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Abstract
The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial

Neural Network software NeuroDeveloper™ was examined for the rapid identification and

classification of Listeria species and serotyping of Listeria monocytogenes. A spectral

library was created for 245 strains of Listeria spp. to give a biochemical fingerprint from

which identification of unknown samples were made. This technology was able to accu-

rately distinguish the Listeria species with 99.03% accuracy. Eleven serotypes of Listeria
monocytogenes including 1/2a, 1/2b, and 4b were identified with 96.58% accuracy. In addi-

tion, motile and non-motile forms of Listeria were used to create a more robust model for

identification. FT-IR coupled with NeuroDeveloper™ appear to be a more accurate and eco-

nomic choice for rapid identification of pathogenic Listeria spp. than current methods.

Introduction
Annual predictions estimate approximately 1,600 invasive infections, 1,500 hospitalizations
and 250 deaths caused by Listeria species [1]. Of those individuals with laboratory- confirmed
listeriosis, there is a 94% hospitalization rate and 15.9% death rate [1]. While Listeria infections
are not common per se, there is significant mortality associated with these infections. Data
show that this pathogen affects specific groups typically; the elderly, immunocompromised
individuals, and pregnant women. Risk of listeriosis in pregnant women is ten times higher
than the general population and four times higher in people aged sixty-five years or older [2].
Therefore, rapid and accurate identification of Listeria infections is mandated.

Two species of Listeria, L.monocytogenes and L.ivanovii are associated with listeriosis,
which has an incubation period of 1–90 days, with symptoms including diarrhea, upset
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stomach, fever, chills, stiff neck, confusion, and muscle aches [3]. Listeriosis has two clinical
manifestations: sepsis and meningitis [4] and is diagnosed when monocytosis is observed in
both cerebrospinal fluid and peripheral blood [4]. Most cases are caused by L.monocytogenes
of the serotypes 1/2a, 1/2b, 1/2c and 4b [5,6].

Current methods to speciate Listeria isolates involve classical microbiological culture, and
PCR-based methods. Further characterization to the serotype level is done by agglutination,
ELISA, and/or PCR methods [7,8]. Taken together, and depending on the techniques used,
these identification and subtyping techniques can take from several hours to several days. A
method that combines speciation and serotyping that occurs in a short time frame could be
very useful during outbreak and traceback investigations.

Fourier-Transform Infrared Spectroscopy (FT-IR) is a powerful tool that has proven effec-
tive in identifying intact bacterial cells [9–11]. FT-IR analyzes the chemical bonding in the total
biochemical composition of the cell including proteins, fatty acids, carbohydrates, nucleic
acids, and lipopolysacharides [12]. Different strains of bacteria have unique, reproducible
molecular fingerprints from which identification can be made from the slight changes in bio-
chemical composition from species to species, even on the strain level [12].

Several studies report the ability of FT-IR to accurately identify bacterial species [13–17].
For example, FT-IR was used to differentiate E. coli from other pathogenic bacteria inoculated
into apple juice [14]. Using soft independent modeling of class analogy (SIMCA) for chemo-
metrics analysis, E. coli O157:H7 ATCC 35150 was differentiated from E. coli ATCC 25522 at
an 82% confidence level [14]. Maquelin (2003) compared 89 bacterial strains and 32 yeast
strains using FT-IR spectroscopy with 98.3% accurate identification [15]. Lopes (2013) showed
that FT-IR was able to predict strains of Streptococcus pneumoniae serotype with 100% identifi-
cation [16].

Listeria species have also been identified using FT-IR technology [17–20]. These reports all
show correct identifications in the 90% or higher range. For example, Davis and Mauer (2011)
showed a 96.6% correct identification rate using thirty different strains of Listeria comprising
four different serotypes. The limiting factors in using FT-IR to speciate and/or serotype Listeria
are data interpretation and cost. The development of artificial neural network software linked
to FT-IR machines allows the creation of a robust database that defines Listeria species and
serotypes that would be transferrable to other FT-IR devices. With the development of this
database via the neural network a user could add bacterial sample to an FT-IR device contain-
ing the database definitions and allow the software to determine the species and/or the sero-
type. The present study describes improved efficacy and value of using FT-IR to identify
Listeria spp. through the addition of artificial neural network software analysis. We reveal dif-
ferentiatiation of 6 Listeria species and 11 different serotypes from 245 Listeria isolates.

Materials and Methods

Sample Preparation
Strains used in this study are shown in S1 Table. Individual Listeria spp. grown previously on a
Tryticase Soy Agar (TSA, Becton-Dickinson-BBL, Franklin Lakes, NJ) were subcultured into
7mL Tryptic Soy Broth (TSB), and shaken at 150 rpm for 16 h at 37°C or 30°C. Aliquots of 1.5
mL of culture were subsequently placed into wells of a 2 mL 96-well microtitre plate (Eppen-
dorf AG, Hamburg, Germany) and sealed with an aluminum plate cover (Excel Scientific, Inc.
Victorville, CA). Each plate was centrifuged at 3000x rfc for 20 min at RT. Supernatants were
removed and each pellet was washed with 0.85% saline solution and centrifuged again. Super-
natants were removed and each pellet was resuspended in 100 μL of sterile dH2O and trans-
ferred into a 300 μL 96-well ELISA plate (Corning Incorporated, Corning, NY). Optical density
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(A630) readings were measured using a BioTek Synergy HT plate reader (BioTek, Winooski,
VT), and samples were adjusted to an A630 target of 1.5–2.0. Five μL of each sample were spot-
ted, in triplicate, onto a 384-well ZnSe plate (Bruker Ettlingen, Germany). Each plate was
placed into a dry oven at 40°C and dried for 20 min. Plates were then placed on a heat block to
90°C for 10 min to kill the bacteria. After heating, spectra were acquired using a Bruker Optics
FT-IR Spectrometer and HTS-XT Module (Bruker) in conjunction with Opus Lab (Version
7.2, Bruker) and NeuroDeveloper™ Software (Version 2.5b, Synthon Software).

NeuroDeveloper Software Parameters
NeuroDeveloper software uses a series of techniques to simplify the large amounts of data
found within a single spectrum. The first technique used is referred to as smoothing and aver-
aging. A first derivative combined with Savitsky-Golay smoothing creates a spectrum that is
easier to interpret. A spectrum containing 1763 points was averaged insofar that every five
points were averaged into a single one. This reduced the total number of points in the spectra.
Next, vector normalization was computed using the entire range of the spectra. This informa-
tion was used to process spectra with different intensities or absorbance values to make them
comparable. The vector-normalization calculates the vector norm of spectra or a subset of
wavelengths. Lastly, unique points were used for creation of features. Features are independent
wavelengths that create a unique identification. We used a Covar selection with 100 points. All
these processes were executed within a designated spectral window. Our parameters were from
x-minimum to 1800 cm-1, 2800 cm-1 to 3100 cm-1. The Artificial neural network net consists
of three layers including an input layer, hidden layer and output layer. The input layer con-
sisted of 100 neurons and 100 activation function neurons available. The hidden layer was
comprised of 1 Neuron and a logistic activation function. The output layer consists of 2 neu-
rons, a logistic activation function.

Listeria species and serotype assignments
A three color rating system in NeuroDeveloper™ Software was used for Listeria species and
serotype assignments to construct a database for comparison. A green dot indicated that 3/3
replicate scans matched to a correct species or serogroup identity. A purple diamond indicated
that 2/3 replicate scans matched to a correct species or serogroup identity and lastly a red trian-
gle indicate that only 1/3 or 0/3 replicate scans matched to a correct identity or serogroup iden-
tity. A 3/3 or 2/3 was considered to be a positive identification.

Results
A total of 245 Listeria isolates were used in this study and included six Listeria species: L.grayi,
L. innocua, L. ivanovii, L.monocytogenes, L. seeligeri, and L. welshimeri (Table 1). Fig 1 shows
the spectral profiles of all six Listeria species. Definitive assignments were detected in this Lis-
teria species model by the ANN. Of 1,274 total spectra, positive identification (3/3 or 2/3)
occurred approximately 99% (99.03), of the time. The ANN failed to give an assignment 3.30%
of the time.

Creation of the Listeria monocytogenes serogroup model involved 1,023 raw spectra. A total
of 206 different Listeria monocytogenes isolates were used in creating the serotype spectral
library. Listeria monocytogenes serotypes used include: 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4b, 4c,
4d, 4e. Correct identification occurred 96.58% of the time. Incorrect identifications occurred
3.42% of the time. The ANN failed to produce a serotype assignment 9.64% of the time. Fig 2
shows the spectral profiles of three Listeria monocytogenes 1/2a, 1/2b, 4b; the serotypes most
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associated with listeriosis in humans. Table 2 shows the correct identification percentage of
each serotype considered in this model in the column labeled ANN 1.

Four additional artificial neural networks were created for the analysis of L.monocytogenes.
These included the 1/2 group (I, II O-Antigens), 3 group (II, IV O-Antigens), 4 group (V, VI,
VII, IX O-Antigens) and most common foodborne Listeria monocytogenes serovars (1/2a, 1/
2b, 4b). Table 2 shows the percentage of correctly identified spectra within each of these addi-
tional neural networks. Correct identification of serotypes depended on the make-up of the
ANN. When only 1/2a, 1/2b, and 4b were compared (ANN 2) the percentage of correct identi-
fication of serotype 4b strains was over 98%, but the ability to discern between 1/2a and 1/2b
dropped compared to ANN 1 indicating that serotype 4b was very easily distinguishable by the
software, but less so between 1/2a and 1/2b. Therefore, we created ANNs based only on the
serotype of the 1/2 strains (ANN 3), serotype 3 strains (ANN 4), and serotype 4 strains (ANN
5). In comparing only the serotype 1/2 strains the ANN could not distinguish 1/2c strains
(Table 2). Among only serotype 3 strains the ANN could distinguish all of the limited number
of strains tested. The results varied among serotype 4 strains, with nearly 100% accuracy for 4b
and 4c strains, approximately 50% accuracy in identifying serotype 4d and 4e strains, and 0%
accuracy in identifying the serotype 4a strains.

Discussion
We found that FT-IR technology can be used to accurately distinguish several different Listeria
species with 99.03% accuracy. Eleven serotypes of Listeria monocytogenes including 1/2a, 1/2b,
and 4b were identified with 96.58% accuracy. Thus, we have built on existing studies through

Table 1. Listeria species distribution and percentage of correctly identified spectra. Due to Listeria
monocytogenes’ role in foodborne illness, there are a disproportional number of these isolates tested.

Listeria Species N Isolates Correct Identification

Listeria monocytogenes 206 99.91%

Listeria innocua 17 100.0%

Listeria seeligeri 10 54.17%

Listeria ivanovii 6 100.0%

Listeria grayi 3 100.0%

Listeria welshimeri 3 100.0%

Total 245 99.13%

doi:10.1371/journal.pone.0143425.t001

Fig 1. Raw FT-IR data of six Listeria species. L.monocytogenes, L. grayi, L. innocua, L. ivanovii, L.
seeligeri, L. welshemeri.

doi:10.1371/journal.pone.0143425.g001
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the expansion of the number of species, strains and serotypes from a greater variety of sources
including those from clinical, environmental, and veterinary sources and/or from foods
directly associated with outbreaks. Our project differs from previous studies because of the use
of Artificial Neural Network for chemometric analysis of Listeria spp. and Listeria monocyto-
genes. Multiple neural networks were developed for identification of Listeria monocytogenes
which shows that the serotypes included within the network can influence the percentage of
correct identification. This network improves and learns with the addition of new data, rather
than a static decision tree.

Fig 2. Raw FT-IR data showing three serogroups of Listeria monocytogenes. All strains were grown at
30°C. The spectral window shown is from x-minimum to 4,000 cm-1.

doi:10.1371/journal.pone.0143425.g002

Table 2. Eleven serovars of Listeria monocytogeneswere used to formmultiple artificial neural networks. Percentages show correct identification.
Groupings based on somatic O antigens and trends in public safety.

Serovar N Isolates ANN 1 ANN 2 ANN 3 ANN4 ANN5

1/2a 49 94.89% 87.90% 93.68% - -

1/2b 46 92.83% 84.90% 95.03% - -

1/2c 14 82.43% - 0% - -

3a 3 88.0% - - 100.0% -

3b 3 0.0% - - 100.0% -

3c 3 100.0% - - 100.0% -

4a 2 100.0% - - - 0%

4b 72 99.72% 98.40% - - 99.69%

4c 7 100.0% - - - 100.0%

4d 3 100.0% - - - 55.55%

4e 5 100.0% - - - 50.0%

Total 206 96.58% 90.25% 92.01% 100.0% 99.13%

doi:10.1371/journal.pone.0143425.t002

Listeria Subtyping by FT-IR

PLOS ONE | DOI:10.1371/journal.pone.0143425 November 23, 2015 5 / 8



FT-IR spectra from whole bacterial cells are broad and overlapping due to the contribution
of all biomolecules present, and therefore, single components cannot be identified [12]. This is
not an uncommon event in chemical and biochemical analyses associated with bacterial species
identification and differentiation. As a result, the use of FT-IR analysis for bacterial identifica-
tion relies on software, such as ANN, to analyze raw data that provide a chemometric that is
used to make identifications. ANN works well for managing overlapping data because it is an
advanced multivariate data processing method of pattern analysis where large amounts of
information are analyzed by training the data in a pattern recognition algorithm to recognize
the particular combination of variables in a subset of data [21]. Classifications are made by the
algorithm searching the combination of variables [21]. In the creation of the neural network,
one needs to divide pre-defined, well characterized data. In our study we used ANN software
to select one hundred features each for two different Listeria libraries. We set out to create a
library that would define the group of Listeria species, and then created another library to dif-
ferentiate strains of L.monocytogenes serotypes. In creating the model, the software used 80%
of the spectra to create the definitions for the differentiation of the strains. The remaining 20%
were treated as unknowns and were used to test the model. Therefore, the software had a built-
in test for accuracy. The result provided a comparison library against which other FT-IR spec-
tra from bacterial cells treated in the same fashion can be compared.

A limitation of FT-IR technology is that mixed cultures cannot be used. The single spectra
that would result from a mixed culture would combine the biomolecules present from each of
the microorganisms. Single organisms would not be able to be extracted from this spectra.
Thus, single cultures are mandated in bacterial FT-IR methods. A perceived limitation is that
there must be a certain level of expertise needed to use FT-IR technology; however, once the
definition is created for the network, the user can simply place unknowns against our Listeria
library and obtain identifications with the use of the NeuroDeveloper™ software. The output of
the software is a three color rating system discussed in the materials section which leaves little
interpretation on the side of the user. Lastly, cost of this method is inexpensive outside the ini-
tial investment of the instrument. In this study, we use Bruker Optics FT-IR Spectrometer and
HTS-XT Module. The module is a plate reader platform for the ability read many spectra in a
single run. Portable, single-sample FT-IR platforms are available, which may be able to reduce
cost for individuals looking to adapt this platform at reduced cost.

We selected to use ANN in this study because it has been shown to be superior to Principal
Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) for the discrimination
of bacteria [12]. The advantage that ANN has over other chemometric analyses is that it is a
“decision network” that becomes more robust with the inclusion of more data. In an outbreak
situation, a particular strain’s spectral profile can be quickly added to the network. This would
then influence the network to modify the definition of that particular serotype that would lead
to a heightened ability to correctly identify unknown isolates.

The data from our multiple neural networks created show that the percentage of correct
identification for a single serovar was influenced by what other serovars were in that neural
network. For example, Listeria monocytogenes 3b had 100.0% correct identification within the
3 group (II, IV O-Antigens) however; in a network containing all Listeria serotypes, 3b was not
correctly identified. All other serovars in that network saw correct identification percentages
greater than 80%. The opposite was true for serovars 4d and 4e. In ANN 1, which contained
data for all serovars, 100.0% correct identification occurred, whereas in ANN 5 containing 4
groups (V, VI, VII, IX O-Antigens) correct identity dropped to near 50%. Serovar 4b was suc-
cessfully identified with greater than 98% accuracy in each network. It is likely that this high
percentage was influenced by the large sample size of 72 isolates. Many serovars we tested had
sample sizes less than ten isolates (i.e., 3a, 3b, 3c, 4a, 4c, 4d, 4e) because they are less frequently
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found in foodborne outbreaks and as a consequence are less in number in the USDA ARS iso-
late library. We feel that we can improve accuracy afforded by the use of ANN by increasing
the sample size of these isolates although at this time, and in part, is a speculative notion. Iso-
lates with high representation in our library included Listeria monocytogenes 1/2a, 1/2b and 4b.
Each of these serovars had correct identities of 85% or higher in each of the artificial neural net-
works which demonstrates that our system can distinguish clinically- relevant serotypes, with
ANN 1 and 2 as the most accurate of the networks created.

The power of this technology to accurately distinguish the Listeria species with 99.03%
accuracy and serotypes of Listeria monocytogenes with 96.58% accuracy support the introduc-
tion of FT-IR coupled with NeuroDeveloper™ to food safety agencies. In addition, this
approach would save time and money associated with outbreaks. Future plans include the dif-
ferentiation of additional subtypes of L.monocytogenes to expand our library and identification
capabilities.

Supporting Information
S1 Table. Listeria spp. strains used in this study.
(DOCX)
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