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A serum metabolomics study of 
patients with nAMD in response to 
anti-VEGF therapy
Yan Gao1, Yi Chong Kelvin Teo1,2, Roger W. Beuerman1,3,4, Tien Yin Wong1,2,3,4, Lei Zhou1,3,4* & 
Chui Ming Gemmy Cheung1,2,4*

Intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is the current standard 
of treatment for choroidal neovascularization (CNV) secondary to neovascular age-related macular 
degeneration (nAMD), but there are no diagnostic tools to predict response of these therapies. We 
hypothesize that differences in baseline metabolic profiles of patients with nAMD may influence 
responsiveness to anti-VEGF therapy, and thus provide prognosticating information for these patients. 
A prospective study was performed on 100 patients with nAMD treated with anti-VEGF therapy. We 
classified patients into two groups: responders (n = 54) and non-responders (n = 46). The expression 
levels of glycerophosphocholine,LysoPC (18:2) and PS (18:0/20:4) were higher in non-responders 
and these findings were verified in the validation cohort, implicating that reductions in these three 
metabolites can be used as predictors for responsiveness to anti-VEGF therapy during the initial loading 
phase for patients with nAMD. Our study also provided new insights into the pathophysiological 
changes and molecular mechanism of anti- VEGF therapy for nAMD patients.

Age-related macular degeneration (AMD) is a common cause of blindness in elderly people1,2. The neovascular 
form of AMD (nAMD) is characterized by abnormal vessel leakage and/or bleeding resulting in the formation of 
fibrovascular tissue which leads to poor vision without treatment. Intravitreal injection of anti-vascular endothe-
lial growth factor (anti-VEGF) is the current standard of treatment for nAMD, showing excellent visual acuity 
gains in large pivotal randomized controlled trials1,3,4.

However, there remains a broad range of responses to anti-VEGF treatment despite its overall efficacy in 
the majority of patients. It has been suggested that exudation remains detectable in the eyes of >50% patients 
after initial 3 months of treatment of anti-VEGF therapy5. Current methods used to identify “good” and “poor” 
responders include stratifying disease status by markers of structure or function using tools such as optical 
coherence tomography (OCT)6, fluorescein angiography for lesion type7, and visual acuity tests8. Some imaging 
biomarkers such as the presence of intra retina fluid9–11 and clinical signs such as poor starting vision12,13 are 
associated with long-term poor prognosis, but these biomarkers do not precisely predict response to anti-VEGF 
treatment.

Patients with nAMD have been known to have systemic risk factors that are different from age-matched 
controls, suggesting generalized alterations14. Metabolomics, the global quantitative assessment of endoge-
nous metabolites within a biological system15, may identify systemic metabolites responsible for differentiation 
between individuals despite intra-individual variations16. This method could provide metabolite information 
from environmental and lifestyle factors as well as individual characteristics such as dietary response and disease 
history17. The metabolic profiling of a biological system can reflect the phenotype of the study subject and provide 
information that is complementary to genomics, transcriptomics or proteomics studies18. The aim of our current 
study is to examine baseline serum metabolic profile in patients with nAMD and to relate this to the anatomical 
response from anti-VEGF therapy during the initial treatment phase over 3 months (typically referred to as the 
“loading” dose phase).
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Results
Baseline, month 3 and month 12 characteristics of responders and non-responders are summarized in Table 1. 
Samples were assigned to training set and validation set. There was no significant difference in the age, gender, or 
proportion with ischemic heart disease, stroke, diabetes, hyperlipidemia, hypertension, chronic kidney disease 
or smoking (Table 1).

Clinical characteristics and response after administration of 3 monthly anti-VEGF treat-
ments.  There was no difference in baseline visual acuity (VA) (0.89[0.68–1.10] versus 0.88[0.89–1.12], 
p = 0.94 in training set; 0.89[0.66–1.12] versus 0.63[0.48–0.78], p = 0.07 in validation set) and central retinal 
thickness (CRT) (488 μm [407–569] versus 488 μm [402–574], p = 0.99 in training set; 426 μm [367–485] versus 
476 μm [427–525], p = 0.21 in validation set) between responders and non-responders. At month 3 and month 
12 mean VA was better in the responder group compared to non-responders, although the difference was not 
statistically significant (0.60[0.43–0.77] versus 0.71[0.50–0.92], p = 0.32 at month 3 and 0.50[0.28–0.74] versus 
0.68[0.38–0.85], p = 0.51 at month 12 in training set; 0.55[0.41–0.82] versus 0.65[0.45–0.88], p = 0.71 at month 
3 and 0.52[0.31–0.78] versus 0.63[0.31–0.82], p = 0.52 at month 12 in validation set). There were more gains in 
vision at month 3 and month 12 from baseline in responder groups compared to the non-responder groups for 
both training and validation sets, however this was not statistically significant. Responders had significantly thin-
ner CRT than non-responder at month 3 (291 μm [252–330] versus 515 μm [399–631], p < 0.01 in training set; 
275 μm [257–293] versus 364 μm [321–407], p < 0.01 in validation set).

High-resolution mass spectral data.  Mass spectral data extraction from RP positive, RP negative, HILIC 
positive and HILIC negative modes using XCMS online yielded 3944, 1999, 4827 and 2135 m/z features defined 
by high-resolution m/z, retention time and ion intensity, respectively. Volcano plot showing p value and fold 
change cutoff for metabolite features were shown in Fig. 1.

Principal component analysis (PCA) model constructed from aligned peak data from responders and 
non-responders in training set was optimized at 7 principal components, with R2 and Q2 value at 0.67 and 
0.417, respectively. The first component explained 33.6% of the variance as shown in Fig. 2B. Most samples from 
responders are located toward the negative scores while non-responders are located toward the positive scores 
along the first principal component.

Orthogonal projection to latent structures discriminant analysis (OPLS-DA) was used to identify the m/z fea-
tures responsible for the differentiation between nAMD responders and non-responders observed in PCA score 

Testing set Validation set

Responder Non-responder p-value Responder Non-responder p-value

Eyes, n 29 21 — 25 25 —

Age, years, mean (CI) 73.3 (69.8–76.8) 73.7 (69.2–78.2) 0.89 72.2 (68.6–75.8) 70.7 (67.3–74.1) 0.54

Sex, male, n, (%) 15 (51.7) 13 (61.9) 0.48 16 (64.0) 13 (52.0) 0.4

Systemic conditions at baseline

IHD, n, (%) 3 (10.3) 0 (0.0) 0.13 2 (8.0) 3 (12.0) 0.65

Stroke, n, (%) 4 (13.8) 3 (14.3) 0.96 1 (4.0) 0 (0) 0.32

Diabetes, n, (%) 11 (37.9) 3 (14.3) 0.07 9 (36.0) 6 (24.0) 0.36

Hyperlipidaemia, n, (%) 18 (62.1) 13 (61.9) 0.99 18 (72.0) 15 (60.0) 0.38

Hypertension, n, (%) 20 (68.9) 13 (61.9) 0.61 15 (60.0) 20 (80.0) 0.13

Smoking, n, (%) 3 (10.3) 4 (19.0) 0.39 6 (24.0) 7 (28.0) 0.75

Chronic kidney disease, n (%) 0 (0) 0 (0) — 0 (0) 0 (0) —

Clinical characteristics

VA at baseline, logMAR units, (CI) 0.89 (0.68–1.10) 0.88 (0.64–1.12) 0.94 0.89 (0.66–1.12) 0.63 (0.48–0.78) 0.07

VA at month 3, logMAR units, (CI) 0.60 (0.43–0.77) 0.71 (0.50–0.92) 0.32 0.55 (0.41–0.82) 0.65 (0.45–0.88) 0.71

VA at month 12, logMAR units, (CI) 0.50 (0.28–0.74) 0.68 (0.38–0.85) 0.51 0.52 (0.31–0.78) 0.63 (0.31–0.82) 0.52

VA change from baseline to month 3, logMAR units, (CI) −0.26 (−0.37–−0.08) −0.15 (−0.31–0.02) 0.31 −0.28 (−0.35 – −0.10) −0.05 (−0.25–0.01) 0.69

VA change from baseline to month 12, logMAR units, (CI) −0.38 (−0.45 – −0.12) −0.14 (−0.30 − 0.02) 0.58 −0.30 (−0.35 – −0.09) −0.03 (−0.23–0.01) 0.53

CRT at baseline, μm, (CI) 488 (407–569) 488 (402–574) 0.99 426 (367–485) 476 (427–525) 0.21

CRT at month 3, μm, (CI) 291 (252–330) 515 (399–631) <0.01 275 (257–293) 364 (321–407) <0.01

Lesion type, PCV, n (%) 16 (55.0) 10 (47.6) 0.12 12 (48.0) 13 (52.0) 0.82

Anti VEGF agent type

Bevacizumab, n, (%) 21 (72.4) 20 (95.2) 0.07 25 25 —

Ranibizumab, n. (%) 1 (3.4) — — — — —

Aflibercept, n, (%) 7 (24.1) 1 (4.8) 0.11 — — —

Table 1.  Comparison of characteristics of responders and non-responders at baseline and after 3 monthly 
administrations of anti-vascular endothelial growth factor (VEGF) therapy. Abbreviations: IHD, Ischemic heart 
disease; VA, visual acuity; logMAR, logarithmic of the minimum angle of resolution; CI, confidence interval; 
CRT, central retinal thickness.
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plot. After removal of the first orthogonal component (20.1% of variation), the first predictive component (20.4% 
of variation) could obviously separate responders from non-responders (Fig. 2C, R2 = 0.405, Q2 = 0.378, cross 
validation analysis of variance [CV-ANOVA], p value < 0.0005). The 999 times permutation test Q2 intercept 
was −0.394, demonstrating the stability and non-randomness of our model. The score plot of OPLS-DA model 
showed clear separation between responder group and non-responder group, implicating that this model could 
explain the differentiation between these two groups. S-plot and variable importance for the projection (VIP) 
plot were used to identify the m/z features responsible for the separation. m/z features with high contribution to 
the variation and correlation within the dataset (top and bottom 10% values of p[1] and p(corr) [1] in S plot and 

Figure 1.  Volcano plot of serum metabolome comparing responders versus non-responders. Cutoff for p value 
is < 0.05; fold change (nonresponders/responders) cutoff is >1.5 or <0.66.

Figure 2.  PCA and OPLD-DA score plot of the untargeted metabolomics analysis of serum samples. (A) 
PCA score plot of responders, non-responders and QC samples (R2 = 0.683, Q2 = 0.416); (B) PCA score plot 
of responders and non-responders (R2 = 0.67, Q2 = 0.417); (C) OPLS-DA score plot of responders and non-
responders (R2 = 0.405, Q2 = 0.378). • -responders; •-non-responders; •- QC.
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VIP > 1) were selected as potential biomarkers. A list of identified metabolites can be found in Supplementary 
Table S4.

The general metabolomics signature diagnostic for anti-VEGF responses in patients with nAMD was then 
subjected to validation in an independent dataset consisting of 25 responders and 25 non-responders. The diag-
nostic signature had a sensitivity of 66.6% and a specificity of 82.7%. Overall the precision of the model (positive 
predictive value) was 73.7%. The area under the receiver-operating characteristic (AUROC) was 0.874 (95% CI, 
0.766–0.971) (Fig. 3).

Interpretation of metabolic differences between responders and non-responders.  An analysis 
of the LC-MS spectra was conducted to identify which metabolites were contributing to the metabolic profile 
differentiation between responders and non-responders. Pathway analysis of these identified metabolites revealed 
glycerophospholipid metabolism alteration (Fig. 4). Compared with profiles from non-responders, serum pro-
files from responders had significantly lower level of glycerophosphocholine, LysoPC (18:2) and PS (18:0/20:4) 
in training set (p = 0.023, q = 0.0553; p = 0.020, q = 0.0529; p = 0.032, q = 0.0529). These results were confirmed 
in the validation set (LysoPC (18:2) p = 0.031, q = 0.0743; PS (18:0/20:4) p = 0.038, q = 0.0743). Similar trend, 
although not reaching statistical significance was also observed for glycerophosphocholine (p = 0.087, q = 0.1042) 
(Fig. 5). Glycerophosphocholine was also verified by pure standards (see Supplementary Figure S1). The AUROC 
for these three metabolites in training set and validation set was 0.833 and 0.762, respectively (Fig. 6).

Discussion
Previous metabolomics studies have shown patients with nAMD are different in metabolic profiles from similarly 
aged persons without nAMD in pathways including tyrosine metabolism, sulfur amino acid metabolism, amino 
acids related to urea metabolism16 and enrichment of glycerophospholipid pathway19,20. Osborn et al. found sig-
nificant differences in metabolites including peptides, bile acids and vitamin D in patients with nAMD com-
pared to age matched controls, and summarized that tyrosine and urea metabolism may be important in AMD 
pathophysiology16. Another metabolomics study investigating AMD patients revealed that glycerophospholipid 
pathway is associated with significantly altered metabolites between control group without any vitreoretinal dis-
ease and AMD group19. Our group has previously found higher serum level of glycerophospholipids, covalently 
modified amino acids and di/tri-peptides, fatty acids and carnitines in patients with choroidal neovascularization 
and polypoidal choroidal vasculopathy compared to healthy controls20. Small changes were also detected in the 
levels of some amino acids, organic acids, dimethyl sulfone and specific moieties when investigating the plasma 
metabolomics profiles of patients with AMD17. The intestinal microbiomes of nAMD patients were shown to be 
enriched in genes of the L-alanine fermentation, glutamate degradation and arginine biosynthesis pathways and 
decreased in genes of the fatty acid elongation pathways21. In this study, we now provide evidence that differences 
in baseline metabolomics signatures in nAMD patients may also predict their responses to the initial treatment 
(3 monthly anti-VEGF injections during the “loading phase”).

We found that the serum level of glycerophosphocholine (GPC) was higher in non-responders compared 
to responders. GPC has been recognized as a degradation product of phosphatidylcholine, which is one of the 
most important glycerophospholipids in mammalian cells22. Increased level of GPC has been detected in cer-
ebrospinal fluid of Alzheimer patients23 and a favorable response to neoadjuvant chemotherapy is associated 

Figure 3.  Receiver-operating characteristic curve for validation of metabolomics classification of responders 
and non-responders.
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with a reduction in GPC concentration during the treatment for patients with breast cancer24. The breakdown 
of phosphatidylcholine may be reflected in elevated concentrations of GPC in serum and results in altered phos-
phatidylcholine metabolism22,25. A correlation between phosphatidylcholine metabolism and tumor malignancy 
and angiogenesis has been reported by Baek26 and Chen27. Higher concentration of GPC in non-responders may 
be associated with increased angiogenesis that potentially can be used as a predictor of anti-VEGF therapy.

Elevated levels of LysoPC (18:2) and PS (18:0/20:4) were also detected and validated in non-responders. 
Lysophosphatidylcholine (LysoPC) is a breakdown product of phosphatidylcholine and higher levels of LysoPC 
have been linked to the cardiovascular complications associated with atherosclerosis28, ischemia29 and diabetes30. 
LysoPC can be found in cell membrane or the polar surface of oxidized lipoproteins and plays an important role 
in vascular development31.A study by Zou et al. revealed that higher level of LysoPC in aged aorta from rats is 
likely responsible for reactive species generation, and thus enhances oxidative stress in old rat aorta32, suggesting 
that increased level of LysoPC may play a significant role on redox balance during the vascular aging process. 
LysoPCs are likely to be degraded from glycerophospholipids by the activity of phospholipase enzymes (sPLA2)33. 
Glycerophospholipids are important for maintaining structural stability and membrane fluidity and have been 
implicated in initiation and promulgation of oxidative stress in neurological disorders34. Accumulation of LysoPC 
(18:2) in serum might have damaging effect on vascular modelling by induction of oxidative stress and thus result 
in poor response to anti-VEGF therapy in our study. Phosphatidylserine (PS) is predominately localized in the 
inner membrane leaflet and this asymmetry is actively maintained by ATP-dependent lipid transporters regula-
tions35. The loss of asymmetric distribution of phospholipid might results in changes of membrane biochemical 
properties. Dysregulation of PS has been found in tumor microenvironment and antagonizes tumor immunity 
development by acting as a global immunosuppressive signal in efferocytosis, infectious disease and cancer36. 
Based on these evidences, agents targeting PS could have significant values in cancer and infectious disease ther-
apeutics. Similarly, Li et al. reported that PS is exposed in CNV endothelium and thus suggested antibodies tar-
geting exposed PS may have therapeutic value in CNV37. Therefore, up-regulation of PS (18:0/20:4) might have 
side effects on AMD recovery.

Progressive Bruch’s membrane thickening and deposition of extracellular deposits with abundant lysophos-
pholipid and free fatty acids as drusen have been noted on histological sections of eyes with AMD, suggesting the 
role of phosphatidylcholine hydrolysis as potential pathogenic mechanism in AMD38–42. However, the exact role 
of serum lipid levels in AMD is not yet clear and studies on the association of serum lipid and AMD risk have 
been inconsistent43–45. No significant difference in lipoprotein (a) concentrations was observed between AMD 
patients with control groups in the study by Nowak et al.46 and there was no significant difference in total choles-
terol, triglycerides, phospholipids, high and low density lipoprotein-cholesterol concentration when compared 
AMD patients with controls in another study45. On the other hand, Reynolds and colleagues revealed that higher 
total cholesterol and low density lipoprotein were associated with increased risk whereas higher high density lipo-
protein levels tended to reduce AMD risk44. These controversial results might be due to high variability of lipid 
and fatty acid levels and the use of medication and/or dietary intake47. Chen et al. detected elevated serum level 
of glycerophospholipids in choroidal neovascularization and polypoidal choroidal vasculopathy group compared 
to healthy controls in an untargeted metabolomics study20. Our results further support that phosphatidylcholine 
hydrolysis may be more prominent in non-responders.

The current study has a number of limitations; firstly, a relatively small sample size was assessed. Secondly, 
response was determined by anatomical changes after the initial treatment phase (after the first 3 treatments). The 
anatomical change as assessed on OCT provides the best objective measure of response. Other functional outcomes 

Figure 4.  Graph showing pathway analysis based on metabolites associated with differentiation between 
responders and non-responders of AMD patients. −log(p) = minus logarithm of the p value. The node color is 
based on its p value and the node radius is determined based on their pathway impact values.
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were also analysed at longer time points (12 months) but did not achieve statistical significance, most likely due to 
the small sample size or the mismatch between functional and anatomical markers that is often observed in AMD 
treatment48. Lastly, we considered all currently available anti-VEGF agents in this study with a vast majority of 
patients receiving bevacizumab. This may have affected the proportion of responders versus non-responders.

It will be important to explore whether the findings from this study are reproducible in an independent 
cohort and thus further testing in other clinical cohorts with nAMD will instruct on the utility of these diagnos-
tic biomarkers for screening. Further exploration into the reproducibility of findings in this study from differ-
ent ethnic groups should also be considered. It is also of interest to explore how metabolic profiles differentiate 
among healthy control, responders and non-responders. A metabolomics study of all participating patients after 
3 months’ treatment will also provide valuable information to confirm if these metabolite biomarkers are still 
significantly altered.

Conclusion
In this study, we investigated serum metabolomics profile for responders and non-responders to anti-VEGF ther-
apy during the initial 3 monthly “loading” phase of treatment among a cohort of nAMD patients, which was 
validated in an independent dataset. We found increased levels of GPC, LysoPC (18:2) and PS (18:0/20:4) in 
non-responders, implicating significant impairment to glycerophospholipid metabolism. These biomarkers could 

Figure 5.  Estimation plots of altered metabolites in responders and non-responders of AMD patients63. The mean 
difference is depicted as a dot and the 95% confidence interval is indicated by the ends of the vertical error bar.
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be used as predictive responses to initial anti-VEGF therapy. By differentiating responders and non-responders 
to the current treatment early in patients’ treatment journey, we suggest that such biomarker information may 
offer an indication to consider an early switch to different agent or class of drug. This is especially relevant now 
with newer therapies with different pharmacokinetics and modes of action such as brolucizumab and faricimab 
currently under study5,49. Our findings might provide treatment information for AMD patients and offer novel 
targets for AMD pathogenesis.

Materials and Methods
Study design and participants.  We performed a prospective case-control study using baseline serum 
from a total of 100 participants with nAMD who participated in a prospective clinical cohort study, the Asian 
AMD Phenotyping Study as described previously50,51. Briefly, the study prospectively recruited consecutive treat-
ment-naıve participants with nAMD from the retinal clinic of the Singapore National Eye Centre from March 
2010 and is still ongoing. The study was approved by the SingHealth Institutional Review Board (IRB Approval 
number: 2009/788/A) and was conducted in accordance with the Declaration of Helsinki (protocol number 
R697/47/2009 and R498/47/2006). Informed consent was obtained from all participants.

Demographic and medical history.  Baseline socio-demographic and medical history was collected using 
an interviewer-administered questionnaire which was previously validated52–54. Data included information on 
participants’ lifestyle factors, history of smoking, current medications, systemic medical and surgical history.

Clinical measurement variables.  At the baseline visit, all patients underwent a full ophthalmic examina-
tion, color fundus photography, fluorescein and indocyanine green angiography and optical coherence tomogra-
phy (OCT) (Heidelberg Engineering GmbH, Dossenheim, Germany). Baseline measure of best corrected visual 
acuity (VA) recorded as whichever reading was best: uncorrected, corrected or pinhole, was expressed as the 
logarithm of the minimum angle of resolution (logMAR). Central retinal thickness (CRT) was obtained using 
the in-built software where an automated segmentation algorithm was used to produce retinal thickness map of 
the central 1 mm zone.

All patients received three injections at monthly intervals of intravitreal anti-VEGF. The choice of agent type 
(aflibercept, bevacizumab or ranibizumab) was decided by the treating physician.

Patients were evaluated at month 3 and categorized into treatment responders (responder group, n = 54) or 
treatment non responders (non-responder group, n = 46). Treatment response was based on OCT findings of 
disease activity. Responders were defined as eyes with no sub- or intra-retinal fluid at month 3. Non-responders 
were defined by persistent sub- or intra- retinal fluid at month 3. All OCT scans were qualitatively analysed by 2 
graders blinded to each other’s decision (KYCT, CMGC). Any grading disagreement was openly arbitrated and 
the final decision was made by the senior grader (CMGC).

LC-MS based metabolic profiling analysis.  The recruited samples were randomly divided into two 
independent cohorts, i.e. a training set and a validation set. The training set, including 29 responders and 21 
non-responders, was used to establish if serum metabolomics profiles could distinguish between patients with 
nAMD regarding their response to anti-VEGF injections. The validation set, comprising 25 responders and 25 
non-responders, was used to independently validate the metabolite biomarkers and assess the effect of anti-VEGF 
on nAMD patients.

After enrolment, blood was extracted from the cubital vein of each participant. The blood was then imme-
diately transferred to the collection tube and kept at room temperature for 30 min to allow clotting. The clotted 

Figure 6.  Receiver-operating characteristic curve for three metabolite biomarkers (glycerophosphocholine 
LysoPC (18:2) and PS (18:0/20:4)) in training set (A) and validation set.
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blood samples were centrifuged at 3000 g at 4 °C for 20 min to eliminate the supernatant serum and then quickly 
stored at −80 °C prior to metabolomics detection.

Metabolites were extracted from 200 µl serum samples using 800 ul ice cold 1:1:1(v/v/v) methanol/acetone/
acetonitrile, incubated at −20 °C for 30 min, and centrifuged at 16,000 g for 15 min (4 °C) to remove protein. Each 
sample extract was divided into two equal aliquots and dried in a vacuum concentrator before LC-MS analysis.

Each sample was analyzed both on reverse phase (RP) column and hydrophilic interaction chromatography 
(HILIC) column in positive and negative ionization modes, i.e. RP + , RP-, HILIC + , HILIC- (Table S1). Aliquots 
for RP injection were reconstituted in 25 µl 2% acetonitrile and aliquots for HILIC column injections were recon-
stituted in 25 µl 80% acetonitrile. Metabolites separation was performed on an ACQUITY I-class UPLC system 
(Waters, Milford, Massachusetts, US). The injection volume was 10 µl and flow rate was 0.6 ml/min. The column 
and auto-sampler were maintained at 40 °C and 10 °C, respectively. Table S1 listed the columns, mobile phases and 
gradients for RP and HILIC. Quality control samples were prepared by pooling equal volume of all serum samples 
in this study to monitor the stability and repeatability during LC-MS analysis. The pretreatment of QC samples 
was the same as that of real samples and were injected after every ten samples.

Mass detection was achieved on a TripleTOF 5600 fitted with a DuoSpray ion source (SCIEX, Foster, 
California, US). Mass calibration was automatically performed after every 20 injections by the automated cali-
bration delivery system. The source voltage was set to 5500 V for positive ionization and 4500 V for negative 
ionization mode. The declustering potential was 80 V and source temperature was 500 °C for both polarities. 
The curtain gas flow, nebulizer and heater gas were set to 30, 55 and 60 arbitrary units, respectively. Information 
dependent acquisition (IDA) was used to collect full scan MS and MSMS information simultaneous with an m/z 
mass range of 100–1000. The instrument performed a TOFMS survey with 160 ms accumulation time, followed 
by 5 MSMS scans with 18 ms accumulation time. The collision energy was linearly ramped from 20 to 40 V. The 
following parameters were also applied to data acquisition: dynamic background subtraction, charger monitoring 
to exclude multiple charged ions and dynamic exclusion of former target ions for 1 s.

Peak extraction and quantification of ion intensities were performed using both XCMS online55 and 
Markerview (SCIEX), which provide lists containing m/z values, retention time and integrated ion intensity for 
each m/z features.

Statistical analysis.  Descriptive data are presented as mean (confidence interval) or number (percentage). 
Statistical tests such as Student’s t-test, and chi squared test were used where appropriate to compare demographic 
and clinical characteristics between the responder and non-responder groups. Analyses for demographic and 
clinical characteristics were calculated using R V3.3.156.

A combination of analysis of the variance (ANOVA) and multivariate analysis methods including principle 
component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) using SMICA 
(Umertrics, Umea, Sweden) were used to select potential metabolites which are the most responsible for the 
differentiation between groups. Student’s t-test was used for statistical comparison of pairs of groups and a p 
value < 0.05 and q value < 0.1 (adjusted using logistic regression) was considered as a priori to be statically sig-
nificant. The peak lists from both positive and negative mode were normalized by total ion intensity and Pareto 
scaled first. A PCA was first performed to show a trend of intergroup separation on the score plots. The tight clus-
ter of QC samples in PCA score plot indicated robustness of our metabolic profiling platform (Fig. 2A). R2Y and 
Q2Y scores were used for assessment of variance coverage by predictive component and model predictability in a 
seven times cross-validation, respectively57. A 999 times permutation test was carried out to confirm the stability 
and robustness of OPLS-DA model. A Q2 intercept of zero or below from permutation test demonstrates the 
stability and non-randomness of the model and thus strongly supports the validity of the model58.

Metabolite annotation and pathway analysis.  Metabolites identification was achieved by database 
search against accurate m/z and MS/MS spectra with METLIN59 and HMDB60. MetaboAnalyst was used for 
pathway analysis61. Selected metabolites were further validated by commercially available pure standards. GPC 
was purchased from Sigma-Aldrich (St. Louis, Missouri, US).

Data availability
All the metabolomics datasets described in our study can be accessed at MetaboLights62 (https://www.ebi.ac.uk/
metabolights/) (Project ID: MTBLS950). All other data supporting the findings of this study are included in this 
published article as Supplementary Data.
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