DNA in chromatin leading

Figure 2. The picture shows in part: (A) exponentially growing young yeast cells of strain W303, a commonly used haploid MATa strain, which are
included here to show the size and morphology difference to old cells. (B) A typical lifespan determination of the same wild-type strain. The number
of budding cycles that each of a set of 50 ‘virgin’ cells undergoes before it stops dividing was determined by micromanipulation and counting
of budding cycles. (C) M is the terminal mother cell after 15 cell cycles. Note the enormous size as compared to young cells and the surface
changes. D14 is the second but last daughter that did not completely separate from the mother and did not give rise to new living cells. Also, the
surface of D14 is folded or wrinkled. The budding of the ‘granddaughter’ D14-1 stopped at an early stage of the cell cycle. The budding of last
daughter cell, D15, also stopped at an early stage of the cell cycle. Reprinted from Ref. (20), with permission from Elsevier.
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to a ‘smear’ of nuclear DNA in apoptotic yeast cells and
to a positive TUNEL test. However, depending on cellular
metabolism (aerobic or anaerobic), the deletion of Endo G
can actually promote the death or the life of the cell (21).
This points to the second, life-promoting function of Endo
G (the ‘day job’), which is mitochondrial recombination.

We are now considering the possible genomic changes
which are believed to occur in ageing cells and which
in part have also been investigated in them. In no model
system of ageing have researchers supplied us with a
definite proof that these genomic changes do in fact cause
the ageing process and we will also consider what would
be necessary to show causality in every case.

This is a short list of the kinds of genomic instabilities
that have been discussed in the literature and which we
will discuss in the rest of this article:

� Extrachromosomal ribosomal circular DNAs (ERCs)
� Loss of heterozygosity, hyperrecombination and

aneuploidy
� Telomere length changes
� Mitochondrial DNA changes: (i) point mutations and

small deletions; (ii) large deletions

EXTRACHROMOSOMAL RIBOSOMAL DNA
CIRCLES (ERCS)

Although mother cell-specific ageing of yeast was dis-
covered by Mortimer (22), and the basic biology of this
phenomenon was worked out between 1965 and 1985 by
Muller and her colleagues in Germany (23–28), the field
became well known in the scientific community only in the
1990s through the work of two American groups, headed
by L. Guarente and S.M. Jazwinski. The discovery by the
Guarente group of the role of extrachromosomal riboso-
mal DNA minicircles in yeast mother cell-specific ageing
(Figure 3), and, based on this discovery, the elucidation of
the role of the histone deacetylase, SIR2, in the ageing
process, resulted in a renewed interest in yeast ageing
research and in the contribution of many more research
groups around the world. ERCs in spite of intense
searches, have never been found in ageing mammalian

cells or in any one of the non-yeast ageing model systems,
and must therefore be designated as a ‘private’ yeast
mechanism of ageing (22). The SIR2 (sirtuin) protein
family, on the other hand, is highly conserved in
eukaryotes (29–32). The link between ERCs, sirtuins and
the metabolic regulation of ageing (for instance by so-
called caloric restriction) will be explained below. At the
same time, Jazwinski and others studied in more detail the
role of oxygen toxicity (oxygen radicals), mitochondrial
respiration, energy charge and lipid metabolism in yeast
ageing (33). Oxygen radicals or rather their follow-up
products, have been shown to accumulate in ageing cells in
practically all known model systems of ageing, and are
therefore a ‘public’ mechanism of ageing which is very
probably also active in human ageing. However, the
genetic proof for a causal relationship between oxygen
radicals and ageing is not perfect (and will not be
discussed in detail here).
The key to understanding this sometimes bewildering

multiplicity of proposed ‘causes of ageing’ is the notion
that there is no single most important cause, but depend-
ing on environmental conditions, and on the genetic
background of the strain or species, different factors can
become limiting for lifespan. This is not surprising given
the multiplicity of insults to DNA, proteins and lipids with
which a cell or organism has to deal during its lifetime and
the multiplicity of stress response and signalling reactions
of the cells sensing such insults.
ERCs are nucleolar circular DNA species that comprise

the 9.1 kb DNA of the nucleolar organizer (coding for the
ribosomal RNAs of yeast) or multiples thereof. ERCs
have one relatively weak origin of replication per repeat
length, but no centromere. Therefore they behave
like episomal plasmids, accumulate to a large degree in
the nucleoli of mother cells and are very inefficiently
transmitted to daughter cells. These are very clear
examples of genomic changes associated with mother
cell-specific ageing. ERCs can be analysed by Southern
blot analysis and they are absent in first generation
daughter cells but abundant in old mother cells of several
different wild-type laboratory strains that were analysed.

Figure 3. Extrachromosomal ribosomal DNA circle (ERC) model of yeast ageing. Intrachromosomal recombination between repeats within the
rDNA array of a mother cell leads to excision of an ERC. The ERC replicates but is not segregated to the daughter cell. The daughter cell
presumably restores proper chromosomal rDNA copy number through amplification of the remaining repeats. Continued replication and asymmetric
segregation cause ERCs to accumulate exponentially in the ageing mother cell, leading to nucleolar fragmentation and cell senescence. The Sir
complex, which silences transcription at the silent mating type loci and at telomeres, translocates to the nucleolus either just before or just after
ERCs form, to inhibit their genesis or accumulation. Reprinted from Ref. (123), with permission from Elsevier.
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Why do these ERCs arise in yeast cells and why do they
not arise in higher cells? ERCs in yeast are thought to be
a by-product of the special non-allelic recombination
mechanism that is needed to maintain sequence identity in
about 100–120 copies (in most strains) of the 9.1 kb rDNA
repeats on chromosome XII. The genes and gene products
involved in this non-allelic recombination process have
been well studied (34–40) and mutations are known that
prevent the formation of ERCs as well as mutations that
promote the production of ERCs. FOB1 codes for a
replication termination protein that is also needed for
non-allelic recombination of rDNA. Deletion of FOB1 is
viable and to a large degree prevents ERC formation
(41,42) but not homologous recombination elsewhere on
the genome [see below; (43)]. It leads to an increase
in mother cell-specific lifespan that depends on the strain
background. In the original report on ageing in a fob1�
strain (41), a large increase of the median lifespan from
23 to 37 generations was reported, however in the now
generally used BY strain background the increase is less
dramatic, (44; and our own observations).
Mutations in the RAD50 series of recombinational

repair genes (double-strand break repair genes) completely
prevent ERC formation but do not increase (rather they
decrease) the mother cell-specific lifespan (45). The tenta-
tive explanation is that these mutations (for instance rad50,
rad51 and rad52) not only influence rDNA-specific non-
allelic recombination, which is a very special case of mitotic
recombination, but also the more general double-strand
break repair, and that this deficiency in double-strand
break repair perhaps causes the severe decrease in mother
cell-specific lifespan. Interestingly, other DNA repair genes
tested (RAD1, RAD7) had no influence on lifespan.
SGS1p is the homologue of the human WRN protein,

mutations of which cause Werner’s syndrome, one of the
best-studied premature ageing syndromes in humans.
A deletion of the yeast SGS1 gene leads to an increase
in ERCs even in young cells and to prematurely ageing
yeast (46). This deletion is epistatic to the fob1 deletion as
the double mutant displays the same short lifespan as the
sgs1 mutant (41) in spite of a very low level of ERCs. The
same effect is seen in an even more drastic way in the sgs1,
rad52 double mutant strain (47). This is a good example
for premature ageing, which is not caused by ERCs.
The Sir proteins were originally found to be necessary

for transcriptional silencing of the telomeric copies of
the mating type information, HML and HMR, and of the
rDNA loci (37,48,49). The Sir2 protein is the only one of
the original four Sir (silent information regulator; 48,49)
proteins which shows a strong influence on non-allelic
recombination of the rDNA repeats (37) and which leads
to a strong increase in ERC production when deleted
(46,50). That ERCs can cause premature ageing is also
shown by the fact that increasing the number of ERCs by
genetic constructs that have nothing to do with the natural
production of these circular rDNAs also shortens the
lifespan considerably. This was achieved by activating the
Cre recombinase in a yeast cell that harbours rDNA with
appropriate Lox sites to eliminate a centromeric sequence
(46). Quite surprisingly, simply introducing an episomal
(pRS306) but not a centromeric plasmid (pRS316) that

has nothing to do with rDNA also shortened lifespan
considerably (46).

On the other hand, the presence of the endogenous
2-micron DNA plasmid, well known for its highly efficient
site-specific recombination system that constantly inter-
converts the circular molecule into its isomer, does not
induce any shortening of the host cell lifespan and does
not accumulate in old mother cells (51). In fact, due to
its self-carried partitioning system encoded by the STB
locus, the plasmid is very efficiently partitioned at mitosis
between mother and daughter cell.

While the ERCs were shown to be nucleolar and the
nucleolus of old mother cells is enlarged and morpholo-
gically abnormal (46,52), the plasmids mentioned above
are nuclear, not nucleolar. The copy number of ERCs and
episomal plasmids in old mother cells is estimated to be
about 1000. A tentative explanation offered by the authors
for the induction of premature senescence by these DNA
species is that they titrate away a protein factor essential
for life, perhaps a limiting component of the replication
machinery (52). In the case of ERCs, there is evidence for
this titrating effect: In old mother cells, the Sir protein
complex which is needed for silencing of the telomere-
proximal copies of mating type information, HML and
HMR, is no longer available because it has been titrated
away by the ERCs. This leads to expression of the no
longer silent mating type copies, and hence, sterility due
to a ‘pseudo-diploid’ state of the old mother cells.

However, the question is much more difficult to answer
if in a wild-type strain in complete media, mother cell-
specific ageing is indeed caused by the ERCs. Nearly
completely prohibiting the formation of ERCs in a fob1
deletion strain leads to a moderate extension of the
lifespan, as mentioned above, which would speak against
ERCs as a major cause of ageing in the wild type, on
complete media. An experiment which has never been
performed, could shed light on this hypothesis: production
by genetic engineering of ERCs that lack the binding site
for Sir2p or for all of the Sir proteins and testing to see
if these ERCs that no longer bind the Sir proteins would
still lead to premature ageing.

Why do higher cells in culture or in vivo not express
ERCs? We do not know, but a tentative explanation could
be that the mechanism that ensures sequence conservation
of the rDNA repeats is different in yeast and higher cells.
One indication that this could be so is that no obvious
homologue exists for FOB1 in higher cells.

The pronounced role of the sir2 deletion in shortening
the lifespan of yeast could also be unrelated to the
nucleolus and to the ERCs. The group of Nystrom
showed that in the sir2 deletion strain, the asymmetric
distribution of oxidatively damaged proteins between
mother and daughter cell is lost and the damaged proteins
are found equally in mothers and daughters (17). It is
unknown how the loss of Sir2p leads to this loss of
asymmetry, but the loss of this histone deacetylase could of
course have complex genome-wide consequences. It is also
possible that Sir2p has a more direct function in establish-
ing the segregation asymmetry for damaged proteins.

The role of the nucleolus in mother cell-specific ageing,
the titrating of the Sir2p protein complex in old mother
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cells, and the special role of the Sir2 protein mentioned
above, has led the groups of Guarente and of Sinclair
to investigate in more detail the role of the NAD+-
dependent histone deacetylase, Sir2p, in ageing. The
sirtuins (SIR2-like proteins) are highly conserved in
sequence and function in eukaryotes and even in archae-
bacteria. Seven paralogues exist in human cells, one of
which (SIRT3) is mitochondrial (32). This family of
histone deacetylases is unique because it transfers an
acetyl group from defined lysines of histones H3 and H4
to NAD+, thereby cleaving NAD+ and creating 20-O-
acetyl-ADP ribose, which is suspected to be a new second
messenger.

According to a hypothesis that is attractive but still
not proven, the sirtuins are thought to sense the metabolic
state of the cell and modulate transcriptional gene
expression of the cell according to its metabolic and
redox state. Influencing the sirtuins by small molecule
pharmaceuticals in order to simulate a metabolic state
resembling caloric restriction, and thereby preventing
ageing and age-related diseases such as obesity, diabetes
and cardiovascular disease, is currently a hotly debated
field (53), but outside the scope of this article.

YEAST MOTHER CELL-SPECIFIC AGEING AND
TELOMERE-RELATED SENESCENCE

The so-called telomere hypothesis of ageing is based on
the observation that somatic cells in culture have a limited
potential for cell division (54). This observation was made
at about the same time as the formulation of the oxygen or
‘radical theory of ageing’, which was mentioned in the
beginning of this article (5). Hayflick observed that
primary human fibroblast cultures could be continuously
cultured for about 40–60 generations (cell doublings) but
then reached a state called senescence. The senescent
cells are very large, morphologically abnormal and still
metabolically active (protein synthesis is much slower than
in young cells); no apoptosis or necrosis was observed.
It may now be added that other cell types, for instance
human umbilical vein endothelial cells (HUVEC) show
the same phenomenon which is now called the Hayflick
limit but do undergo apoptosis when they become
senescent (55). During the years following the initial
observation, Hayflick and others found that the Hayflick
limit (counted in population doublings) continuously
decreased when the primary cells were taken from
individuals of increasing age. The remaining lifespan of
the cultured cells was ‘remembered’ by the cells even if
they were frozen in liquid nitrogen for years, as if an
internal clock was set and this setting was relatively stable.
This, of course contributed to the thinking of a ‘genetic
programme of ageing’ that was discussed in the beginning
of this article. The Hayflick limit of cells from non-human
species appeared to be roughly correlated with the total
in vivo lifespan of the animals. Nuclear transplantation
experiments showed that the remaining lifespan of the
cybrid was determined by the nucleus of the cells, not by
the cytoplasm (56).

The shortening of telomeres of chromosomes in
cultured somatic cells was first postulated as a possible
cause for the Hayflick limit by Olovnikov (57).
This postulate was strengthened when it was shown that
telomerase activity was low in cultured cells (also in
somatic cells ex vivo) and the telomeres of replicatively
aged cells were indeed short (58). In the meantime, the
gene for telomerase was cloned and the protein was
studied in detail (59) and further evidence in favour of the
telomere hypothesis was obtained by showing that ectopic
expression of telomerase could increase the Hayflick limit
of cultured fibroblasts (60). Moreover, immortalization of
cultured cells escaping from the Hayflick limit crisis occurs
occasionally and is accompanied by an increase in
telomerase activity. The immortalized cell clones produce
cancers when transplanted in mice. Human cancers
sometimes (but not in all cases) show increased telomerase
activity. Critically short telomeres that can be achieved by
introducing specific mutations in telomerase, activate the
DNA damage response (both in yeast and in higher cells)
and lead to cell cycle arrest (depending on the checkpoint
gene, RAD9) and to senescence or apoptosis (in yeast). All
this being very convincing, the weak part of the telomere
hypothesis is that in biopsies (for instance in muscle
biopsies) from healthy centenarians, short telomeres
were generally not observed, with the notable exception
of T-cells (61). It should be mentioned here that
telomerase is not the only means by which telomere
maintenance can be achieved: recombinational repair, in
particular double-strand break repair can also serve this
purpose, both in higher cells and in yeast.
Telomerase elongates telomeres de novo by adding

the short single-stranded repeats (in yeast: 50TG 1–3 3
0, in

humans: 50TTAGGG30) to the 30 end of one of the two
strands; ordinary DNA polymerization is then used to
create a complementary strand. The de novo added single-
strand repeats are synthesized by a reverse transcriptase
reaction from the essential RNA component of eukaryotic
telomerases. This process is active in the early embryo, but
not in cultured fibroblasts. Certainly, telomere mainte-
nance is necessary for the survival of the species over many
generations and is part of the above-mentioned rejuvena-
tion process that has to be carried out in the germ line.
Telomere synthesis is not semiconservative, and in

principle telomere synthesis could be occurring asymme-
trically in the daughter cell of a yeast mother/daughter
pair. However, this is not the case and telomeres seem to
be maintained in young and old yeast cells. No change in
the length of telomeres was found in isolated old yeast
mother cells as compared to young cells (62). Therefore,
telomere shortening certainly does not apply for yeast
mother cell-specific ageing. The phenotype of a deletion of
the catalytic protein components of yeast telomerase gene
EST2, was studied and it was found that a haploid strain
devoid of Est2p needs many generations (usually over 100)
to reveal the defect of this gene deletion, but then all of the
progeny of the original cell carrying the deletion die in a
clonal fashion (63). Deletions of other components
(encoded by EST1, EST3, EST4 and TLC1, the RNA
component) of the yeast telomerase lead to similar defects
(64). Similar phenotypes were also seen after deletion of
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KEM1, a G4 DNA-dependent nuclease (65). This has been
termed ‘senescence’ by the authors and is similar to the
Hayflick phenomenon in human fibroblasts, but has
nothing to do with either mother cell-specific ageing or
chronological ageing of yeast. On the lawn of dying cells
of the est2 strain, occasional revertant colonies can be seen
that can maintain telomeres by either of two distinct
recombination mechanisms (66). The genes needed for
this alternative mechanism of telomere maintenance have
been analysed by classical genetics and among others,
SGS1 was found, a recQ family DNA helicase that was
already discussed above. Interestingly, Werner’s syndrome
patients indeed show a defect in maintaining their
telomeres (67). Other genes needed for rescue of telomer-
ase deficient yeast are as expected of the rad50 series of
recombinational repair (68 and see below). Still another
mechanism of telomere maintenance in yeast was studied
by the group of David Lydall and termed the PAL
mechanism depending on the exonuclease encoded by
EXO1 (69). Deletion of EXO1 rescues survival of yeast
cells devoid of both telomerase and Rad52p. The
chromosomes and their telomeres became highly aberrant
in those strains, a phenomenon that is not yet fully
studied, but seems highly interesting in the light of
karyotype abnormalities after immortalization in cancer
cells and the use of yeast as a model for cancer cells. These
results are another example for a now intensively
discussed topic, the flexibility and greater than expected
genomic instability of eukaryotic cells (at least under
some conditions). However, this genomic instability is not
necessarily connected with ageing. Yeast clonal senescence
does not occur in nature, but could be a useful model for
clonal ageing of fibroblasts in culture.

RECOMBINATIONAL REPAIR, DOUBLE-STRAND
BREAK REPAIR AND INSTABILITY OF THE
GENOME DUE TO HYPERRECOMBINATION

In this section, the role of DNA repair by recombination,
in the process of cell ageing, will be reviewed and
discussed. Since a possible outcome of faulty recombina-
tional repair is the generation of chromosomal aberrations
with consequent genomic degradation that can include
telomeres, its potential involvement in lifespan shortening
will be assessed. In reviewing this field, it becomes
noticeable that most of the experimental information
derives from studies conducted in mammalian cells, while
little work has been done so far with yeast.
Some basic observations must be considered to properly

frame the subject of interaction between recombinational
DNA repair and cellular ageing. First, it must be
considered that genetic alterations increase with the age
of organisms, although the basis for this increase is still far
from clear. Cellular DNA is continuously being exposed
to a variety of environmental and endogenous agents that
can cause its damage, throughout the lifespan of a cell.
These potentially lethal or mutagenic DNA lesions
induce various cellular responses in mitosis, including
cell cycle arrest, transcription alteration and processing
by different DNA repair mechanisms. The choice of the

repair mechanism depends on the structural features of the
lesion, and the particular phase of the cell cycle at which it
is acting. In yeast, some of these repair mechanisms are
based on error-prone DNA recombination, the result of
which can be the formation of gross chromosome
rearrangements, or GCRs (70).

In a study of Drosophila testes, for instance, it was
found that the major pathway of DNA repair is altered
with age, thus providing a means to dissect the molecular
mechanism for age-related genomic changes (71). A most
important evidence of a marked increase in genetic defects
and genomic instability correlated with the ageing of yeast
cells has been given by McMurray and Gottschling (43)
using loss of heterozygosity (LOH) as a marker of genetic
alteration due primarily to break-induced replication in
old cell daughters (Figure 4). Because genomic instability
is a major marker of cancer, a valid extrapolation of these
findings to a cause–effect relationship between recombina-
tional repair and carcinogenesis in mammalian cells has
been suggested. As a matter of fact, the same holds true
for another DNA repair pathway active in higher
eukaryotes, the process of non-homologous end joining
(NHEJ)—exclusively dedicated to the repair of DSBs in
which DNA ends are joined with little or no base pairing
at the junction—which is prone to make errors, as the
end-joining products may be accompanied with insertions
or deletions. In one study of the ability of young,
presenescent and senescent normal human fibroblasts to
repair DNA DSBs, the results indicated that end joining
becomes inefficient and more error-prone along with
cellular age (72). However, another recent work disagreed

Figure 4. A function of age: human cancer and genetic instability in
S. cerevisiae. (A) The incidence of cancer increases dramatically with
age in humans. Shown are probabilities of developing cancer by 5-year
interval collected by SEER from 1998 to 2000 for all types of cancer.
(B) The incidence of LOH in diploid budding yeast cells increases with
similar kinetics during replicative ageing. Shown are probabilities of
producing a daughter cell that gives rise to a colony containing an
LOH event, grouped by 5-division intervals for a cohort of 39 wild-type
diploid mother cells (MA McMurray and DE Gottschling, unpublished
data). (C) Detection of age-induced LOH events by pedigree analysis.
Each circle represents the colony produced by successive daughters of a
single mother cell; the succession is labelled with numbers. Coloured
shapes represent sectors of cells having experienced LOH, where red
and brown designate LOH at different loci. Reprinted from Ref. (124),
with permission from Elsevier.
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with the generalization of these results by showing that
in vitro NHEJ activity was significantly lower in adult
brain, while young neurons seem to use the system much
more frequently (73). Indeed, an age-dependent profile of
neuronal utilization of NHEJ indicates that neurons
in young brain utilize mostly error-prone NHEJ to
repair DNA double-strand breaks accumulated within
the genome, and this activity declines gradually with age
(73). Therefore, one could conclude that young rat
neurons make more genetic errors than old neuron cells,
in contrast with the general view that older cells are more
error-prone than young ones.

Nucleotide excision repair (NER) is a versatile DNA
repair pathway that removes a wide range of DNA
lesions, including the main UV-light induced lesions, i.e.
cyclobutane pyrimidine dimers (CPDs) and pyrimidine
(6-4) pyrimidone photoproducts (6-4PPs), as well as
lesions induced by chemicals, like the intra-strand cross-
links induced by cisplatin (74). The process of NER is
highly conserved in eukaryotes, and in human cells NER
reaction requires at least six core protein complexes
for damage recognition and dual excision (XPA, XPC-
hHR23B, RPA, TFIIH, XPG and XPF-ERCC1) and
other factors for DNA repair, synthesis and ligation
(PCNA, RFC, DNA polymerase a or d and DNA ligase)
(2,75,76). The nucleotide excision repair pathway seems to
play a critical role in the repair and maintenance of
telomere integrity and thus in correct cell ageing (77).
Moreover, oxidative damage, a major biochemical insult
responsible for cell ageing and apoptosis by generalized
macromolecular degradation, is mainly processed by the
base excision repair (BER), and is also removed in
a transcription-coupled NER manner (78,79).

While NER and BER mostly repair lesions that affect
only one of the DNA strands, other mechanisms deal with
the double-strand breaks (DSBs) which can result as a
consequence of ionizing irradiation and exposure to other
DNA damaging agents, replication fork collapse, mechan-
ical stress or processing of a single-stranded nicked
chromosome. Besides NHEJ, the major mechanism of
DNA DSB repair in vegetatively growing yeast cells is
homologous recombination (HR), which needs a homo-
logous DNA sequence somewhere else in the cell genome
to repair the lesion. HR is a general term that includes
multiple mechanisms (80–83) and most of its genes belong
to the RAD52 epistasis group (RAD50, RAD51, RAD52,
RAD54, RAD55, RAD57, RAD59, RDH54, MRE11 and
XRS2) (80). Molecular and biochemical studies of
the Rad52 group proteins have shown that most are
required at early steps during recombinational repair (77).
Mutations in these genes, among others, affect telomere
maintenance leading to their shortening and premature
cell ageing. Moreover, the RecQ helicase gene SGS1 is
able to suppress rad52 deficiency, by promoting telomere
recombination and restoration of normal length, with
a normalizing effect on the ageing process (68).
Branched-DNA molecules have been detected during
mitotic S-phase within the tandemly repeated rDNA
locus, and formation of these intermediates is dependent
on RAD52, suggesting that they correspond to recom-
bination intermediates (84). Post-replicative, DNA

replication-dependent X-shaped molecules have also
been detected between sister chromatids in Physarum
polycephalum suggesting that resolution of Holliday
junctions (HJs) could be essential for chromosome
segregation in eukaryotes (85). The presence of these
complex DNA molecules could result also from strong
oxidation leading to cross-linking, but it is not known if its
frequency increases with age. Nevertheless, both SGS1
and, very recently, RAD54 seem to be critical for the
resolution of these branched DNA molecules (86,87), their
impairment indirectly leading to the accumulation of these
structures in cells that undergo ageing. This has been
demonstrated even more clearly by the recent work of Lee
and co-workers (88) in which non-Holliday Junction
X-shaped DNA structures have been shown to accu-
mulate at telomeres in a RAD52 and RAD53-dependent
fashion in sgs1, tlc1 mutants of ageing Saccharomyces
cerevisiae cells.
Besides NHEJ, homologous recombination can also

result in DNA sequences that differ from the original ones,
due to the particular repair pathway that has been
activated. Therefore, the accumulation of genetic muta-
tions with age, as a result of faulty recombinational repair,
can be due to several combinations of DNA damage and
repair interplay: (i) a near-linear increase in genetic errors
with time, in the presence of a background level of DSBs
and of a steady-state repair mechanism; (ii) an increase in
the frequency of DNA DSBs with cell ageing in the
presence of a background level of DNA repair; (iii) an
increase in the choice of error-prone pathways for DNA
repair of steady-level DSBs and, finally, (iv) the interac-
tion of both, an increase in the number of DSBs and in the
use and efficiency of error-prone recombinational repair
processes during cell ageing. In all cases, it appears evident
that the time factor represents the only certain parameter
with which the overall likelihood of genetic defect
accumulation correlates, rendering nuclear genomes
inherently unstable with age (71). Among the most
important of these defects, shortening of telomeres is a
critical factor responsible for the onset of genome
instability (89).
An experimental system using yeast to artificially

interfere with genomic homeostasis, and then assess any
age-dependent cellular response, has been introduced
by the chromosome knockout technology (90). It was
demonstrated that inducing a centromere knockout for
chromosome V in a diploid strain, leads to chromosome
loss followed immediately by its endoreduplication during
the successive rounds of cell division, whereas, deletion
of chromosome VIII does not show duplication until
21 generations, after which the chromosome is endoredu-
plicated (91). The influence of these genetic manipulations
on the process of ageing have not yet been studied.
Finally, new and exciting developments concerning the

role of recombinational repair in cell ageing caused by
telomerase deficiency are expected from further studies of
secondary DNA structure such as DNA palindromes in
yeast models. In fact, these DNA structures, which seem
accumulating during postsenescence growth, have proven
essential to bypass progressive telomere degradation in
recombination-deficient or telomerase knockout yeast
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strains, thus allowing their immortalization in the absence
of a functional EXO1 gene (69).

AGEING AND THE MITOCHONDRIAL GENOME

The mitochondrial genomes of eukaryotic cells are rela-
tively small circular DNA molecules. In mammals,
mitochondrial DNA comprises 16.5 kb and encodes 13
proteins of the complexes I, III and IV of the respiratory
chain and complex V (ATP synthetase). In addition, the
mitochondrial genome encodes all of the ribosomal RNAs
and the necessary 22 tRNAs, considering the hypothesis of
‘extended wobble’. The genetic code differs from the
universal code in the rule for the start and stop of protein
synthesis, and the codons for arginine and tryptophan. The
yeast mitochondrial genome is larger in size (85.7 kb), but
not in coding capacity, containing introns, some of which
are self-splicing, individual promoters for some of the
genes, and more than one putative origin of replication.
The proteins encoded are only eight in numbers, including
subunits I, II and III of complex IV (cytochrome c oxidase),
three subunits of the ATPase (encoded by ATP6, ATP8
and ATP9), apocytochrome b and the ribosomal protein,
Var1p. In addition, several hypothetical proteins are
encoded, some of them in introns or as read-through
proteins consisting of intron and exon sequences. The two
ribosomal RNAs of the mitochondrial ribosome, 24
tRNAs and the 9S RNA which is part of RNAseP, are
encoded in the mitochondrial genome (92). The genetic
code used is different from the universal code but also
slightly different from the code used in mammalian
mitochondria. The proteins encoded are not exactly the
same as those encoded in mammalian mitochondria, for
instance, the subunits of complex I are missing as the
S. cerevisiae mitochondria do not contain complex I but
have instead ‘invented’ an alternative way, consisting of
Ndi1p, of feeding reducing equivalents of NADH into the
respiratory chain. No RNAs are imported into mitochon-
dria or exported from mitochondria, but most of the
proteins of which mitochondria consist, are encoded in the
nucleus, made on cytoplasmic ribosomes and imported into
mitochondria postsynthetically. The N-terminal signals in
the primary translation products, which lead to import into
the three subcompartments of mitochondria, are not
uniform and different uptake mechanisms have been
found (93).
A special role of mitochondrial physiology in the ageing

process of eukaryotic cells is assumed by nearly every
researcher in the field. Oxidative damage to lipids,
proteins and DNA in ageing cells is a fact that can
hardly be overlooked (17,94). The most important source
of oxygen radicals, which produce the oxidative damage
are believed to be mitochondria. The most important sites
of radical production are complex I and complex III. In
a side reaction of the respiratory chain, superoxide radical
anion is produced as a primary reactive oxygen species
(ROS). It is further thought that this process leads to a
vicious cycle because the ROS primarily target mitochon-
drial DNA and produce mutations which further increase
radical production, among them point mutations in

subunits of complexes I and III (94). However, as has
been said repeatedly in this article, such a theory can only
be accepted, if experimental results can be presented which
are precisely and with no exception showing that the
predictions that the theory can make are correct.

Oxidative damage to mitochondrial DNA results in
8-oxo-deoxy guanine (8-oxo-G) and other minor oxida-
tion products. 8-Oxo-G is mutagenic because it changes
the base-pairing properties of the G base. It is mostly
repaired by the base excision repair (BER) enzyme OGG1
(8-oxo guanine glycosylase). Isoforms of this repair
enzyme are produced by alternative splicing leading to
the mitochondrial and nuclear isoform, respectively
(95,96). Mitochondrial BER is efficient but not perfect
leading to mutations, and nucleotide excision repair
(NER) is absent in mitochondria (97, and further
publications cited therein). The increase of 8-oxo-G in
mitochondrial DNA has been shown (97) and the increase
in point mutations with age has been shown in several
human organs, for instance in brain (98). The question has
not been investigated in detail in ageing yeast mother cells.
At least some of the mitochondrial point mutations would
produce respiratory deficiency.

Mitochondrial genome deletions do accumulate in
ageing mammalian cells in vitro and in vivo and have
been studied extensively (99,100), for instance in human
heart (101). The deletions, most prominently in the form
of the so-called common deletion of 4977 bp, are due
to flanking short inverse repeats in the DNA and the
presence of an efficient homologous recombination repair
system in mitochondria (102). These authors have
constructed a reporter system that enables exact measure-
ments of the frequency with which deletions are produced
in the mitochondrial genome of yeast based on the loss
(through recombination) of ARG8m, a gene for arginine
biosynthesis that is engineered to be functionally
expressed in mitochondria, with concomitant restoration
of COX2, making the cell respiratory competent.
Measurements show that a high frequency of recombina-
tion and loop-out occurs (in the order of 1:104), which
depends on the length of the inverted repeats. This is not
surprising as it has been known since 1949 (103) that yeast
has a high (but strain dependent) natural frequency of
production of petite mutants which is mostly due to rho�

mutations, which are deletions in the mitochondrial
genome (104) followed by formation of tandem repeats
from the remaining mitochondrial DNA (105). All rho�

mutations result in respiratory deficiency. The reporter
system just mentioned has not yet been applied to ageing
yeast mother cells and there is no published investigation
of mitochondrial deletions in very old yeast mother cells.

In some strain backgrounds, petite yeast cells show an
increase in mother cell-specific lifespan depending on the
activity of the retrograde response (106–108). In those
strains, non-respiring petite strains are enriched, when
very old mother cells are analysed in lifespan determina-
tions (108).

If an increase in mitochondrial point mutations or
deletions does indeed occur in ageing yeast mother cells,
the mutations are almost certainly heteroplasmic (i.e. a
mixture of wild type and mutant mitochondrial genomes
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in one cell). The yeast cell contains a few hundred copies
of the mitochondrial genome whilst the larger human cells
contain a few thousand (109). Cellular respiration is
gradually weakened when, through mitotic segregation,
the ratio of wild-type to mutant genomes is shifted towards
the mutant. Organs such as the heart muscle eventually
become a mosaic of respiration-competent and incompe-
tent cells (see also Figure 5). This eventually results in a
threshold phenomenon and when cellular respiration is
lower than a certain threshold, still unknown signals lead
to apoptosis or in the yeast cell, to the petite phenotype.
In human somatic cells or in the mouse model system, this
mutational process leads to the elimination of damaged
cells by apoptosis. It is unknown if, or by which mecha-
nism, the germ line cells are protected from mitochondrial
mutagenesis. In yeast cells, the question arises as to how
those mitochondrial genomes which are damaged (for
instance by deletion) can be discriminated from the wild-
type mitochondrial genomes and how they are selectively
retained in the mother. It is thought that the daughter cell,
which resets the clock to zero, inherits only or mostly wild-
type copies of the mitochondrial genome. Again, we have
returned to the question of rejuvenation that applies
equally to (mitochondrial) DNA and to non-DNA
material that is damaged in the old mother cell (17). The
segregation problem is even more complicated because in
growing cells the mitochondria form a continuous network
within the cell that contains a large number of mitochon-
drial genomes within one organelle. Mitochondrial fission
would seem to be necessary for asymmteric segregation to
occur. Although mitochondrial fission and fusion has
been found to influence the lifespan in fungi (110), the
mechanism leading to the observed elongation of lifespan

is presently unknown. The ideas described in this
paragraph are speculative, because there is no definite
proof that mitochondrial mutations cause ageing in yeast.
We will now describe recently published experimental

results in the mouse, which cast a heavy doubt on the
concept of mitochondrial mutations as a cause of ageing
in higher animals (1,2). Trifunovic (111) and Kujoth (112)
have presented results that at first sight seemed to confirm
a causal role of mitochondrial point mutations in ageing.
They introduced a homozygous mutation into the proof-
reading domain of the only mitochondrial DNA poly-
merase (DNA polymerase g), which is encoded in the
nucleus, and observed in this ‘mitochondrial mutator
mouse’ both a large increase in mitochondrial mutations
(point mutations as well as deletions), reduced lifespan
and symptoms of premature ageing including typical
age-related pathologies of the heart and nervous system
(111). This finding was greeted with much enthusiasm and
a second paper (112) confirmed and extended the first one,
showing in addition that in the organs inspected (thymus,
small intestine, testis) apoptotic markers could be seen
much more frequently than in wild type. In the more
recent papers mentioned above, a new method for
determination of mitochondrial mutations was employed
[‘random mutation capture’; (113)] which is more accurate
because it is not prone to sequence artefacts of the PCR
method. It turned out that the spontaneous mutation rate
in mitochondria is at least an order of magnitude lower
than previously thought. Moreover, the increase of
mitochondrial mutation load in cells of the proofreading
mutant of DNA polymerase g is much larger than
previously measured (in the order of at least a hundred-
fold). The decisive experiment was described by Vermulst
(2): the heterozygous mouse showed no pathology or
premature ageing, however the mitochondrial mutation
burden observed in the heart and brain of the hetero-
zygous animals was very high (Figure 5), at least 20-fold
higher than in aged heart of wild-type animals. The
mutation burden was also much higher than in aged
human colon, where many of the cells are already critically
respiration-deficient. As a mutation density, which is
much higher than in senescent wild-type animals, does not
cause premature ageing in the animals heterozygous for
the mitochondrial proofreading defect, the conclusion
seems to be obvious that the random mitochondrial
mutations that are observed are not a direct cause of
ageing. The authors admit that the case is not completely
closed for the following reasons: (i) It cannot be excluded
that mitochondrial mutations at a specific time in the life
history and in specific organs and cells are causing ageing.
In the heterozygous mutant, many mutations appear early
in life, while in the wild type they increase exponentially
during the lifetime and most of these mutants are created
only late in life. (ii) It is not clear at the moment if the
mouse data can be safely extrapolated to humans (1).

CHRONOLOGICAL AGEING

The chronological lifespan of yeast simply is the lifespan of
stationary cells tested either in spent medium or in water by

Figure 5. Mitochondrial DNA mutations and ageing. Logic would
dictate that mtDNA mutations, when present at levels lower than in
phenotypically normal Polgmut/+ mice, who heterozygously carry
defects in the proofreading exonuclease activity of mitochondrial
DNA polymerase (dashed green line), are irrelevant for ageing.
However, in aged human colon, the typical histological pattern of
mitochondrial defects (blue crypts in the inset) associated with
increased mtDNA mutant fractions in individual crypts suggests
otherwise. Fractions in colon include clonally expanded mutants only.
Error bars represent estimated variation of the data. Reprinted from
Ref. (1), with permission from Elsevier.
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plating out aliquots of the non-growing cells over the
course of days and weeks (114–117). As we have shown by
analysing published results of whole genome deletion
screening data, there is very little similarity in the two
gene sets which on deletion have any influence on
chronological versus mother cell-specific ageing (118).
Stationary cells in order to survive maintain a minimal
metabolic activity (119), they are certainly prone to
environmental insult or stress including mutagenic insult
andmutations in several DNA repair genes seem to shorten
the chronological lifespan of yeast cells (120). This would
imply that DNA repair synthesis is probably going on in
non-dividing stationary phase wild-type yeast cells.
However, this presumed repair synthesis has not been
measured and themutational load of stationary phase yeast
cells depending on time in stationary phase has not been
studied, or at least it has not been published. Fabrizio et al.
(121) showed that age-dependent increases in mutations
occurred during chronological ageing and are suppressed
by deletion of SCH9.

CONCLUDING REMARKS

Many reviews on the genetics and physiology of ageing
have shown that the process of ageing is far from being
understood in molecular detail. Some of the prevailing
theories of ageing are not mutually exclusive and actually
work together to produce a picture, which is now a little
bit more coherent than 10 years ago. For instance, the
generally accepted fact of an increasing oxidative stress in
aged cells and organisms could easily explain the increase
in damaged cellular material and in mutation load (mainly
in the mitochondrial genome) with age. It becomes clear
more and more that caloric restriction can reduce
oxidative stress by an unknown mechanism and can
thereby reduce mutation load. However, it is also true that
mutations that increase the lifespan in a genetic model
system of ageing are not in all cases mimicking caloric
restriction and are not in all cases slowing down the
metabolism of the cell or the organism. The experimental
results discussed here once again show that the causes of
ageing are many and one or the other becomes limiting for
the lifespan, depending on the genetic background and
on environmental conditions. They also do not support
the notion of a genetic programme of ageing that was
supposedly positively selected during evolution to increase
survival of the species. Rather, what appears as a genetic
programme of ageing is likely to be a genetic programme
or programmes of stress response.
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