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Institute of Computer Science, University of Osnabrück, Albrechtstr. 28, 49076 Osnabrück, Germany1; Institute for
Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Ernst-Heydemann-Str. 8,
18057, Rostock, Germany2; Leibniz Institute for Farm Animal Biology (FBN Dummerstorf ), Wilhelm-Stahl Allee 2,
18196 Dummerstorf, Germany3 and Department of Intelligent Systems, Jožef Stefan Institute, Jamova cesta 39,
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Abstract
Pluripotent stem cells are able to self-renew, and to differentiate into all adult cell types. Many studies

report data describing these cells, and characterize them in molecular terms. Machine learning yields clas-
sifiers that can accurately identify pluripotent stem cells, but there is a lack of studies yielding minimal
sets of best biomarkers (genes/features). We assembled gene expression data of pluripotent stem cells
and non-pluripotent cells from the mouse. After normalization and filtering, we applied machine learning,
classifying samples into pluripotent and non-pluripotent with high cross-validated accuracy. Furthermore,
to identify minimal sets of best biomarkers, we used three methods: information gain, random forests and
a wrapper of genetic algorithm and support vector machine (GA/SVM). We demonstrate that the GA/SVM
biomarkers work best in combination with each other; pathway and enrichment analyses show that they
cover the widest variety of processes implicated in pluripotency. The GA/SVM wrapper yields best
biomarkers, no matter which classification method is used. The consensus best biomarker based on
the three methods is Tet1, implicated in pluripotency just recently. The best biomarker based on the
GA/SVM wrapper approach alone is Fam134b, possibly a missing link between pluripotency and some
standard surface markers of unknown function processed by the Golgi apparatus.
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1. Introduction

Classifying high-level phenotypes based on high-
throughput gene-level data1 is a fundamental task
in bioinformatics, and analysing corresponding sets
of important features improves our understanding
of the genotype–phenotype map,2 delivering basic
insights into the biology underlying a particular
phenotype. For the cellular phenotype commonly
called ‘pluripotent stem cell’3 and its more hetero-
geneous counterpart ‘differentiated’ or ‘non-pluripo-
tent stem’ cell, we set out to collect data in the
form of gene expression data (microarrays) from
the GEO (Gene Expression Omnibus database4).
Gene expression data are among the most abundant

molecular data, and they are still very close to the
true genotype of the (static) genome; they may
inform us about which genes are responsible for
the phenotype we wish to understand. This infor-
mation comes in several ways. It is of interest:

(a) Which genes are differentially expressed, i.e.
expressed more or less strongly in the pluripotent
stemcell state, compared to thedifferentiatedone?

(b) Which sets of genes enable the best distinction of
the pluripotent stem cell state from the differen-
tiated one, considering their (differential)
expression?

(c) Which small sets of genes still enable a good
distinction of the two states?
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A univariate statistical testing approach (often invol-
ving normalization/regularization) together with the
inspection of ‘fold change’ is a standard approach to
answer question a.5–7 Answers to question b shall
yield a comprehensive description of the molecular
basis of pluripotency, based on machine learning
and feature selection approaches. Answers to question
c shall highlight the ‘tips of the iceberg’, and are useful
to define small sets of best biomarkers for pluripo-
tency; such ‘minimal-best’ approaches to machine
learning have gained popularity in recent years, in
particular in search for cancer biomarkers.8–13

In the past years, the difference between pluripotent
stem cells (e.g. embryonic stem/ES cells) and differen-
tiated (e.g. fibroblast) cells has triggered a great deal of
interest; it is at the centre of basic research into develop-
mental biology.3,14 At the same time, there are a multi-
tude of potential applications in regenerative medicine
and beyond.15 Moreover, exciting progress has been
made in the in vitro control of basic cellular pheno-
types.16,17 Finally, computational methods such as hier-
archical clustering and principal component analysis
have been used to investigate pluripotency and differen-
tiation in systematic ways, often based on gene
expression data.18–20 At the end of the Discussion
section, further related work will be discussed.

In this paper, we start with a large normalized data
set of gene expression experiments obtained from the
mouse, using the answer to question a to filter out
genes that are not informative. We then tackle ques-
tion b taking a machine learning approach (including
appropriate cross-validation), and we use various
machine learning methods resulting in high-accuracy
classifiers based on gene expression signatures. Finally,
we look into question c by using feature selection
methods such as genetic algorithms (GAs)21 to
obtain classifiers of slightly lower accuracy, working
with few features (genes). We evaluate the feature
lists obtained to assess their biological plausibility by
enrichment analyses. Finally, we discuss the value we
may put into the ‘newly discovered’ genes that are
supposedly involved in pluripotency.

2. Methods

2.1. Gene expression data
We obtained gene expression data from the GEO

database,4 taking samples from experiments (data
series) related to pluripotency in the mouse, and
aiming for a large data set, correctness in class labels
and variety in phenotype. As GEO data series usually
consist of no more than 5–20 samples, we collected
gene expression data from many different GEO
series. To ensure straightforward comparability and
easy merging of data based on an identical set of

probes, we decided to use only data series from the
Affymetrix mouse 430.2 oligonucleotide chip (GEO:
GPL1261), which is the most popular platform avail-
able, containing 45 101 probe sets. To consider a
GEO series, it had to contain at least one sample
that we could label pluripotent; usually, the GEO
series consisted of a mixture of pluripotent and non-
pluripotent samples. Based on the sample descrip-
tions, we manually identified samples as pluripotent
or non-pluripotent and labelled them as positive
(pluripotent) or negative (non-pluripotent). If we
were not sure about the label of a sample, we dis-
missed it rather than risk adding an incorrectly
labelled sample. In this paper, pluripotency always
refers to stem cells; we do not consider data from
cells like zygotes that are pluripotent, but do not
have the ability to self-renew. As different microarray
platforms have different approaches on how to
sample the transcriptome, and about how to rep-
resent the concept of ‘genes’, the details may differ
between different platforms. However, they should
converge on the more generic levels of annotation,
in particular with respect to most of the UniGene
gene symbol annotations of the genes in our analysis;
in our analysis, we study mouse genes.

The positively labelled samples are gene expression
data of pluripotent stem cells and the inner cell mass
(ICM) of the embryo, whereas the negatively labelled
samples arise from all sorts of differentiated cells/
tissues. We took care to sample avarietyof types of plur-
ipotency, including ‘late stages’ up to embryonic day
3.5, pluripotent germline stem cells and induced plur-
ipotent stem (iPS) cells, and of differentiated pheno-
types, including ‘early stages’ from embryoid bodies of
day 5 onwards, germline stem cells and partially repro-
grammed iPS. More specifically, we included samples
described as pluripotent from embryonic stem cells
(GSE4309, GSE10806, GSE10871 and others), from
the ICM up to embryonic day 3.5 (GSE4309), from
germline pluripotent stem cells (GSE11274) and
from iPS cells (GSE10806, GSE10871 and others). We
included samples described as differentiated from
embryoid bodies of day 5 (GSE9563) and day 10
(GSE3653), from partially reprogrammed iPS cells
(GSE10871), from germline stem cells (GSE10610,
GSE11274) and from tissues including testis, ovary
and foetus (GSE9954), but also a wide variety of
other organs (GSE9954). The final data set contains
286 samples from 25 GEO data series; 146 labelled
as pluripotent and 140 labelled as non-
pluripotent (Supplementary Table S1).

2.2. Data preprocessing
To summarize the probe sets from the Affymetrix

gene expression arrays, we used the robust
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multi-array average method22,23 as implemented in
the Affymetrix Power Tools.24 First, background
adjustment was performed using unmodified perfect
match intensities. Then, the intensities were quantile
normalized.25 As quantification method we used
median polish.22,23 The resulting expression values
are logarithmized on the log2 scale. We then com-
bined all Affymetrix probe set identifiers that corre-
spond to the same gene symbol from the UniGene
record26 by calculating the mean value. This way, we
obtained the expression values of 20 668 genes.
This data set was the starting point for filtering,
feature selection and classification, all in the frame-
work of 3-fold cross-validation. Thus, the data set
was randomly split into three subsets (folds), to set
up a 3-fold cross-validation process. Two-thirds of
the data were used to perform filtering, feature selec-
tion and finally training of classifiers. The classifiers
were then tested on the remaining one-third of the
data. This was repeated three times, using different
folds for training and testing each time.

As we wanted to identify genes that affect pluripo-
tency, we preferred those having similar expression
values within the pluripotent or the non-pluripotent
samples and different expression values between
these two groups—i.e. differentially expressed genes.
Hence, we filtered the genes by applying a two-
sample t-test for samples with unequal variances,
testing the difference in mean expression of the genes
in the respective training set and corrected resulting
P-values based on the concept of false discovery
rate.27 We dismissed all genes with a q-value (corrected
P-value) larger than 0.1. Depending on the training set,
we obtained lists of around 16 000 genes. These were
sorted by their fold changes determined as log FCi ¼

jXi – Yij, where Xi is the mean of the gene expression
values of gene i for pluripotent samples, and Yi is the
mean of the gene expression values of gene i for non-
pluripotent samples, both on the log-scale. The first
5000 and the first 1000 genes of these lists formed
our data sets for classification.

As described, filtering, feature selection and training
of classifiers were always performed on two-thirds of
the data and testing on the remaining third. Only
such strict separation of training and test data (which
is unfortunately not standard practice, as noted by
Rocha et al.28) can ensure that results are not overly
optimistic. On each of the three folds, the GA was run
200 times. However, the whole data set was used for
calculating feature importance (Fig. 1), for the list of
biomarkers we found (Table 2) and for the enrichment
analyses (Tables 3 and 4), since these parts of the work
did not involve training and testing. In this case, the GA
was run 500 times.

In Supplementary File S2, we provide all lists of
input genes we discuss here. Please note that the

term ‘gene’ always refers to a gene from the mouse
genome (UniGene gene symbol), and its function
will be described based on its protein product.
Genes are also called ‘features’ in the description of
our machine learning methodology. Thus, ‘feature
selection’ is synonymous with ‘gene selection’.

2.3. Classification
Classification using both the whole (filtered) data

set, and the feature sets selected by the feature selec-
tion methods under investigation, was performed
with the Weka machine learning suite.29 The follow-
ing machine learning algorithms were used:

† Naive Bayes30;
† C4.5 decision trees, implemented in Weka as J4831;
† Random forest32;
† Nearest neighbour, implemented in Weka as IBk33;
† SVM, implemented in Weka as sequential minimal

optimization (SMO).34

Concentrating on the discovery of optimal feature sets
(biomarkers), we did not tune parameters to maxi-
mize classification performance, and all parameters
of the machine learning algorithms were kept at
Weka’s default values. The only exception was the
SVM with Gaussian kernel, for which the default
LibSVM35 parameter values were used, consistent
with the use of LibSVM during feature selection with
the GA (see below). We briefly describe two of the
machine learning algorithms: the random forest,
because of its relevance to feature selection (see
below), and the SVM, because it is the algorithm we
also used for feature selection with the GA.

The random forest32 is a machine learning
approach working with an ensemble of decision
trees. Let N be the size of the training set and M the
number of features (in our case gene expression
values). To grow a tree, N instances from the training
set are selected randomly with replacement (which
means that some are selected more than once and
some never). Then m features (m ,, M) are selected
randomly. Out of these, the one that splits the
instances into sets purest with respect to the class is
assigned to the root of the tree. This procedure is
repeated recursively until the leaves of the tree
contain only instances of one class (pluripotent or
non-pluripotent in our case). The whole forest con-
sists of a number of such decision trees. To classify
an instance, it is classified by all the trees in the
forest and the final class is selected by majority voting.

The support vector machine (SVM34) finds a hyper-
plane across the M-dimensional space occupied by
instances that best separates the two classes. In
cases where the instances are not linearly separable,
their features can be mapped into a higher-dimen-
sional space. Let xi and xj be a pair of M-dimensional
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feature vectors. Let F(xi) and F(xj) be these vectors
mapped into a higher-dimensional space. Since com-
puting the hyperplane that separates the instances
only involves computing inner products of feature
vectors, the mapping can be efficiently accomplished
by a kernel function K(xi, xj), which returns the inner
product of F(xi) and F(xj) without explicitly perform-
ing the mapping. The linear kernel function returns
the plain dot product: Klin(xi, xj) ¼ xi . xj. The
Gaussian kernel function is defined as follows:
KGauss(xi, xj) ¼ exp (–g (xi 2 xj)

2). The value of g con-
trols how much the classifier can adapt to an irregular
boundary between classes, and must be selected by
the experimenter. As mentioned before, we used the
default LibSVM value of g ¼ 1/number_of_features.

The classification performance was evaluated by
3-fold cross-validation as described in the previous
subsection. The performance is presented in terms of
the accuracy and the area under the receiver oper-
ational characteristics (ROC) curve (AUC). The accuracy
is defined as the number of correctly classified
instances divided by the total number of instances. It
is an appropriate measure when the data set has
roughly the same number of instances belonging to
each class (as is the case in ours), when misclassifying
any class to any other class is equally undesirable and
when one is interested in crisp classification. Let one
class be considered negative (non-pluripotent in our
case) and the other positive (pluripotent) and let the
classifier return a continuous value (instead of just
one class or the other). The ROC curve is a plot of the
true positive rate vs. the false positive rate, obtained
by varying the threshold above which the value
returned by the classifier is considered to indicate the
positive class. The true positive rate is the number of
correctly classified positive instances, divided by the
number of all positive instances (the probability to
recognize pluripotent samples as such). The false posi-
tive rate is the number of incorrectly classified negative
instances, divided by the number of all negative
instances (the probability to mistake a non-pluripotent
sample for a pluripotent one). The AUC is an aggregate
measure of the performance of the classifier when one
considers different thresholds in order to correctly clas-
sify more positive instances at the expense of misclassi-
fying negative ones and vice versa. It is appropriate
regardless of how many instances belong to each class.

2.4. Feature selection with the information gain
The information gain of a feature F is a measure of

how much information one gains about the class C if
one knows the value of F. In other words, it is the
reduction in uncertainty about C, which is measured
by its entropy H(C). The uncertainty about C, if one
knows the value of F, is measured by its conditional

entropy H(CjF). The information gain is thus defined as

IGðC; FÞ ¼ HðCÞ �HðFÞ

More conveniently, the information gain can be
described in terms of joint entropy H(C, F) as follows:

IGðC; FÞ ¼ HðCÞ þHðFÞ �HðC; FÞ

Let f1,. . ., fk be the possible values of the feature F (if the
feature is continuous, as in our case, it is discretized
first) and c1,. . ., cl the possible values of the class C
(only two in our case). The entropies are computed as
follows (the computation of H(F) is analogous to the
computation of H(C)):

HðCÞ ¼ �
Xl

j¼1

PðC ¼ cjÞ log2ðPðC ¼ cjÞÞ

HðC; FÞ ¼ �
Xk

i¼1

Xl

j¼1

PðF ¼ fi;C ¼ cjÞ log2ðPðF ¼ fi;C ¼ cjÞÞ

Feature selection with the information gain was
performed using Weka machine learning suite.29

2.5. Feature selection with the random forest
This subsection describes the procedure to measure

feature importance with the random forest32; an over-
view of how the random forest works is given in the
Classification subsection. To grow a tree in a random
forest, N instances from the training set are selected ran-
domly with replacement. N is also the size of the training
set, but since the instances are selected with replace-
ment, around one-third of the training instances are
left out—these are called the out-of-bag instances. The
out-of-bag instances are classified with the tree and
the number of correct classifications cbefore is counted.
For each feature F, its values in the out-of-bag instances
are randomly permuted, the out-of-bag instances are
classified again and the new number of correct classifi-
cations cafter is counted. The difference between cbefore

and cafter, averaged over all the trees in the forest, is a
measure of the importance of F.

Feature selection with the random forest was
performed in a custom Weka distribution by
Livingston.36 The number of trees in a forest was set
to 1000 and the other parameters were kept at
default values. A random forest was generated three
times and the importance of features was averaged
over the three runs.

2.6. Feature selection with the GA
We are looking for small sets of genes that enable us

to classify a sample as pluripotent or not, which we
call minimal sets of best biomarkers. We search for
such sets with the GA21 guided by a fitness function.
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The fitness of a gene set is defined by the classification
accuracy of the SVM34 using that set of genes as fea-
tures, and the size of the set. Thus, the objective of
the GA is to find optimal sets of features for classifi-
cation. Each set of genes/features is binary encoded
in a ‘chromosome’. Each bit of the chromosome rep-
resents one gene/feature. If a gene belongs to the
set of features encoded by the chromosome, the cor-
responding bit is set to 1, otherwise it is set to
0. (Apart from the binary representation used here,
more compact representations may be used, as was
done, for example, by Rocha et al.28 A systematic
evaluation of such alternative representations is
future work.) The initial population of 200 chromo-
somes is created by setting a random number of bits
in each chromosome to 1, and calculating the
fitness of the resulting feature set, as follows.

Pseudocode: create initial population

for each chromosome j

for each bit i of j

set i ¼ 0

do with a probability of start_chromosome_size/
jset_of_all_genesj

set i ¼ 1

end do

end for

compute fitness of the chromosome

end for

The value jset_of_all_genesj is the number of filtered
genes we begin with, in our case 1000. The value
start_chromosome_size is the mean number of selected
genes for each chromosome of the initial population,
which in our case is set to 15. That way each chromo-
some of the initial population consists of 15 genes on
average.As mentioned before, the fitness of a chromosome
is defined by two criteria: the classification accuracy
calculated using the SVM, and the number of fea-
tures/genes. The smaller the number of features and
the better the classification accuracy of the feature
set, the fitter the chromosome. Following a multiob-
jective approach, we combine both criteria into one
fitness function, f, to be optimized:

f ¼ ð1�WÞ � accuracyþW

� ð set of all genesj j � jset of genes on the chromosomejÞ
jset of all genesj

� �
:

The value accuracy is the classification accuracy of the
SVM with Gaussian kernel (C ¼ 1, g ¼ 1/start_chromo-
some_size), using the LibSVM35 implementation with
6-fold cross-validation. The value jset_of_genes_

on_the_chromosomej is the number of selected features.
Because the main objective is finding correct bio-
markers, accurate classification capability plays a
bigger role than the number of selected features. For
this reason we choose W ¼ 0.2, as in reference.37

Based on this initial population, we breed a new
generation using recombination and mutation.
Recombination is implemented as follows.

Pseudocode: recombination

for 1 to size_of_population do

do with a probability of 0.8

select two chromosomes by roulette wheel selection

combine the two chromosomes by uniform cross over

end do

add new chromosome to population

end for

Due to the recombination rate of 0.8, in each gen-
eration, about 160 new chromosomes are generated
by recombination using uniform crossover.38 Two
parent chromosomes are selected using roulette
wheel selection, i.e. the probability for a chromosome
to be selected is proportional to its fitness. Then, the
bits at the same position in both parent chromosomes
are compared with each other. If they have the same
value, this value is chosen for the child chromosome.
If the values are different, the bit in the child chromo-
some is selected randomly.

Subsequently to the recombination step, all
chromosomes are mutated. On average, we flip
1.5 bits on each chromosome, as follows.

Pseudocode: mutation

for each chromosome j of the population

for each bit i of j

do with a probability of 0.1 � start_chomosome_size/
jset_of_all_genesj

flip bit i

end do

end for

add new chromosome to population

end for

Finally, following an elitist approach, the resulting
chromosomes as well as the chromosomes of the
initial population are sorted in descending order of
fitness. Then, the first 200 chromosomes are selected
to form the new population. This new population
serves as the initial population for the next generation.
Gene sets with very good cross-validation accuracies
were already found after 15 to 20 generations.
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Thus, the whole process was repeated for 25 gener-
ations to obtain the final population.

The best chromosome of the final population con-
tains the potential biomarkers we are looking for. To
compare the GA to the other two classification
methods, we ran the GA 200 times for each of the
three folds. Then, we sorted the genes in decreasing
order by frequency of occurrences, generating a
ranked list of all genes that is comparable to the lists
we obtained with the random forest and the infor-
mation gain. For those parts of the paper that do
not involve training and testing, we ran the GA 500
times, using the whole set of samples.

2.7. Top 20 most important genes
To obtain the list of the top 20 most important

genes, an importance score for each gene in the
1000-gene data set was computed by each of the
three feature selection methods: the information
gain, the random forest and the GA (as described in
the previous three subsections). The information
gain and the random forest both assign a real-
number score to each feature, which we used directly.
The GA selects a well-performing set of features that
differ from run to run. In our experiments, the size
of the set selected by the GA was between 3 and 9
and the features selected varied considerably. Hence
we measured the importance of a feature by the
number of times it was selected over 500 runs of
the GA, using 1000 genes and all the samples in the
data set. The genes were ranked by their importance
according to each method.

To compute the overall top 20 most important
genes, the ranks for each gene were averaged and the
overall top 20 genes were chosen by the average rank.
We used ranks instead of numeric importance scores
because (Fig. 1) the scores assigned by the information
gain are on average much larger than those by the
random forest and the GA. As a consequence, using
the scores instead of ranks would give the information
gain much greater weight in the overall ranking.

2.8. Enrichment analysis
To evaluate the biological relevance of our results, we

applied gene set enrichment analysis using the hyper-
geometric distribution.39 We assumed that the genes
selected by our feature selection methods are over-rep-
resented in gene sets that can be directly associated
with the pluripotent status of cells. For this reason, we
compared our selected genes with several pluripo-
tency-related networks and pathways40–46 (http://
c-it.mpi-bn.mpg.de/, http://www.genome.jp/kegg/
pathway.html). As the reference set, we used the set
of all genes in the Affymetrix array. The over-represen-
tation analysis (ORA) determines whether a pluripo-
tency-related gene set based on a network or

pathway is over- or under-represented in one of the
gene sets selected with our feature selection
methods, and estimates how likely this is due to our
selection method (as opposed to observing the same
over- or under-representation by chance).

Let n be the size of an ORA test set (that is, a feature
set to be tested for over- or under-representation)
and k the number of genes in the set that belong to
a pluripotency-related gene set. Furthermore, let m
be the number of genes in our reference set and l
the number of the genes in the reference set that
also belong to the pluripotency-related gene set.
The probability for a randomly selected gene from
the reference set to belong to the pluripotency-
related set is thus l/m, and we expect to find k0 ¼ n
l/m genes of the pluripotency-related genes in our
test set. If the number of genes actually found (k) is
larger than k0, we can say there is an enrichment of
pluripotency-related genes, otherwise there is
depletion. We then estimate the statistical significance
of enrichment by computing the one-tail P-value
using the hypergeometric distribution as follows:

P�value ¼

Pn
i¼k

l
i

� �
m� l
n� i

� �

m
n

� � if k0 , k

Pk
i¼0

l
i

� �
m� l
n� i

� �

m
n

� � if k0 � k

8>>>>>>>>>>>><
>>>>>>>>>>>>:

:

3. Results

3.1. Classification without feature selection
Our first objective was to establish how easy it is

to classify samples as pluripotent or non-pluripotent
with machine learning, and to explore the various
machine learning algorithms available for the task.
We compared five algorithms chosen to represent
different approaches to machine learning: the
naive Bayes, the C4.5 decision trees, the random
forest (an ensemble of decision trees), the nearest
neighbour and the SVM. Two kernels were tried
with the SVM: Gaussian and linear. The algorithms
were tested on the full set of 20 668 genes as
well as on the filtered sets of the 5000 and 1000
most strongly differentially expressed genes. Each
sample represented one machine learning instance
with gene expression values as features and ‘pluripo-
tent’ or ‘non-pluripotent’ as class labels. The cross-
validated classification results are presented in
Table 1 in terms of the accuracy and the AUC.
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The first conclusion we can draw from Table 1 is
that machine learning classifies very well, in many
cases perfectly. Furthermore, the SVM þ linear kernel
is the algorithm best suited to this task. The reason
the SVM þ Gaussian kernel performs worse than the
SVM þ linear kernel on the larger two data sets is
probably that we have a lot of features compared to
the number of instances, and the Gaussian kernel
effectively increases the number of features.47,48

Using a large number of features is problematic
because this approach increases the chance of learn-
ing spurious relations (overfitting). Based on these
findings, our first choice for testing the classification
performance of small feature sets (see the next sub-
sections) was the SVM; both linear and Gaussian
kernels were considered because the reduction in
the number of features by feature selection may
favour the Gaussian kernel.

Table 1 shows that for the three best performing
machine learning algorithms (the SVM with both
kernels and the nearest neighbour), classification
with 5000 genes is better than with all 20 668
genes, and classification with 1000 genes is better
than with 5000 genes. Therefore, searching for pluri-
potency biomarkers in the 1000-gene data set is
sufficient and in fact preferable, because many irrele-
vant genes are already eliminated. Reducing the
number of genes further was left to the feature selec-
tion methods we investigated (see the next subsec-
tion), for which we did not wish to exclude any
genes prematurely. Based on Table 1, the list of
1000 genes in Supplementary File S3, sorted by
feature importance, may be called the set of genes
that enable the best distinction between pluripotent
and non-pluripotent, answering question b of the
Introduction.

3.2. Feature selection
Feature selection is a technique used in machine

learning to reduce the set of features to the most

relevant ones, which often improves classification,
and, in our case, also identifies biomarkers with
potentially important roles in pluripotency. We used
three feature selection methods of increasing com-
plexity. The first method is the ranking of features by
information gain. The information gain measures
how much information about the class one gains
by knowing the value of a feature. It considers
each feature on its own. The second method is
the ranking by feature importance computed by
the random forest machine learning algorithm.
The importance is obtained by randomly permuting
the values of a feature and measuring the resulting
decrease in classification accuracy. While this
method still evaluates single features, it measures
their importance as a part of a classifier that uses
other features as well. The third method is feature
selection with the GA. Here, the set of features is opti-
mized by the GA guided by the classification accuracy
as the main part of the fitness function, computed
using the SVM with Gaussian kernel; the size of the
feature set also has a minor influence on the fitness
function, since we aimed at small sets of best features.
This method evaluates whole sets of features.

Figure 1 shows that the three feature selection
methods yield considerably different feature-impor-
tance distributions. The importance based on the
information gain is distributed fairly evenly. The oppo-
site is the case for the importance based on the GA:
there are few genes with a high importance and
many with a low importance. The random forest is
between the two extremes. The most likely expla-
nation for this stems from the well-known redun-
dancy of biomarkers.49 Information gain, which
considers each gene on its own, finds many of them
predictive of pluripotency. The GA selects only the
genes most indispensable for classification many
times. From the remaining (redundant) genes, differ-
ent ones are selected in each run due to the random
nature of the algorithm, so none ends up with a high
importance.

Table 1. Comparison of machine learning algorithms and data sets

Algorithm Data set

20 668 genes 5000 genes 1000 genes

Accuracy AUC Accuracy AUC Accuracy AUC

Naive Bayes 93.4% 0.935 94.4% 0.945 94.4% 0.944

C4.5 decision tree 96.5% 0.967 95.5% 0.956 93.4% 0.937

Random forest 96.2% 0.994 95.1% 0.992 97.6% 0.999

Nearest neighbour 98.6% 0.986 99.6% 0.997 100.0% 1.000

SVM þ Gaussian kernel 96.2% 0.964 96.9% 0.970 100.0% 1.000

SVM þ linear kernel 100.0% 1.000 100.0% 1.000 100.0% 1.000

The highest cross-validated accuracy and AUC in each column are shown in bold type. The highest accuracy and AUC in each
row are shaded in gray.
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In order to evaluate the performance of the three
feature selection methods, we compared cross-
validated classification accuracy on the feature sets
selected by them. The samples were split in three
folds and the first 1000 genes of each fold were
selected (see the Methods section), the GA was run
200 times on each of them. For each of the three
folds, we sorted the features by their importance (as
for Fig. 1) and selected the top 50, 40, 30, 20, 10,

5, 3, 2 and 1 features, and employing these, we com-
puted the classification accuracy using the SVM with
the Gaussian and linear kernel, and using the
random forest. Then, we calculated the average accu-
racy over all three folds. The SVM was chosen for its
high performance shown in the previous subsection.
However, since it was already used as a component
of the feature selection with the GA, the feature sets
selected by the GA might favour classification with
the SVM. We therefore used the random forest for
balance. If the features selected by the GA (using
the SVM internally) turned out best even for classifi-
cation with the random forest, we would obtain an
unbiased recommendation for using the GA for
feature selection. The results are shown in Figs 2–4.

Figure 2. Classification accuracy measured by the SVM with
Gaussian kernel. Feature selection with information gain,
random forest and GA was evaluated using incrementally
smaller sets of most important features from the 1000-gene
data set.

Figure 1. Feature-importance distribution. Each feature (gene)
from the 1000-gene data set was assigned an importance
score by each of the three feature selection methods. The
scores were scaled to the [0, 1] interval. The features were
then sorted by their importance, separately for each method,
and their importance was plotted.

Figure 3. Classification accuracy measured by the SVM with linear
kernel (Fig. 2).

Figure 4. Classification accuracy measured by the random forest
(Fig. 2).
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Inspecting Figs 2–4, we can see that classification
with SVM does not particularly favour features
selected by the GA (using the SVM with Gaussian
kernel internally). Likewise, the classification with
the random forest does not seem to favour features
selected by the random forest. We may thus conclude
that the genes selected by these methods are tied to
pluripotency in general and not to any particular
machine learning algorithm.

Figure 3 shows that the classification accuracy of
features selected by information gain and random
forest is very similar, starting at around 96% with 50
features and dropping to around 92% with a single
feature. The situation is similar in Fig. 4, except that
the accuracy is overall slightly lower, because the
random forest (Fig. 4) does not classify as well as
the SVM (Fig. 3). The difference between feature
selection with information gain and random forest
in Fig. 2 is larger, which indicates that the random
forest may be better at identifying good features
than the information gain; however, since this does
not occur in Figs 3 and 4, no firm conclusion may
be drawn. The behaviour of the features selected by
the GA is consistently different from those selected
by the other two methods. One feature, two features
and in one case three features yield a lower classifi-
cation accuracy than the same numbers of features
selected by the other two methods, but once we
have more features, those selected by the GA
perform better. This is probably due to the GA select-
ing sets of features that classify well together but not
necessarily individually, whereas the other two
methods select features that are good individually.

Finally, we compared the classification accuracy of
features selected by the GA many times over 200
runs in each fold (shown in Fig. 2, for a large
number of feature (gene) set sizes) with the accuracy
of features selected in single runs. This comparison
enables us to investigate the change of accuracy due
to aggregation of output (i.e. merging output lists
together). The results are shown in Fig. 5. For
feature sets of size 7, 6 and 5, features selected
most often over 200 runs performed slightly better.
For feature sets of size 9 and 8, features selected in
single runs were slightly better, but the difference
in accuracy was extremely small. This shows that
feature sets consisting of features selected most
often by the GA offer reasonable performance, while
eliminating the variation in features selected in
single runs. Only for feature sets of size 4 and 3 did
features selected in single runs perform considerably
better. This is because the GA selected so few features
only when they achieved sufficient classification accu-
racy by themselves, in exactly this combination; aggre-
gation of output destroys the exact combinations. The
features selected most often came from different sets;

one could already observe in Figs 2–4 that such fea-
tures, if they were too few, performed poorly.

Table 2 lists the top 20 most important genes
selected from the 1000-gene data set by each of
the three feature selection methods. It also lists the
overall top 20 genes, which are the ones ranked
highest by the three individual methods on average.
All the samples in the data set were used and the
GA was run 500 times. We can see that the lists by
the random forest and the information gain are
quite similar, whereas the one by the GA is different.
The list of the overall top 20 genes does not contain
many of the genes considered important by both
the random forest and the information gain,
because they were ranked too low by the GA. In the
Discussion section, we will describe what is known
about the listed genes, with reference to pluripotency.

3.3. Enrichment analysis
The enrichment analysis was done (as described in

the Methods section) for the most important genes
identified by feature selection with the GA, infor-
mation gain and random forest. In the absence of a
pre-defined number of most important genes to
select, we started with the top 40 genes and increased
the number in steps of 20 up to 200 genes. This
resulted in 27 gene sets, 9 for each of the three
feature selection methods.

A significant enrichment (P-value , 0.05) of pluri-
potency-related genes published by Som et al.,40

MacArthur et al.41 and Muller et al.42 can be found

Figure 5. Classification accuracy measured by the SVM with
Gaussian kernel, evaluating features selected many times vs.
features selected in single runs by the GA. For feature set size
s, the classification accuracy of the features selected by the GA
in single runs is averaged over all the final feature sets of size s.
The features selected many times are the s features most often
selected by the GA (classification accuracy is averaged over the
three folds).
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for nearly all 27 tested sets, as shown in Table 3. For
the sets selected by information gain and random
forest, we could also observe a consistent significant
enrichment of the genes from two other published
pluripotency gene lists (PluriUp and PluriPlus43; for
calculating enrichments with respect to human

genes, we took their mouse orthologs). The analysis
was also done with a set of genes which are enriched
or depleted in embryonic tissue (abbreviated
‘Tissueþ’ and ‘Tissue–’ in the table, obtained from
http://c-it.mpi-bn.mpg.de/). For the genes known to
be enriched in embryonic tissue, the lists selected by

Table 2. Top 20 most important genes

Genetic algorithm Random forest Information gain Overall

Fam134b Dppa5a Ottmusg00000010173 BB001228

Pam Gdf3 Dppa5a Dppa2

Dub1 Mybl2 Gdf3 E130012a19rik

F2rl1 Dppa2 Mybl2 Ottmusg00000010173

Gldc Dppa4 2610305d13rik Gdf3

Spp1 Ottmusg00000010173 BB001228 Calcoco2

Dazl 2610305d13rik Au019176 Cnpy1

Ccnd2 Rex2 Esrrb Esrrb

100043292 Zfp42 Gtsf1l Zfp819

Otx2 BB001228 Dppa4 2610305d13rik

Utp20 Tdgf1 Tdgf1 Gldc

Jam2 Esrrb Dppa2 Tcl1

Gjb5 2410004a20rik Rex2 Sox15

Foxc1 Calcoco2 Trap1a Rbpj

BB001228 Spp1 E130012a19rik Brca2

Calcoco2 Gart Gart Tdgf1

Crim1 E130012a19rik Morc1 Au019176

Irs1 Gtsf1l 2410004a20rik Trap1a

Mal F2rl1 Zfp42 Msh6

Col4a5 Ttr Dnmt3l Spp1

The genes that appear in two of the top 20 lists of the individual feature selection methods are shown in italics. The only
gene that appears in all three lists (BB001228, also known as Tet1) is underlined. Complete lists are available as
Supplementary File S2.

Table 3. Enrichment of genes in pluripotency networks and embryonic tissue

Enrichment and its significance of 27 gene sets found by feature selection, using two colours: enrichment in light grey,
significant enrichment (P-value � 0.05) in dark grey. See text for abbreviations. Exact counts and p-values can be found
in Supplementary File S4.
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information gain and random forest show a significant
enrichment, whereas no significant enrichment can be
found in any of the sets chosen by the GA. For the
genes which are depleted in embryonic tissues, there
is no enrichment in any of the tested sets.

Enrichment could also be observed in different
pluripotency-related pathways.44–46,50 Here, the
gene sets selected by the GA show an enrichment in
more pluripotency-related pathways than the gene
sets selected by the other two methods (Table 4).
The larger variety of pathway annotations for the
genes selected by the GA reaffirms that this feature
selection method selects a broader variety of bio-
markers related to different aspects of pluripotency.

4. Discussion

We have shown that on the basis of gene expression
data, the distinction between the pluripotent and the

differentiated (non-pluripotent stem) cell state can be
learned with cross-validated accuracies reaching
100%. We provided evidence that the features
(genes) selected by the combination of the GA and
the SVM are small sets of features that classify well
and that work best in combination (Figs 2–5). We
listed these genes as potential biomarkers in Table 2
together with the features (biomarkers) selected by
two other methods (information gain and random
forest). Analysing each of the top 10 pluripotency bio-
markers in the columns of Table 2, we now wish to
answer the following questions:

(1) What can we find out about the selected genes by
literature investigations?

(2) Why are the genes generally known to be involved
in pluripotency under-represented among the
selected genes?

Table 4. Enrichment of genes in pluripotency pathways (Table 3)
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(3) How much reliability can be assigned to the selec-
tion of genes? What kind of relevance do the
selected genes have for pluripotency?

4.1. Literature investigation of the most important
pluripotency biomarkers

The sets of pluripotency markers returned by the
GA include the Fam134b gene in 35% of the selected
gene sets (174 times out of 500), making it the most
important feature by a large margin (the Pam gene is
the runner-up selected in 21% of the feature sets—
106 times out of 500). In human, mutations of
FAM134B cause severe neuropathy, leading to a
recent effort to characterize the mouse ortholog.51

Fam134b expression was found predominantly in
ganglia. The protein co-localized with the cis-Golgi
marker giantin, and (partially) with the trans-Golgi
marker TGN38; relocation after brefeldin A treatment
followed a pattern typical for Golgi-resident proteins.
shRNA knockdown to levels of 19–27% reduced the
size of the cis-Golgi compartment and impaired cell
proliferation in N2a cells. Interestingly, isoform 2 of
Fam134b is found in testis, but not in neural tissue.
In the neural context, Golgi-mediated processing
and/or transport of neurotrophin precursors and
their receptors may be impaired by a lack of
Fam134b. In the ES cell context, Golgi-mediated pro-
cessing and/or transport of two cell surface markers
of unknown function in pluripotency, SSEA1 (stage-
specific embryonic antigen 1) and AP (alkaline phos-
phatase) may be impaired; both SSEA1 and AP52 are
localized in the Golgi, to be transported to the cell
surface. The observed role of Fam134b in cell prolifer-
ation in the mouse is reflected in human; FAM134b is
implicated in oesophageal carcinoma, and it pro-
motes cell proliferation.53 It is also overexpressed in
benign tumours (adenomas), but underexpressed in
adenocarcinoma.54

In 52 cases, the Fam134b gene was selected
together with the F2rl1 gene (a.k.a. PAR-2, see
below), which is ranked fourth by the GA. By the
design of the genetic-algorithm-based feature selec-
tion, the most likely ‘connection’ between both
genes is that they cover complementary aspects of
pluripotency, F2rl1 being concerned with the distinc-
tion of pluripotency and multipotency,55 acting as a G
protein-coupled receptor with a putative role in the
mouse blastocyst.56

The Pam (peptidylglycine alpha-amidating mono-
oxygenase, a.k.a. Phm) gene is the second-most
important feature selected by the GA. The only evi-
dence we could find for its role in pluripotency is pro-
vided by Lyczak et al.,57 who investigated a putative
remote(!) homolog in C. elegans and concluded ‘Our
analysis of PAM-1 requirements shows that a

puromycin-sensitive aminopeptidase is also required
for proteolytic regulation of the oocyte to embryo
transition’. Dub1 (deubiquinating enzyme 1) is
ranked third; the gene is also a novel candidate
involved in pluripotency. (De-)ubiquination of his-
tones has recently been shown to have an important
role in repressing developmental control genes in ES
cells, however.58 As described, the F2rl1 (PAR-2)
gene is ranked fourth, and was implicated in the dis-
tinction between multipotency and pluripotency.

Positions 5–10 are assigned to genes already impli-
cated in pluripotency. Gldc is discussed by Boue
et al.59 and Spp1 (a.k.a Osteopontin) is regulated by
Pou5f1/Sox2.60 Dazl functions in the maintenance
of pluripotency of mouse primordial germ cells,61

and as a translational regulator during ES cell differen-
tion.62 Ccnd2 is repressed by Tcf3 in embryonic stem
cells.63 100043292 (a.k.a. GM4340) is found only in
embryonic tissue in cleavage state (Supplementary
File S5) and Otx2 is part of the gene regulatory
network in mouse ES cells, working with Oct4
(Pou5f1), possibly to maintain gene expression in
early progenitors of ectodermal lineages.64 All the
named genes just mentioned are listed by Boue
et al.59 in the human or mouse networks of their
Figures 2 and 3; none of them is a well-known pluri-
potency gene, however.

Genes selected as features by the random forest are
more well-known. The top 10 are 3 Dppa (develop-
ment- and pluripotency-associated) genes, 5 other
well-known genes, namely Gdf3,65,66 Mybl2 (a.k.a. B-
Myb),67 Rex2,55 Zfp42 (a.k.a. Rex1)68 and Tet1 (listed
by Affymetrix as BB001228, see below) and two
unnamed genes (Ottmusg00000010173 and
2610305d13rik).

Information gain highlights the largest set of well-
known genes, with Esrrb among the top 10, and 6
of the 10 random forest genes just mentioned.
Curiously, however, we find Ottmusg00000010173
(a.k.a. Gm13051) on the top of the list, so we investi-
gated it further. The gene is transcribed predomi-
nantly in embryonic tissue in the blastocyst and
organogenesis stage (Supplementary File S6).
Moreover, NextBio.com lists the study ‘Pluripotent
stem cells gene expression at different stages of devel-
opment in Sox2-deficient embryos’ (GSE15358) as
the first study for this gene, reporting its downregula-
tion in epiblast-derived pluripotent stem cells vs.
ES cells.

Combining the three lists of features selected by the
GA, the random forest and the information gain
should highlight those genes which work best as dis-
criminative markers, no matter whether they are
used as features in isolation or together with others.
The combined list should thus be superior in its
general utility and its resistance to outliers, just as
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combined lists in homology search are.69 Three obser-
vations are noteworthy. First, the mouse gene
BB001228 representing the Tet oncogene 1 (Tet1)
according to the Affymetrix array annotation scores
best. Tet1 is deemed responsible for the generation
of 5-hydroxymethylcytosine (5hmC)70 in mouse ES
cells under physiological conditions,71 and during ES
cell differentiation, the amount of Tet1 and 5hmC
decreases. Also, Tet1 maintains Nanog expression
and its knockdown impairs the self-renewal and
maintenance of mouse ES cells72 by participating in
the upregulation of pluripotency factors73,74 and the
downregulation of developmental regulators.73

Secondly, the E130012a19rik gene is ranked third;
it was most recently discussed as a Klf5 target with
strongest effect (see Figure 2 in Parisi et al.75).
Finally, Calcoco2 (a.k.a. NDP52l1) and Cnpy1 are
now among the top 10; the former has been impli-
cated in pluripotency before,76–79 and the latter has
been reported to be a target of Smad2/3 signalling
in mouse ES cells, noting its expression in the
embryo (2-cell-stage,80 their Table S7), and it is a reg-
ulator of FGF signalling in zebrafish, albeit in a neural
context.81

4.2. Underrepresentation of canonical pluripotency
genes

We found some generally known genes such as
Esrrb, Gdf3, Mybl2, Zfp42, some Dppa (development-
and pluripotency-associated) genes and, as the cumu-
lative top scorer, BB001228 (Tet1). This list does not
include many generally known genes such as Pou5f1
(a.k.a. Oct4), Sox2, Nanog etc., but not finding these
by machine learning is a common phenomenon, as
discussed in the subsection on Related Work at the
end of the Discussion. The genes Pou5f1, Sox2,
Nanog, Lin28 and Klf4 were found at positions 196,
414, 203, 594 and 83 of our list, respectively; the
two genes Tcf3 and cMyc are not part of the 1000
gene data set, because the fold changes of these
genes are too small.

Our hypothesis is that the latter genes are general
indicators of pluripotency (in particular, they are
strongly upregulated in pluripotent samples, see
Table 5), and with certainty they are involved in its
mechanistic basis, but they do not provide crisp classi-
fication power because (a) they are involved in other
processes such as neural stemness (Sox282) and germ-
line maintenance (Oct4 (Pou5f1)83) and/or their
activity is shut down gradually, and (b) they are
redundant in particular in the GA setting: this
method may select any one of them for ‘getting the
idea’, in combination with more powerful discriminat-
ing genes that reflect pluripotency in a complex,
context-dependent and non-linear way. With respect

to (a), we indeed observed that Sox2 and Oct4
(Pou5f1) are still found in some negative samples,
such as GSM272848 or GSM275556. This is not sur-
prising, since, as described, we included pluripotent
stages up to embryonal day 3.5 as well as iPS cells as
actual positives, and embryonic body stages from
day 5 onwards as well as non-pluripotent germline
stem cells as actual negatives. With respect to (b),
we observe at least one gene of the pluripotency-
related network by Som et al.40 in 54% of the
feature sets selected by the GA. Also, at least one
gene of networks published by MacArthur et al. 41

and Muller et al.42 can be found in 33% and 27% of
the selected feature sets, respectively. We hypothesize
that each feature set includes at least one ‘general
indicator’ of pluripotency; some of them are docu-
mented in a pluripotency-related network, but some
are not known yet.

The underrepresentation of canonical pluripotency
genes is also reflected by the lower levels of enrich-
ment of relevant genes in the feature sets based on
the GA (when compared with information gain and
random forest, see Table 3). In turn, the larger
variety of relevant pathways enriched in feature sets
based on the GA (Table 4) may indicate an overrepre-
sentation of non-canonical pluripotency genes that
are (at least peripherically) associated with diverse
aspects of pluripotency.

4.3. Reliability and relevance of the most important
pluripotency biomarkers found by the GA

The GA is a stochastic search, so we repeated it for a
second time with the same data set yielding very
similar results, as shown in Table 6, confirming the
reliability of our list. The evidence for relevance is
given in several ways: (a) the literature investigation
at the start of this section revealed that most genes
we found are related to pluripotency, even though
most of them are not well-known pluripotency

Table 5. Gene expression values of pluripotency genes

Generally known
pluripotency genes

First three genes
selected by the genetic
algorithm

Pou5f1 Sox2 Nanog Fam134b Pam Dub1

Non-
pluripotent

6.02 6.43 4.67 7.38 5.82 4.19

Pluripotent 11.71 11.59 10.91 5.58 4.39 5.69

Fold change 5.69 5.16 6.24 1.79 1.43 1.50

The table shows the mean expression values for the pluripo-
tent samples and the non-pluripotent samples as well as the
resulting fold changes for three generally known pluripo-
tency genes. For comparison, the first three genes found
by the GA are also listed.
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genes. (b) Our enrichment analyses show that many
genes that are selected as features are implicated in
pluripotency, being included in networks describing
pluripotency, and being overexpressed in embryonic
tissue (Table 3). (c) The enrichment analyses of
Table 4, together with the observations of Figs 2–4,
imply that the genes selected by the GA cover a
wide spectrum of many aspects of pluripotency, and
they are most informative about pluripotency in
combination.

4.4. Related work
Bioinformatics approaches have a long history in

pluripotency/stem cell research. The method of
‘Digital differential display’ (http://www.ncbi.nlm.nih.
gov/UniGene/help.cgi?item=ddd) may be called a
success story, allowing the discovery of the Nanog
gene,84 which was later recognized to form, together
with Oct4 (Pou5f1) and Sox2, the so-called ‘core
circuit’ behind pluripotency in both the human and
mouse. Basically, Nanog emerged by contrasting tran-
scriptomes from mouse ES cells with those from
various other sources, identifying differentially
expressed genes and experimentally checking for
enhancements in self-renewal triggered by these.
Moreover, the discovery of the ‘Yamanaka factors’,
transcription factors which can reprogram a fibroblast
into an ‘induced pluripotent’ stem cell state (iPS),85

was based on testing 24 ES cell marker genes
known from several sources, partially discovered by
gene expression analyses. There are many
approaches86,87 using gene expression (but also pro-
teomics88,89) data to derive lists of genes involved in
pluripotency. In some publications, the intersection
of these lists is studied, and it is long known that
such intersections feature only a small number of
common genes90,91; this problem of ‘small overlap’,
‘missing consensus signature’ or ‘missing reproduc-
ability’ is not confined to investigations into pluripo-
tency, but it is also found in attempts to define
cancer biomarkers.92,93 Moreover, gene lists associ-
ated with pluripotency often do not feature the
obvious suspects such as the ‘core circuit’ of Oct4
(Pou5f1), Sox2 and Nanog, the other ‘Yamanaka
factors’ Klf4 and cMyc,85 or other genes commonly
associated with pluripotency in the literature,40 such
as Stat3 or Esrrb; see references87,94 for examples of
gene lists including mostly ‘unexpected markers’.
Other analyses based on large data sets feature com-
monly associated genes, but they also include a large
proportion of ‘unexpected markers’.59,95,96 Literature
curation, expression data analysis and machine learn-
ing were applied to derive and enhance networks of
genes/proteins involved in pluripotency in the
mouse41 and in human,42,43 yielding even more
novel candidates for marker genes.

In contrast to previous work, we investigated and
compared two complementary learning approaches:
(i) comprehensive learning of pluripotency, employ-
ing many features (genes) and striving for maximum
accuracy, and (ii) ‘minimal-best’ learning of pluripo-
tency, seeking small sets of best features, akin to ‘bio-
marker signatures’.11,86 From a bioinformatics
perspective, it is known that small sets of features
may even improve classification by reducing noise
and overfitting, which is often related to the use of

Table 6. Similarity of the results of the reference run and the
confirmation run of the GA

The table shows the similarity of the top 20 genes from the
confirmation (second) run of the GA, compared to the refer-
ence (first) run. The colourcode for the first, second, third and
fourth quartile of the genes of the reference run is carried over
to the confirmation run; the two genes coloured white are
found up to position 30 in the reference run.

246 Learning Biomarkers of Pluripotent Stem Cells [Vol. 18,



megavariate approaches.97 For classification, we used
a naive Bayes approach, decision trees, random
forest, nearest neighbour and SVM. To select features,
we employed information gain, random forest and a
wrapper consisting of the GA and the SVM. Wrappers
are feature selection methods that search the space
of feature subsets and evaluate each subset by
testing how well a machine learning algorithm can
classify the data using that subset.

Feature selection methods known from machine
learning are a standard approach to identifying bio-
markers from gene expression data. Wrappers employ-
ing the GA to search the space of feature subsets are
known to be well suited for biomarker identification,
although they were mostly tested on cancer data in
the past. Examples include the work of Lin et al.,98

Küçükural et al.,99 Gan et al.,100 Zhang et al.101 and
Cannas et al.102 Each group of researchers proposed
some enhancement to the basic wrapper approach.
Lin et al.98 made the final selection of genes based on
the number of times they were selected during mul-
tiple runs of the GA, which we adopted. Küçükural
et al.99 ‘restarted’ the GA after every 10 generations
to improve the classification accuracy on training
data, which was used as a part of the fitness function.
We could already achieve perfect classification on train-
ing data without such restarts. Gan et al.100 filtered the
initial set of features to make the job of the GA easier.
They utilized all their data for filtering instead of using
cross-validation. We also filtered our data, but we
used an appropriate cross-validation in all steps of our
work. Zhang et al.101 used multiple classifiers to evalu-
ate the feature subsets selected by the GA. Cannas
et al.102 also employed filtering and used a combi-
nation of classification accuracy and size to evaluate
feature subsets; we used feature-subset size in a
similar fashion.

5. Conclusions

We demonstrated that the wrapper approach to
feature selection using the GA and SVM, which was
previously used to identify cancer biomarkers, works
well for pluripotency data. It yields high cross-vali-
dated classification accuracy even if the accuracy is
not measured by the SVM, but by another method
such as the random forest. The biomarkers it identifies
are enriched in pluripotency-related genes and path-
ways, and while many of them are ‘unexpected
markers’, a literature review can connect most of
them to pluripotency. Ultimately, experimental vali-
dation of the new markers is required, and we encou-
rage other researchers to scrutinize our approach and,
possibly, to investigate the genes we found in an
experimental setting.
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