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Abstract: Epigenetic modifications have proven to play a significant role in cancer 

development, as well as fetal development. Taking advantage of the knowledge acquired 

during the last decade, great interest has been shown worldwide in deciphering the fetal 

epigenome towards the development of methylation-based non-invasive prenatal tests 

(NIPT). In this review, we highlight the different approaches implemented, such as sodium 

bisulfite conversion, restriction enzyme digestion and methylated DNA immunoprecipitation, 

for the identification of differentially methylated regions (DMRs) between free fetal DNA 

found in maternal blood and DNA from maternal blood cells. Furthermore, we evaluate the 

use of selected DMRs identified towards the development of NIPT for fetal chromosomal 

aneuploidies. In addition, we perform a comparison analysis, evaluate the performance of 

each assay and provide a comprehensive discussion on the potential use of different 

methylation-based technologies in retrieving the fetal methylome, with the aim of further 

expanding the development of NIPT assays. 

Keywords: non-invasive prenatal diagnosis; epigenetic modifications; free fetal DNA; 
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1. Introduction 

The discovery of free fetal DNA in maternal circulation [1] was a landmark towards the 

development of non-invasive prenatal diagnostic assays, and remarkable advances have taken place 

since then. The revolution was initiated in 1997 with the determination of the fetal fraction, which was 

estimated to be 3% during the early stages of the pregnancy [2]. In the following years, more advanced 

technologies were used (e.g., digital PCR) to re-evaluate the fetal DNA fraction, which is now 

estimated to be 10%–20% [3].  

Deciphering the critical characteristics of the fetal genome has been the main goal for the 

development of non-invasive prenatal tests (NIPT). Studies have shown that the origin of maternal free 

DNA present in maternal peripheral blood is the hematopoietic system of the mother [4]. On the other 

hand, free fetal DNA (ffDNA) is derived from embryonic cell degradation in maternal peripheral  

blood [5,6] or from apoptotic placental cells [7–9]. More recent studies have confirmed the above, 

using bisulfite sequencing technologies and provided convincing evidence for the origin of both fetal 

and maternal free DNA in maternal plasma [10]. It has also been demonstrated that free fetal DNA 

from maternal plasma is cleared immediately (within a few hours) after pregnancy [11]. These findings 

were confirmed by more recent studies [12–15] and is a finding of great importance, since the presence 

of fetal DNA from previous pregnancies would interfere with the correct interpretation of subsequent 

pregnancies. A number of independent studies have also demonstrated that the amount of fetal DNA 

released in maternal circulation increases with pregnancy progression [2,16]. 

Other studies characterizing ffDNA have found that the size of fetal DNA fragments were estimated 

to be <0.3 kb, whereas that of maternal DNA was >1 kb [17,18]. Follow-up studies have demonstrated 

that the release of fetal DNA is due to the apoptosis of no more than three nucleosomal complexes, and 

it has been shown that the average fetal fragment size is 286 ± 28 bp with a maximum ffDNA fragment 

size ranging from 219 to 313 bp [19]. However, better determination and characterization of free fetal 

DNA fragment sizes will allow further evaluation of the diagnostic limitations that are introduced 

because of fragment size. 

The first attempts towards NIPT were based on the use of fetal-specific markers, which  

were easily distinguishable in maternal circulation, as they were fetal-specific. Such markers were  

Y-chromosome-specific loci for fetal sex determination, such as DYS14 [1,20], as well as fetal Rhesus 

D found in maternal circulation in pregnancies in which the mother was Rhesus D negative [21,22]. 

These methods were readily and rapidly introduced in the clinical setting of diagnostic laboratories 

worldwide [23], and within a few years, the field of NIPT evolved even further with the use  

of Y-chromosome-specific markers or paternally inherited polymorphic loci for the NIPT of  

X-linked inherited diseases, as well as through the identification of fetal-specific chromosomal 

translocations [24] and trinucleotide repeats in muscular dystrophy (DMPK) [25]. 

The above successful developments relied on the presence or absence of a fetal-specific marker. 

However, further developments and advances were needed for the identification of fetal specific-markers 

that are independent of gender and polymorphic sites and would allow direct discrimination of the free 

fetal DNA from the free maternal DNA [23,26]. The challenge of the field was the development of 

NIPT for the detection of chromosomal aneuploidies in the fetus. The need for the identification of 

fetal-specific markers that would enable the discrimination of a diploid pregnancy from an aneuploid 
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pregnancy was urgent, because aneuploidies are among the most frequent fetal abnormalities, the most 

common of which are trisomy 21, trisomy 18, trisomy 13 and aneuploidies associated with chromosomes 

X and Y [23,27]. Major efforts took place from a number of independent research groups towards the 

NIPT of the most common chromosomal aneuploidies [23,26,28]. One such area that was extensively 

investigated was epigenetic modifications during development and how such changes could be taken 

into consideration for the identification of methylation fetal-specific markers that could potentially be 

used for the development of NIPT of fetal chromosomal abnormalities. In this review, we describe, 

compare and evaluate the different epigenetic-based approaches that have been implemented in the 

field of NIPT of fetal aneuploidies. 

2. DNA Methylation in Fetal Development  

DNA methylation is an enzymatic chemical modification of the genome, which includes the 

addition of a methyl group to the carbon-5 position of the cytokines of CpG dinucleotides [29].  

The methylation pattern of the cell is reset during embryogenesis, and it is established early during 

development [30,31]. After its establishment, the methylation pattern is inherited from one cell 

generation to the next [29]. The methylation occurs in CpG dinucleotides non-uniformly distributed in 

the genome. In contrast, areas rich in CpG dinucleotides (CpG Islands) are usually found in promoter 

regions of genes, and the majority of them are presented as non-methylated [29]. It is estimated that the 

human genome consists of approximately 30,000 CpG islands, of which, a proportion of 50%–60% 

lies within promoters [32]. Although the majority of these sequences are non-methylated, the CpG 

islands of imprinted genes and the inactive X chromosome are predominantly methylated [33]. 

DNA methylation is a dynamic process and may change during the post-developmental stage [34]. 

It is believed that 60% of tissue-specific differentially methylated regions (TDMRs) are methylated in 

embryonic cells, while during the differentiation of embryonic tissues to adult tissues, they undergo  

de-methylation [35–39]. More recent studies confirm the above, indicating that some of the methylated 

TDMRs undergo de-methylation in embryonic cells during the transformation into adult tissues, while a 

large proportion remains methylated in newborn tissues [40]. Therefore, the de-methylation of TDMRs 

occurs at a later developmental stage. In addition, the results indicated that specific regions of the 

genome show a different methylation pattern in different tissues and at different stages of development. 

The above findings provided convincing evidence that fetal DNA will present different methylation 

patterns from the methylation pattern of the maternal DNA.  

Several independent research groups argued that methylation patterns are different between 

different tissues [41–44]. In 2008, a team of researchers led by Beck implemented a newly developed 

methodology known as MeDIP (methylated DNA immunoprecipitation), which was used in combination 

with whole genome microarray technologies to investigate the methylation status of all known 

promoter regions and CpG islands in different tissues [44]. Based on the above study, the phenomenon 

of CpG islands’ methylation in normal cells and their contribution to normal cellular functions is more 

frequent than ever anticipated.  

An epigenetic modification is a dynamic process and has been proven to play a very important role 

in the development of cancer cells [45,46]. More interestingly, the identification of tumor-specific 

DNA methylation patterns in the plasma of patients has led to great efforts towards the non-invasive 



Genes 2014, 5 313 

 

 

diagnosis of cancer [47,48]. These developments in the field of cancer investigation have provided 

additional convincing support that epigenetic differences may be present between the fetal DNA and 

the maternal DNA in maternal circulation during pregnancy. 

3. DNA Methylation Biomarkers Discovery 

The aim of DNA methylation-based approaches was first to identify fetal-specific methylation 

markers that would allow the discrimination of fetal DNA from the maternal DNA in maternal 

circulation and that have the potential to be developed into non-invasive prenatal diagnostic markers. 

The approaches that have been used for investigating the DNA methylation patterns in fetal DNA and 

maternal DNA are of three main categories: sodium bisulfite-based approaches, restriction enzyme-based 

approaches and methylated DNA immunoprecipitation-based approaches. 

3.1. Sodium Bisulfite-Based Approaches 

Sodium bisulfite conversion leads to the transformation of an epigenetic modification into a genetic 

sequence change for further investigation. More specifically, the treatment of DNA with sodium 

bisulfite results in the conversion of unmethylated cytosines to uracils, leaving methylated cytosines 

unchanged [49]. The genetic composition of the converted sequences of interest could be investigated 

using methylation-specific PCR (MSP) in which the amplification process is separate for the methylated 

(non-converted) fragments and the non-methylated (converted) fragments [50]. Alternatively, the 

methylation status of bisulfite converted sequences could be assessed through the implementation of 

sequencing technologies [49,51]. In 2002, Poon and his colleagues demonstrated for the first time the 

potential for the presence of epigenetic differences between the fetus and the mother by performing 

sodium bisulfite conversion of placental DNA and female peripheral blood DNA followed by  

MSP [50,52]. The first differentially methylated region was identified in 2005 by the use of sodium 

bisulfite conversion in combination with MSP and sequencing. The differentially methylated gene, 

known as SERPINB5, was found to be hypomethylated in fetal DNA and hypermethylated in maternal 

DNA [12]. The identification of hypomethylated fetal-specific SERPINB5 sequences was also achieved 

in maternal plasma during pregnancy. This genomic region was used to demonstrate that fetal DNA is 

not detectable in maternal plasma 24 h after delivery [28]. 

Since then, great efforts have taken place from independent groups towards the identification of 

fetal-specific methylation markers. The initial attempts were based on the investigation of promoter 

regions and CpG islands. In 2008, a bisulfite based systematic search for placental DNA methylation 

markers on chromosome 21 was described. In this study, the methylation-sensitive single nucleotide 

extension (Ms-SNuPE) method was used to assess the methylation differences of CpG sites [53,54]. 

The above study performed an evaluation of the methylation status of 114 CpG islands (based on 

bioinformatics criteria) in five first trimester placental tissues and two samples of non-pregnant female 

blood. Among them, 22 CpG islands were identified as having the potential to be developed into 

biomarkers for the NIPT of trisomy [54]. 

In 2010, a second study was performed with the aim of identifying a panel of fetal-specific 

hypermethylated markers on chromosome 21, and it used the methylation pattern of a previously 

characterized gene, RASSF1A. The RASSF1A gene is located on chromosome 3 and has been found to 
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be completely methylated in fetal DNA and completely unmethylated in maternal DNA. This 

characteristic allowed the use of the RASSF1A gene as a fetal universal marker [28,55]. The study was 

performed using the combined bisulfite restriction analysis (COBRA) [56] to investigate 35 gene 

promoter regions on chromosome 21. The analysis demonstrated that the HLCS gene located on 

chromosome 21 is fully methylated in placenta and unmethylated in maternal blood cells [15]. 

A recent report published in 2013 illustrates the potential of retrieving the methylation profiles of 

placental tissues and maternal blood cells using sodium bisulfite in combination with next generation 

sequencing technologies [10]. The investigators were able to retrieve the fetal methylome through  

the identification of single nucleotide polymorphism (SNP) genotype differences between the mother 

and the fetus in maternal plasma and to identify differentially methylated regions (DMRs). They 

identified 44,455 loci as being fetal-specific hypomethylated and 3081 regions as being fetal-specific 

hypermethylated. The above findings are in agreement with previous studies in which it was clearly 

evident that the fetal genome is mostly hypomethylated in contrast to the adult peripheral blood, which 

is greatly hypermethylated, indicating a regulatory role of the methylation patterns and gene expression 

profiles [44,57,58]. Interestingly, it has also been reported that hypomethylated sequences tend to be of 

a smaller fragment size. These findings could indicate a contribution of the fetal methylation status to 

the small fetal DNA fragments size in maternal plasma [10]. 

3.2. Restriction Enzyme-Based Approaches  

Methylation patterns of CG dinucleotides can also be assessed using restriction enzymes, which 

have recognition sites containing CG sequences. Methylation-sensitive restriction enzymes can digest 

their recognition site only when unmethylated, whereas methylation insensitive restriction enzymes 

digest their recognition sites only when the cytokines of the CGs within their recognition site are 

methylated. In 2007, the team headed by Old reported for the first time the investigation and identification 

of a panel of differentially methylated regions on chromosome 21 using methylation-sensitive enzymes 

[59]. More specifically, the team used the HpaII enzyme, and the underlying idea was based on the fact 

that the enzyme would digest only the unmethylated type of its recognition site (CCGG). Therefore, 

this would allow them to identify regions containing the above recognition sites, which are 

differentially methylated between placenta and maternal blood cells. The study was focused on the 

investigation of promoters from highly expressed genes, randomly selected promoters, as well as 

randomly selected non-promoter regions. Among the 200 pre-selected regions, three promoter regions 

of the AIRE, SIM2 and ERG genes were found to be methylated in the placenta and unmethylated in 

the maternal blood cells. The methylation status of those regions was confirmed by sodium bisulfite 

followed by MSP [59].  

In 2011 a study performed by Peters and his team demonstrated that the use of methylation-based 

restriction enzymes, such as HpaII and MSpI, in combination with high-resolution arrays can 

distinguish differentially methylated regions between the placenta and maternal blood cells [58]. They 

presented a large panel of DMRs consisting of 6311 DMRs across chromosomes 13, 18 and  

21 [58,60] and demonstrated that the fetal DNA is mostly hypomethylated, whereas the maternal blood 

cells are mostly hypermethylated, findings which are in agreement with previous reports [44,57]. 

Moreover, they illustrated that the majority of the hypomethylated regions of both fetal and maternal 
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origin are located within CpG islands, promoters and exons, indicating a potential correlation with 

expression profiles [58]. 

3.3. Methylated DNA Immunoprecipitation-Based Approaches 

One of the most modern methods of studying the levels of DNA methylation is the MeDIP 

(methylated DNA immunoprecipitation) approach. The method was first described in 2005 by  

Weber et al. with the aim of investigating the methylation pattern of cancer cells in a genome-wide 

fashion using microarray platforms [45]. In 2007, Beck and his team introduced linker-mediated PCR 

amplification (LM-PCR) in combination with the MeDIP methodology. They obtained large amounts 

of immunoprecipitated DNA and generated the first whole genome mammalian methylome using a 

large panel of different tissues [44,61]. The principles of the MeDIP methodology includes fragmentation 

of the DNA (through sonication or enzymatic digestion) into short DNA fragments of 300–1000 bp. 

The sample is denatured and incubated with a monoclonal antibody, which recognizes and attaches  

to the 5-methylcytosines of CpG dinucleotides. Immunoprecipitation of methylated sequences is 

accomplished with the addition of magnetic beads. Through the implementation of the MeDIP 

methodology, you can achieve direct enrichment of methylated fragments. Enrichment of methylated 

target sequences is easily retrieved through the use of a large number of different technologies, such as 

PCR, qPCR (quantitative Polymerase Chain Reaction), microarray and sequencing. Since its development, 

MeDIP has been extensively used for the investigation of the methylation status/patterns of cancer 

tissues with great success either in combination with microarray technologies (MeDIP-chip) [42,44,45] 

or, more recently, in conjunction with next generation sequencing (MeDIP-seq) [62–65]. 

The MeDIP methodology was first introduced to the field of NIPT by our team in 2009 with the 

aim of investigating and identifying DMRs between placenta and female peripheral blood towards the 

development of NIPT for the identification of common aneuploidies [57]. Our team used MeDIP in 

combination with chromosome-specific high-resolution oligo arrays for the investigation of the 

methylation pattern of chromosomes 13, 18, 21, X and Y. Although previous studies solely 

investigated promoter regions and CpG islands for DMR identification, we were the first to screen 

entire chromosomes of interest irrespective of the genomic position or CG content. At the time, we 

reported the largest panel of DMRs with the potential to be developed into NIPT biomarkers for the 

most common fetal aneuploidies. More specifically, we identified around 2000 DMRs on each of the 

chromosomes investigated, and interestingly, we noticed that the vast majority of the DMRs were 

located within non-genic regions and in relatively poor CG regions. More specifically, we illustrated 

that 56%–83% of the DMRs were located within non-genic regions, whereas only 1%–11% were located 

within CpG islands. Our findings were concordant with previous studies performed by other groups 

investigating a panel of different tissues [44] and were also in agreement with more recent reports using 

bisulfite sequencing technologies [3,58]. We were also able to report the presence of inter-individual 

variability and the changes in the methylation patterns during the progression of the pregnancy, 

findings which have recently been confirmed by independent groups [10].  

Following our study, the group headed by Chim used MeDIP in combination with a microarray 

platform targeting promoter regions and CpG islands. The group identified a panel of eight DMRs with 

the potential of being developed into biomarkers for diagnostic purposes [66], most of which are 
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among the DMRs identified previously by our group [57]. Any discrepancies reported regarding the 

identification of DMRs, such as the failure to have the exact same methylation status of all DMRs 

reported by independent studies, are not uncommon, since different platforms and different 

methylation-based technologies were used.  

4. Implementation of Methyl-Biomarkers in NIPT 

The discovery of DMRs has mainly been focused on chromosomes 13, 18, 21, X and Y with the 

aim of identifying as a priority methylation-based biomarkers (methyl-biomarkers) suitable for the 

development of NIPT for the most common chromosomal fetal aneuploidies. The first attempt was 

reported back in 2006 for the NIPT of trisomy 18 (Edward’s syndrome) [67]. In this study, the authors 

implemented a combination of sodium bisulfite conversion with MSP using maternal plasma samples 

from normal and trisomy 18 pregnancies. To achieve discrimination, they used the information of an 

SNP located within the SERPINB5 gene. The cases were considered informative if the SNP was 

homozygous in the mother and heterozygous in the fetus, and only those cases could be used for NIPT 

of trisomy 18 (T18). To achieve this, the team introduced the so-called epigenetic allelic ratio (EAR) 

in which the chromosome 18 copy number was assessed based on the allele ratio calculation of an 

informative SNP. The challenge in this study was to have informative SNPs, and because there was 

only a single SNP in the target sequence, it was extremely difficult to be informative in all cases tested 

(Table 1). The results showed that among the 173 euploid placentas and 14 trisomy18 placentas 

genotyped for the polymorphism, only 31 and seven placentas, respectively, were informative. The 

rarity of having an informative SNP in this study does not allow this approach to be implemented 

population-wide [23,26]. 

To overcome the above limitations, in 2010, the same group developed an SNP-free  

methylation-based assay for NIPT of trisomy 21 (Down syndrome). Methylation-sensitive restriction 

digestion was used followed by digital PCR to investigate DMRs identified on chromosome 21 [15]. 

The copy number of chromosome 21 was determined through the epigenetic-genetic (EGG) 

chromosome dosage approach using the fetal-specific hypermethylated promoter region of the HLCS 

gene located on chromosome 21 and the ZFY locus on chromosome Y. The assay tested 24 maternal 

plasma samples from euploid pregnancies and five maternal plasma samples from trisomy 21 

pregnancies. All but one euploid pregnancy were correctly classified (Table 1) [15].  

The EGG chromosome dosage approach was also implemented for the NIPT of trisomy 18 in which 

the fetal-specific methylated VAPA-APCDD1 loci on chromosome 18 and the ZFY on chromosome Y 

were quantified with digital PCR after HinP1I- and HpaII sample digestion [66]. The study was 

performed on nine maternal plasma samples from male trisomy 18 pregnancies and 27 maternal 

plasma samples from male euploid pregnancies. Among them, eight out of nine and one out of 27 

trisomy 18 and euploid pregnancies, respectively, were correctly identified, which corresponds to 

88.9% sensitivity and 96.3% specificity (Table 1) [66].  
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Table 1. Comparison of different methylation-based approaches towards the non-invasive prenatal tests (NIPT) of aneuploidies. EAR, 

epigenetic allelic ratio (EAR); EGG, epigenetic-genetic; SNP, single nucleotide polymorphism. 

Assay Technology Sample size Sensitivity/Specificity (%) Advantages Disadvantages 
Reproduced 

by others 

EAR on  

chromosome 18 [67] 

Sodium bisulfite, 

digital PCR 

2 normal  

2 trisomy 18 

Not defined/not applicable 

population-wide 

Applicable irrespective 

of gender 

Requires informative SNP, depends on 

the bisulfite conversion performance 
No 

EGG on chromosome  

21 using ZFY [15] 

* COBRA,  

digital PCR 

24 normal 

5 trisomy 21 

95.8% specificity 

100% sensitivity 
SNP-free assay 

Applicable only to male pregnancies, 

depends on the digestion and bisulfite 

conversion efficiency 

No 

EGG on chromosome  

18 using ZFY [66] 

* COBRA,  

digital PCR 

27 normal 

9 Trisomy 18 

96.3% specificity 

88.9% sensitivity 
SNP-free assay 

Applicable only to male pregnancies, 

depends on the digestion and bisulfite 

conversion efficiency 

No 

EGG on chromosome  

21 using TMED8 [68] 

** MRED 

digestion, digital 

PCR 

33 normal 

14 trisomy 21 

Variable depending on the 

fetal allele 

Applicable irrespective 

of gender 

Requires informative SNP, applicable 

only to male pregnancies, depends on 

the digestion efficiency 

No 

Fetal-specific DNA methylation ratio 

on chromosome 21 (1st study) [69] 

*** MeDIP,  

real-time qPCR 

40 normal 

40 trisomy 21 

100% specificity 

100% sensitivity 

Applicable irrespective 

of gender and SNPs 
Depends on MeDIP performance Yes [70,71] 

Fetal-specific DNA methylation ratio 

on chromosome 21 (2nd study) [72] 

*** MeDIP,  

real-time qPCR 

125 normal 

50 trisomy 21 

99.2% specificity 

100% sensitivity 

Applicable irrespective 

of gender and SNPs 
Depends on MeDIP performance No 

Bisulfite sequencing [10] 

Sodium bisulfite, 

next generation 

sequencing 

7 normal 

5 trisomy 21 

100% specificity 

100% sensitivity 

Applicable irrespective 

of gender and SNPs 

Depends on bisulfite conversion 

efficiency 
No 

* Combined bisulfite restriction analysis; ** methylation restriction enzymatic digestion; *** methylated DNA immunoprecipitation. 
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Although the results from the studies using the EGG chromosome dosage approach were promising, 

the technology was restricted to male pregnancies, because the EGG calculation involved the use of 

the ZFY gene (Table 1). To overcome the above difficulties, a modification was introduced in the EGG 

calculation to be able to include the testing of female pregnancies, as well. The study was performed  

using 14 maternal plasma from trisomy 21 pregnancies and were compared to 33 cases with a euploid 

fetus [68]. For calculation purposes, the ZFY gene was replaced with an autosomal genetic reference 

marker. Interpretation of the results was achieved using a paternally-inherited SNP allele on the 

TMED8 gene located on chromosome 14, which served as a baseline for the EGG chromosome dosage 

calculation. The sensitivity of the assay varied depending on which of the two alleles of an SNP was 

fetal-specific, making the evaluation of the assay performance even more challenging. Overall, 

although the limitation of testing only male pregnancies was overcome, the assessment of the copy 

number of chromosome 21 remained a challenge, as the presence of at least one informative SNP was 

necessary (Table 1). 

A different approach was proposed by our group in 2011 and was based on using the MeDIP 

methodology in combination with real-time quantitative PCR (real time-qPCR) for the quantification 

of selected DMRs located on chromosome 21 [69]. We selected 12 previously identified DMRs 

located on chromosome 21 [57], which were hypermethylated in fetal DNA and hypomethylated in 

female peripheral blood cells. We used in our study a total of 40 maternal blood samples from euploid 

pregnancies and 40 maternal blood samples from trisomy 21 cases. We developed a diagnostic formula 

by calculating the DNA methylation ratio of the selected DMRs using 20 normal pregnancies and  

20 trisomy 21 pregnancies. Eight specific DMRs were the most statistically significant markers in 

discriminating normal from trisomy 21 pregnancies. The MeDIP-qPCR methodology was used to then 

test 40 additional pregnancies, of which 20 were obtained from trisomy 21 pregnancies and showed 

100% specificity and 100% sensitivity [69]. We also demonstrated that diagnostic accuracy can only 

be achieved through the combination of multiple DMRs from chromosome 21, which was an important 

finding for further NIPT developments [23].  

Our team continued to improve the MeDIP-qPCR assay with a larger validation study of 175 

pregnancies that included 50 trisomy 21 pregnancies [72]. In this larger-scale validation, we re-evaluated 

our diagnostic assay, taking into consideration the genomic composition of our DMRs and by 

selectively excluding those DMRs located in copy number variable (CNV) regions. Based on the 

above, we re-designed our diagnostic formula and then evaluated its performance using 100 new cases, 

which included 25 trisomy 21 pregnancies. The results demonstrated 100% sensitivity and 99.2% 

specificity (Table 1) [72]. Our group also investigated whether the variability of the fetal fraction 

present in maternal plasma has a negative effect in our assay’s diagnostic efficiency. Although 

previous reports demonstrated an effect of different fetal amounts present in maternal plasma [73–75], 

our study has shown no significant association between cffDNA fraction, absolute fetal amount or the 

concentration present in maternal plasma with the test result classification using our diagnostic  

formula [20,72]. We speculate that this is due to the fact that maternal blood contains <1% of fetal 

DNA [20,72] in contrast to maternal plasma, which contains ~10%–15% fetal DNA [10,76]. 

More importantly, the results of our studies have been reproduced by two independent groups, 

which have reported their results using the MeDIP-qPCR methodology and the published diagnostic 

formula [70,71]. In addition, independent groups have also commented positively on the potential 
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prospects or application of the MeDIP-qPCR assay towards the NIPT of chromosomal aneuploidies. 

The low cost of the technology and the ease of implementing it, in combination with the use of equipment 

common to every laboratory, allows its implementation in any diagnostic laboratory setting [77]. A 

major strength of the MeDIP-qPCR assay is that it is a gender- and polymorphism-independent assay 

that could be implemented population-wide. Nevertheless, a different independent group has failed to 

reproduce the MeDIP-qPCR results by performing a small scale validation study [78]. Lack of 

reproducibility of the results would not be a surprise to our team, since, as stated in our reply to the 

above manuscript, very stringent quality control criteria must be applied to critical reagents and 

conditions throughout the method [79]. 

A very interesting recent development of investigating DNA methylation for use in NIPT has been 

the implementation of sodium bisulfite DNA treatment in combination with next generation 

sequencing technologies (NGS) [10]. The study is presented as a proof of principle and demonstrates 

one use of the assay with the detection of trisomy 21. NGS technologies have already been introduced 

in the field of NIPT by different independent groups with the primary aim of detecting the most 

common chromosomal aneuploidies [73–76,80–82]. Biotechnology companies have already introduced 

in the market their NGS-based NIPT of the most common chromosomal fetal aneuploidies [83–85]. 

However, sequencing of maternal plasma can turn out to be very challenging, due to the restrictions of 

the very low amount of fetal DNA available. Furthermore, such technology is not yet available in all 

clinical laboratories. Sequencing technologies are still considered to be of a high cost, requiring 

significant infrastructure, are labor intensive and require highly trained personnel, and the 

bioinformatics analysis can be very challenging, especially when the target sequence is of a very low 

amount, such as fetal DNA present in maternal plasma. 

5. Evaluating the Efficiency of Methylation Assays 

Developments towards methyl-biomarker discovery and their applications in the NIPT of fetal 

chromosomal abnormalities were achieved through a number of independent groups, as described 

above, using different methylation-based approaches. Different analytical tools and a variety of 

quantitative approaches (e.g., MSP, digital PCR, real-time qPCR, microarray platforms and next generation 

sequencing) were used, of which the statistical power in discriminating normal from abnormal 

pregnancies has been extensively assessed [23,26,86]. Nevertheless, the statistical discriminating power 

of each of the end point analytical tools relies on the efficiency of the methylation-based technology 

used to enrich the fetal DNA in maternal circulation (Table 1). Therefore, the evaluation and assessment 

of the efficiency of the methylation-based enrichment technology used is of significant importance.  

One of the most commonly used approaches is the treatment of DNA with sodium bisulfite. Sodium 

bisulfite conversion is considered the gold standard in the evaluation of the methylation status of 

different tissues and has been extensively used, especially in the field of cancer [87,88]. However, it is 

well known that this chemical treatment of the DNA is associated with a high degree of DNA 

degradation, reaching >90% of the template DNA [89]. This major drawback of the technology is 

undesirable for its implementation in plasma samples of pregnant women. During pregnancy, the 

amount of fetal DNA in maternal plasma is very low [10,76], and further degradation will result in 

even fewer fetal DNA molecules available for quantification; therefore, the accuracy and sensitivity of 
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the test will be reduced. To compensate for the degradation effect, much larger amounts of maternal 

plasma are required, which makes the testing of maternal plasma even more complicated. Furthermore, 

bisulfite conversion can be challenging, since 100% conversion of the unmethylated cytosines to 

uracils is rarely achieved, and purification is required to remove the sodium bisulfite [90]. Such an 

effect will bias the correct interpretation of the results [23]. On the other hand, bisulfite conversion 

strategies are not sensitive to low purity and low integrity samples, an advantage especially for 

samples with very low starting DNA amounts. Nevertheless, bisulfite conversion in combination with 

sequencing technologies can provide a comprehensive analysis of the methylation status at the base 

pair composition, which can make it a very powerful tool (Table 2). 

Table 2. Comparison of different methylation assays. 

Methylation assay Advantages Disadvantages Analytical tool used for NIPT 

Sodium bisulfite 

Not sensitive to sample 

impurities, methylation 

analysis at the base pair level 

DNA degradation (>90%),  

100% conversion is rarely achieved 

* MSP, microarrays, Digital PCR, 

** COBRA, *** NGS 

Restriction enzyme 

digestion 
Easy to perform and low cost 

Sensitive to sample impurities, requires 

high amount of starting DNA, applicable 

to a limited number of DNA sequences 

** COBRA, digital PCR 

**** MeDIP 

Ideal for investigating low CG 

content regions, low cost 

assay, not sensitive to sample 

impurities, can be applied with 

low starting DNA amounts 

Depends on antibody efficiency and 

ideal combination of affinity reagents 
Real time-qPCR, microarrays 

* Methylation-specific PCR; ** combined bisulfite restriction analysis; *** next generation sequencing;  

**** methylated DNA immunoprecipitation. 

A different approach implemented by a number of independent groups towards methyl-biomarker 

discovery and methylation-based NIPT developments has been the use of methylation restriction 

enzymes, as described above. Through methylation restriction enzymatic digestions (MRED), the 

unmethylated maternal origin sequences, present in maternal plasma, are digested to achieve indirect 

enrichment for the corresponding sequences of fetal origin, which are methylated. The efficiency of 

the MRED assays depends on the purity of the sample, and for this reason, they require high purity and 

high integrity samples [90]. Additionally, MRED assays require fairly high quantities of starting 

material, which is a restriction to its implementation in plasma samples, because not only the target 

fetal DNA sequences are of a low amount, but also the total plasma DNA is very low (around  

10 ng/4 mL plasma) [20]. An additional drawback of the assay is that it can only evaluate the 

methylation status of a specific and very limited number of genomic sequences. Only those sequences 

that include a recognition site of a methylation-dependent restriction enzyme could be evaluated. Such 

inherent restrictions do not allow efficient and detailed genome-wide methylation assessment [23,26]. 

An example is the recognition sites of the HpaII restriction enzyme, which are presented in only 3.9% 

of CGs across non-repetitive sequences of the human genome [91]. Moreover, the efficiency of 

digestion should always be carefully evaluated for an unbiased interpretation of the results. 

Nevertheless, it is a very easy to perform assay and low cost. 
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The MeDIP assay, an affinity-enrichment method, was also utilized towards DMR identification 

and characterization to discriminate fetal DNA from maternal DNA in maternal circulation during 

pregnancy. Based on studies performed by several independent groups, it is clearly evident that the 

vast majority of DMRs identified between different tissues are located within non-genic and CG poor 

regions [44,58]. Based on recent reports, the MeDIP methodology is ideal for the investigation of low 

CpG density regions [92]. Indeed, the DMRs identified and selected for NIPT of trisomy 21 using 

MeDIP-qPCR are located in low CpG sites and are mostly found within non-genic regions [57,69,72]. 

Therefore, we strongly feel that MeDIP is the choice of selection for the investigation of DMRs 

towards NIPT. MeDIP is an efficient method for genome-wide methylation assessment [42,44,45], as 

it can evaluate the methylation levels irrespective of genomic composition and overcomes limitations 

of the previously described methodologies. The MeDIP assay can tolerate sample impurities, and thus, 

no prior sample purification is required. Furthermore, it has recently been proven to be applicable for 

low starting DNA templates, generating sufficiently enriched outputs [64,65], a development that 

simplifies and makes possible its implementation with plasma samples. Moreover, it is a technically 

robust methodology, easy to use and affordable. Nevertheless, the efficiency and performance of 

MeDIP greatly depends on determining the ideal combination of affinity reagents. This is very 

important, especially in regions with varying methylcytosine density, such as the DMRs identified for 

the NIPT of common chromosomal aneuploidies [57,69,72]. The advantages and disadvantages of all 

the different methylation-based assays implemented towards the NIPT of fetal chromosomal 

abnormalities are summarized in Table 2. 

6. Conclusions and Future Directions 

Deciphering the epigenome and understanding the underlying mechanisms that lead to epigenetic 

modifications has been one of the most interesting fields under investigation for the last decade. Since 

2002, a large panel of DMRs has been identified by independent groups, with the potential of being 

developed into diagnostic markers having as a primary goal the development of NIPT for common 

fetal chromosomal abnormalities.  

We speculate that epigenetic approaches towards NIPT will soon dominate the field of NIPT, 

because they are easy to perform, are fast and inexpensive compared to existing NIPT approaches, 

which are based on next generation sequencing technologies [73–75,81,82]. We speculate that one of 

the first epigenetic-based approaches that will be launched for the NIPT of common chromosomal fetal 

abnormalities will be a MeDIP-based approach. NIPD Genetics Ltd., a company in which three of the 

authors are employed, is dedicated to developing a MeDIP-qPCR-based diagnostic assay. The 

company will be soon ready to launch the first epigenetic-based NIPT for trisomy 21 following 

completion of a large-scale validation study [23,72,93]. 

Methylation-based approaches could also be used for retrieving the methylation status of abnormal 

tissues, such as placental tissues from aneuploid pregnancies. A very recent study has shown that 

trisomy 21 placentas are characterized by a global hypermethylation in contrast to normal placentas, 

which are mainly hypomethylated [94]. Identifying such disease-associated characteristics can benefit 

and contribute to more robust and sensitive NIPT. Furthermore, methylation differences during fetal 

development have also been shown to be associated with transcription. It has been demonstrated that 
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the early gestational placental methylome is significantly associated with gene expression [58]. Such 

structural and regulatory characteristics of the placental epigenome are of great importance and could 

be used to determine the role of aberrant or altered methylation in placental dysfunction. 

In addition to the methods described in this review, the implementation of alternative  

methylation-based approaches, such as MBD (methylated binding domain) [92] and McrBC  

(a GTP-requiring, modification-dependent endonuclease of Escherichia coli K-12) fragmentation, as 

well as HELP (HpaII tiny fragment enrichment by ligation-mediated PCR) [95,96], in combination 

with the development of bioinformatics-based algorithms, will contribute to a better understanding of 

the fetal methylome. We envision that epigenetic-based enrichment methods will have a major 

contribution to fetal methylome analysis through direct testing of maternal plasma. Looking  

ahead, we predict that epigenetic-based approaches in combination with genetic-based approaches  

and advanced technological approaches, such as digital PCR and next generation sequencing, will 

contribute to the development of NIPT of more subtle fetal abnormalities, such as point mutations, 

microdeletion/microduplication syndromes, etc. 
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