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ABSTRACT

Purpose: CD4+T cells are essential in the pathogenesis of allergic asthma. We have previously 
demonstrated that microRNA-1165-3p (miR-1165-3p) was significantly reduced in T-helper 
type (Th) 2 cells and that miR-1165-3p was a surrogate marker for atopic asthma. Little is 
known about the mechanisms of miR-1165-3p in the regulation of Th2-dominated allergic 
inflammation. We aimed to investigate the associations between Th2 differentiation and 
miR-1165b-3p in asthma as well as the possible mechanisms.
Methods: CD4+ naïve T cells were differentiated into Th1 or Th2 cells in vitro. MiR-1165-3p 
was up-regulated or down-regulated using lentiviral systems during Th1/Th2 differentiation. 
In vivo, the lentiviral particles with the miR-1165-3p enhancer were administered by tail vein 
injection on the first day of a house dust mite -induced allergic airway inflammation model. 
Allergic inflammation and Th1/Th2 differentiation were routinely monitored. To investigate 
the potential targets of miR-1165-3p, biotin-microRNA pull-down products were sequenced, 
and the candidates were further verified with a dual-luciferase reporter assay. The roles of a 
target protein phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A), in Th2 cell differentiation and 
allergic asthma were further explored. Plasma PPM1A was determined by ELISA in 18 subjects 
with asthma and 20 controls.
Results: The lentivirus encoding miR-1165-3p suppressed Th2-cell differentiation in vitro. 
In contrast, miR-1165-3p silencing promoted Th2-cell development. In the HDM-induced 
model of allergic airway inflammation, miR-1165-3p up-regulation was accompanied by 
reduced airway hyper-responsiveness, serum immunoglobulin E, airway inflammation and 
Th2-cell polarization. IL-13 and PPM1A were the direct targets of miR-1165-3p. The expression 
of IL-13 or PPM1A was inversely correlated with that of miR-1165-3p. PPM1A regulated the 
signal transducer and activator of transcription and AKT signaling pathways during Th2 
differentiation. Moreover, plasma PPM1A was significantly increased in asthmatic patients.
Conclusions: MiR-1165-3p negatively may regulate Th2-cell differentiation by targeting IL-13 
and PPM1A in allergic airway inflammation.
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INTRODUCTION

Atopic asthma is characterized by pulmonary inflammation, airway hyper-responsiveness 
and airway remodeling.1 After recognizing a presented allergen, CD4+ T cells differentiate 
into diverse subsets, initiating and regulating the allergic cascade reactions. T-helper type 
(Th) 2 cells, releasing interleukin (IL)-4, IL-5 and IL-13, play a foundational role in the 
pathogenesis of allergic asthma.2 IL-4 promotes differentiation and immunoglobulin (Ig) 
E class-switching of plasma cells, whereas IL-13 mediates airway hyper-responsiveness and 
mucus hyper-production. IL-5 is highly specific for eosinophil activation and recruitment, 
leading to eosinophilic inflammation.3 Adoptive transfer of Th2 cells from allergic mice is 
sufficient to induce eosinophilic pulmonary inflammation, suggesting that Th2 cells are 
largely indispensable for the onset of atopic asthma.

CD4+-cell differentiation is regulated by various cytokines and transcription factors. As 
the master transcription factors, T-bet and GATA-3 control the fate of Th1 and Th2 cells, 
respectively.4 In addition, activation of the signal transducer and activator of transcription 
(STAT) 1 and STAT5 regulates the development of Th1 and Th2 cells, respectively.5 STAT1 
promoted the expression of T-bet, therefore favoring Th1 differentiation.5 IL-2-driven STAT5 
activation is essential in Th2 differentiation, which may be independent of GATA-3.6

MicroRNAs (miRNAs) are a class of small noncoding RNAs that function in the 
posttranscriptional regulation of complimentary messenger RNA (mRNA) stability and 
translation.7 The roles of miRNAs in asthma pathogenesis have been well documented.8 
However, only a few studies have focused on Th2 cells in asthma. In an adoptive transfer 
asthma model, miR-19 promoted Th2 differentiation and exacerbated airway inflammation.9 
Mice deficient in miR-24 and miR-27 in T cells enhanced Th2-cell responses and airway 
inflammation in an OVA asthma model; both miR-24 and miR-27 targeted IL-4.10

Previously, we have identified a novel miRNA, miR-1165-3p (previously termed novel 
miRNA-11), which was significantly decreased in the sorted CD4+ T cells from a murine 
model of asthma and in Th2 cells.11 Moreover, serum miR-1165-3p levels were significantly 
elevated in asthmatic patients when compared to those of healthy controls.12 In this study, we 
further demonstrated that miR-1165-3p inhibited Th2 cell differentiation and alleviated type 2 
inflammation in an asthma model.

MATERIALS AND METHODS

Animals
Specific pathogen-free female C57BL/6J mice aged 6 to 8 weeks were obtained from Nanjing 
Medical University (Nanjing, China). All experiments that involved animal and tissue samples 
were performed in accordance with the guidelines and procedures approved by the Institutional 
Animal Care and Use Committee of Nanjing Medical University (IACUC No. 1709011).

House dust mite (HDM) sensitization/challenge protocol
C57BL/6J mice were randomly divided into 4 groups: control, HDM, HDM treated with miR-
1165-3p blank and HDM treated with miR-1165-3p enhancer. Mice in the latter 3 groups were 
exposed intratracheally to whole-body HDM extract from Dermatophagoides pteronyssinus (Greer 
Laboratories, Lenoir, NC, USA) according to the established 14-day model.13 Mice received 
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100 μg HDM in 40 μL normal saline (NS) on day 0 and 10 μg HDM in 40 μL NS on days 
7–11 intratracheally under isoflurane anesthesia to induce allergic lung inflammation. Mice 
exposed to 40 μL NS according to the HDM protocol served as healthy controls.

To explore whether miR-1165-3p was involved in Th2 differentiation and asthma 
pathogenesis, lenti-miR-green fluorescent protein (GFP)-miR-1165-3p virus (enhancer) or 
lenti-miR-GFP control virus (Abm, Zhengjiang, China) at 5 × 107 in 100 μL NS per mouse 
were administered by tail vein injection before HDM challenge on day 7. The mice were 
sacrificed 3 days after the final challenge, and bronchoalveolar lavage fluid (BALF) and lung 
tissues were collected for analyses.

Measurement and analysis of airway responsiveness
Mice were anesthetized with 70 mg/kg pentobarbital and 1.8 g/kg urethane, followed by 0.5 
mg/kg pancuronium bromide and the mice were tracheotomized 72 hours after the final 
challenge.14 Airway hyperreactivity (AHR) was measured in response to increasing doses of 
acetylcholine via a FinePointe RC system (Buxco Research Systems, Wilmington, NC, USA) 
under general anesthesia as described before.15

Bronchoalveolar lavage fluid and serum analysis
After AHR measurement, whole blood was collected without anticoagulants and incubated 
for 1 hour at 37°C; serum was isolated by centrifugation at 2,000 ×g for 30 minutes. The 
tracheae were exposed, and BALF was collected by lavage with ice-cold phosphate-buffered 
saline (PBS, 400 μL × 3; 85%-90% of the lavage volume was recovered) via a tracheal catheter. 
BALF from each mouse was centrifuged at 1,000 rpm for 10 minutes at 4°C, and the total 
number of inflammatory cells in BALF was examined by flow cytometry analysis. The 
supernatant of BALF was collected, divided into 4 equal portions and frozen at −80°C for 
enzyme-linked immunosorbent assay (ELISA).

Lung histology
The lung specimens were fixed in 5% formalin, paraffin-embedded and cut into 5-µm 
sections that were then stained with either hematoxylin-eosin or periodic acid-Schiff 
(PAS) before microscopic analysis. The severity of peribronchial inflammation was 
graded semiquantitatively for the following features: 0, normal; 1, few cells; 2, a ring of 
inflammatory cells 1 cell layer deep; 3, a ring of inflammatory cells 2–4 cells deep; and 4, 
a ring of inflammatory cells 4 cells deep. The numerical scores for the abundance of PAS-
positive mucus-containing cells in each airway were determined as follows: 0, <0.5% PAS-
positive cells; 1, 5%-25%; 2, 25%-50%; 3, 50%-75%; and 4, >75%.16

In vitro mouse primary T-cell polarization
Naive CD4+ T cells purified from mice were cultured for Th-cell differentiation as described 
before.17,18 Briefly, CD4+ T cells were isolated from the spleen and lymph nodes of C57/B6 
mice using a naive CD4+ T cell isolation kit (130-104-453, Miltenyi Biotec, Bergisch Gladbach, 
Germany) according to the instructions provided by the manufacturer. Naïve CD4+ T cells (2 
× 105) were plated onto 96-well tissue culture plates (Thermo Fisher Scientific, Basingstoke, 
UK) precoated with 5 μg/mL anti-CD3e antibody (16-0031-85, eBioscience, San Diego, CA, 
USA) and 2 μg/mL anti-CD28 antibody (16-0281-85, eBioscience) on day 0. Th1-cell cultures 
contained 20 ng/mL murine IL-2 (96-212-12-5, PeproTech, Offenbach, Germany), 20 ng/
mL murine IL-12 (96-210-12-10, PeproTech) and 10 μg/mL anti-IL-4 antibody (16-7041-85, 
eBioscience). Th2-cell cultures contained 20 ng/mL murine IL-2 (96-212-12-5, PeproTech), 
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100 ng/mL murine IL-4 (96-214-14-20, PeproTech), 10 μg/mL anti-IL-12 (16-7123-85, 
eBioscience) and 10 μg/mL anti-interferon (IFN)-γ (16-7311-85, eBioscience). After 2 days, 
the cells were re-cultured for 3 additional days in the same culture medium with cytokines 
but without anti-CD3e or anti-CD28 antibody stimulation. Lenti-miRa-GFP-miR-1165-3p 
virus (enhancer), Lenti-III-mir-GFP control virus (blank), Lentil-III-miR-off-control virus 
(scramble), Lenti-miRa-off-miR-1165-3p virus (silencer) were added on day 1 (multiplicity 
of infection, MOI = 15), and cells were harvested on day 5 for quantitative polymerase chain 
reaction (qPCR), western blotting or flow cytometry, while cell supernatants were collected 
for ELISA.

ELISA
The levels of IL-4, IL-5, IFN-γ (431105, 430805, 431205, Biolegend, San Diego, CA, USA), 
eotaxin-1 (FMS-ELM070, FCMACS, Nanjing, China) and IL-13 (96-900-K207, PeproTech) in 
BALF, lung homogenates or cell supernatants, total IgE (555248, BD Biosciences, San Jose, 
CA, USA) in sera, or protein phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A; HM11307, Bio-
Swamp, Wuhan, China) and total IgE (E-EL-H2161C, Elabscience, Wuhan, China) in human 
plasma were measured using commercial ELISA kits according to the instructions provided 
by the manufacturer.

Flow cytometry for cell counting
Inflammatory cells were counted and analyzed by flow cytometry. Cells were counted 
by counting beads (01-1234-42, eBioscience). After stained with CD16/CD32 Fc receptor 
(FcR)-blocking antibody (14-0161-85, eBioscience) and fixable viability dye eFluor™ 506 
(65-0866-14, eBioscience) according to the manufacturer's instructions, neutrophils 
(CD45+Ly6G+F4/80−), eosinophils (CD45+SiglecF+F4/80−), macrophages (CD45+SiglecF+F4/80+) 
and lymphocytes (CD45+CD3+) in BAL fluid were measured by flow cytometry.9,19,20

Staining nuclear protein for flow cytometry
The spleen specimens from animal experiments were prepared as single-cell suspensions. 
After erythrocyte lysis, differentiated Th1/Th2 cells were stained with CD16/CD32 FcR-
blocking antibody, fixable viability dye eFluor™ 506 and anti-CD4-APC (17-0041-83, 
eBioscience). For intracellular staining, cells were fixed and permeabilized (00-5523-
00, eBioscience) according to the manufacturer's instructions, and then intracellular 
products were stained. Flow cytometry was performed with anti-GATA-PE-Cy7 (560405, 
BD Biosciences) and anti-T-bet-PE-Cy7 (25-5825-80, eBioscience). A FACS Stratedigm 
(BD Biosciences) was used for flow cytometry, and data were analyzed by FlowJo software 
(Treestar, Woodburn, OR, USA).

Reverse transcription and qPCR analysis
Total RNA was prepared from differentiated T cells using an miRNeasy Mini Kit (217004, 
Qiagen, Hilden, Germany). The mRNAs were reverse transcribed with 5X All-In-One RT 
MasterMix (G490, Abm, Zhenjinag, China), while miRNAs were reverse transcribed by a 
Mir-X miRNA First-Strand Synthesis Kit (638313, TaKaRa Bio, Kusatsu, Japan). The qPCR 
analysis was performed using a CFX96 system (Bio-Rad Laboratories, Hercules, CA, USA) 
in conjunction with SYBR Advantage qPCR Premix (639676, TaKaRa Bio). The cycling 
conditions were 95°C for 30 seconds, followed by 95°C for 5 seconds and 60°C for 30 seconds 
for up to 40 cycles and dissociation at 95°C for 5 seconds, 60°C for 30 seconds and a final 
extension with 95°C for 15 seconds. The relative abundance of gene targets was determined 
by the comparative cycle threshold (CT) number normalized to β-actin. The relative 
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abundance of miRNA was determined by the comparative CT number normalized to U6. The 
primers used are shown in Supplementary Table S1.

Western blot analysis
Total cellular protein was collected following lysis in RIPA Lysis Buffer (P0013B, Beyotime 
Biotech, Beijing, China) with PMSF (ST506, Beyotime Biotech) on ice and centrifugation for 
10 minutes at 12,000 rpm at 4°C. The supernatant was then transferred to a new tube and was 
denatured in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) loading 
buffer (P0015, Beyotime Biotech) with heating at 100°C for 10 minutes. The supernatant was 
then stored at −80°C. The proteins were separated by 12% SDS-PAGE. After electrophoresis, 
the separated proteins were transferred to 0.45-µm polyvinylidene difluoride membranes 
(INIP86300, Merck Millipore, Burlington, MA, USA) using a wet transfer method. 
Nonspecific sites were blocked with 5% nonfat milk in tris-Buffered Saline-Tween 20 (25 mM 
Tris [pH 7.5], 150 mM NaCl and 0.1% Tween 20) for 2 hours, and the blots were incubated 
with primary antibodies, including anti-β-actin (4970L, Cell Signaling Technology, Danvers, 
MA, USA), anti-GATA3 (ab106625, Abcam, Cambridge, England), anti-T-bet (ab91109, 
Abcam), anti-PPM1a (ab14824, Abcam), and Phospho-Stat Antibody Sampler Kit (9914, 
Cell Signaling Technology), Stat antibody sampler kit (9939, Cell Signaling Technology), 
Phospho-AKT (Ser473) (4060, Cell Signaling Technology), and AKT antibody (4691,Cell 
Signaling Technology)overnight at 4°C. HRP-linked Anti-rabbit IgG and HRP-linked anti-
mouse IgG, (7074, 7076, Cell Signaling Technology) were used to detect antibody binding. 
After treating the membranes with Immobilon Western Chemiluminescent HRP Substrate 
(WBKLS0500, Merck Millipore), the binding of specific antibodies was visualized using a 
Syngene G:BOX Imaging System and was analyzed with ImageJ.

Biotin-miRNA pull-down assays
NIH-3T3 cells were seeded in a 10-cm dish at a density that allowed them to grow for 24 hours 
without reaching complete confluency. A final concentration of Biotin-miR-1165-3p mimics or 
Biotin-miRNC (GenePharma, Shanghai, China) of 50 µM was used to transfect NIH-3T3 cells 
using the standard protocol for Hieff Trans™ Liposomal Transfection Reagent (40802ES03, 
YEASEN, Shanghai, China). Forty-eight hours after washing twice with ice-cold PBS and cross-
linking in a UV cross-linker at 1,200 mJ/cm2 for 2 minutes,21 the cells were lysed in cell lysis buffer 
(9803S, Cell Signaling Technology) supplemented with a protease inhibitor cocktail (539134, 
Merck Millipore) for 20 minutes, after which the lysates were sonicated for 2 minutes at 20% 
amplitude. Lysates were cleared of cell debris by centrifugation at 13,000 rpm for 10 minutes. For 
a 10-cm plate, 50 µL of Dynabeads M-280 Streptavidin beads (11205D, Thermo Fisher Scientific) 
were activated according to the manufacturer's protocol. The beads were blocked with 10 µg/
mL RNase-free BSA and yeast transfer RNA (AM7119, ThermoFisher Scientific) for 3 hours at 
4°C. After washing the beads with cell lysis buffer, lysates that had previously been prepared 
were incubated with the blocked beads and were incubated at 4°C overnight, followed by RNA 
extraction. Total RNA bound to the streptavidin beads was extracted by using an miRNeasy Mini 
Kit. The amount of pull-down RNA was quantified by RNA-seq.

RNA-seq and data analysis
RNA from biotin-tagged miR-1165-3p mimics or miRNC pull-down assays were subjected to 
RNA deep sequencing, which was performed by the RiboBio Institute (Guangzhou, China). 
RNA-seq libraries were prepared using an Illumina RNA-Seq Preparation Kit and sequenced 
by a Hiseq3000 PE150 (Illumina, San Diego, CA, USA). TopHat output data were analyzed 
by Cufflinks to estimate RPKM values for known transcripts and to analyze differentially 
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expressed transcripts.22 Differentially expressed genes were selected by the logFC > 1 and  
P value < 0.05.

Bioinformatics analysis
The target genes of miR-1165-3p were predicted using miR and a, PITA and RNAhybrid.23-25 
To create a visual representation, we further screened and sorted the predicted results and 
used the predicted results of the 3 software programs as the candidate target bases of the 
miRNA. The intersection of the candidate mRNAs and the different mRNAs in RNA-seq were 
determined, and a miRNA-mRNA regulatory network was constructed using Cytoscape 3.6.26

Transfection
During the differentiation period, Th2 cells were transfected with either a PPM1A 
overexpression vector (MR205969, OriGene Tech, Rockville, MD, USA) or an empty vector 
(PS100001, OriGene Tech) using a Neon Transfection system (MPK1025, Thermo Fisher 
Scientific)27 on days 1 and 3. Transfections were performed using 2–3 × 107 cells/mL in 10 µL 
“R buffer” with 1 µg plasmid. The optimal setting used was 1,550 V with three 10-minute 
pulses. After transfection, the mRNA and protein expression levels of PPM1A were 
determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and 
western blotting on day 5, respectively.

Dual-luciferase reporter assay
3′ UTR dual-luciferase plasmids, including mutant plasmids, were constructed using plenti-
UTR-Dual-Luc (Abm, Zhengjia, China). MiR-1165-3p mimics and the relevant control were 
purchased from GenePharma. One day before transfection, HEK293T cells were plated on 
24-well plates. Blank plasmids and reporter constructs (50 ng) containing the mutant or wild-
type 3′ UTR of PPM1A or IL-13 were cotransfected with miR-1165-3p into cells according to the 
manufacturer's protocol of Hieff Trans™ Liposomal Transfection Reagent. Luciferase activities 
were assessed using a dual-luciferase reporter assay system (E1910, Promega, Madison, WI, 
USA) according to the manufacturer's instructions at 48 hours after transfection.

Patient selection and clinical data
Based on GINA 2017 and the Guidelines for the Prevention and Control of Bronchial Asthma 
of China 2016, a total of 20 asthmatic patients were recruited from the Department of 
Respiratory and Critical Care Medicine at the First Affiliated Hospital of Nanjing Medical 
University between September and November of 2017. A total of 18 healthy subjects without 
current or previous asthma or allergic disease diagnoses were also recruited. Written 
informed consent was obtained from all of the subjects, and this study was approved by the 
Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (2017-SR-
298). Venous blood samples (approximately 5 mL) were collected in anticoagulant tubes. 
Samples were then centrifuged at 2,000 rpm for 10 minutes; the plasma was collected and 
stored at −80°C for future use.

Statistical analysis
The data are expressed as the mean ± standard error of the mean. All of the tests were 
performed using Prism 7.00 (GraphPad Software, San Diego, CA, USA). The results were 
analyzed by one-way analysis of variance for repeated measures, followed by Dunnett's post 
hoc test to determine differences among multiple comparisons. The significance level was set 
at P < 0.05.
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RESULTS

MiR-1165-3p inhibits Th2 differentiation in vitro
Naive CD4+ T cells purified from the spleens of mice were cultured for Th-cell differentiation 
as described before.11 Upon infection with lentivirus-encoding miR-1165-3p (Supplementary 
Fig. S1), miR-1165-3p was significantly increased in Th2 cells (Fig. 1A). To analyze the effects 
of miR-1165-3p on Th2 differentiation, we first measured the cytokines produced and released 
by CD4+ T cells. As shown in Fig. 1B and C, type 1 cytokines (IFN-γ and IL-12) were increased 
and type 2 cytokines (IL-4, IL-5 and IL-13) were decreased, suggesting that miR-1165-3p 
elevation was accompanied by reduced Th2 differentiation. To further determine whether 

865https://e-aair.org https://doi.org/10.4168/aair.2020.12.5.859

MiR-1165-3p Suppresses Th2 in Allergy

A B

Re
la

tiv
e 

ex
pr

es
si

on

8

4

2

0

6

Re
la

tiv
e 

ex
pr

es
si

on

miR-1165-3p IL-12A IFN-γ IL-4 IL-5 IL-13
2.5

1.5

1.0

0.5

0

2.0

Re
la

tiv
e 

ex
pr

es
si

on
4

2

1

0

3

Re
la

tiv
e 

ex
pr

es
si

on

2.5

1.5

0.5

0

2.0

1.0

Re
la

tiv
e 

ex
pr

es
si

on

4

3

2

1

0 Re
la

tiv
e 

ex
pr

es
si

on

4

3

2

1

0

Blank Enhancer Blank Enhancer

Blank Enhancer

Blank Enhancer

Blank Enhancer

* † * * ‡ *

D

Re
la

tiv
e 

ex
pr

es
si

on

2.5

1.5

1.0

0.5

0

2.0

Re
la

tiv
e 

ex
pr

es
si

on

GATA3 T-bet
4

2

1

0

3

C

IFN-γ

pg
/m

L

8,000

4,000

2,000

0

6,000

*
IL-4

pg
/m

L

90,000

70,000

50,000

30,000

10,000

*
IL-5

pg
/m

L

600

450

300

150

0

*
IL-13

pg
/m

L

6,000

4,500

3,000

1,500

0

* * *

E

G
AT

A3
/β

-a
ct

in

1.5

0.5

0

1.0

T-
be

t/
β-

ac
tin

1.5

0.5

0

1.0

† *
Blank Enhancer

GATA3

T-bet

β-actin

48 kDa

58 kDa

45 kDa

F

T-
be

t+
 (%

)

10

2

0

8

6

4

*
T-bet

M
FI

800

0

400

600

200

*

G
AT

A3
+ 

(%
)

60

20

0

40

*
GATA3

M
FI

2,000

1,000

0

500

1,500

*

Iso control Blank Enhancer

T-bet

T-bet+
0.29

T-bet+
1.54

T-bet+
5.45

GATA3

Ce
ll 

co
un

t

GATA3+
0.98

GATA3+
38.6

GATA3+
21.8

Fig. 1. MiR-1165-3p inhibited Th2 differentiation. CD4+ T cells were cultured in Th2-cell conditions for 5 days and were transfected with miR-1165-3p enhancer or 
blank lentivirus on day 1. (A) MiR-1165-3p was significantly increased in Th2 cells infected with lentivirus-encoding miR-1165-3p (enhancer), (B, C) analysis of type 
1 cytokines (IFN-γ and IL-12) and type 2 cytokines (IL-4, IL-5 and IL-13). (D-F) The Th1 and Th2 master transcription factors T-bet and GATA-3 were measured by 
qRT-PCR, western blotting and intracellular flow cytometry. Data are representative of independent experiments with similar results (n = 3–6). 
MiR-1165-3p, microRNA-1165-3p; Th, T helper type; IFN, interferon; IL, interleukin; qRT-PCR, quantitative reverse transcription polymerase chain reaction; MFI, 
mean fluorescence intensity. 
*P < 0.05; †P < 0.01; ‡P < 0.001.



the master transcription factors T-bet and GATA-3 were involved, we quantified T-bet and 
GATA-3 using qRT-PCR, western blotting and intracellular flow cytometry (Fig. 1D and F). 
As expected, miR-1165-3p significantly increased T-bet expression and decreased GATA-3 
expression. Overall, miR-1165-3p suppressed type 2 cytokines (IL-4, IL-5 and IL-13) and the 
Th2 master transcription factor GATA-3, implying that miR-1165-3p was a negative modulator 
of Th2 differentiation.

Down-regulation of miR-1165-3p promotes Th2 differentiation
As miR-1165-3p was increased in Th1 cells,11 we wondered whether down-regulation of miR-
1165-3p would antagonize Th1 differentiation and therefore favor Th2 differentiation. As 
expected, lentivirus-encoding short hairpin RNA for miR-1165-3p significantly decreased 
miR-1165-3p in Th1 cells (Fig. 2A). In addition to decreased miR-1165-3p, type 1 cytokines 
(IFN-γ and IL-12) were reduced, and type 2 cytokines (IL-4, IL-5 and IL-13) were up-
regulated as measured by qRT-PCR (Fig. 2B) and verified by ELISA (Fig. 2C). Accordingly, 
the Th1 master transcription factor T-bet was significantly decreased and the Th2 master 
transcription factor GATA-3 was significantly increased (Fig. 2D and F), implying that miR-
1165-3p may promote Th1 cell differentiation and suppress Th2-cell differentiation.

MiR-1165-3p alleviates allergic inflammation in asthma
Given the critical role of type 2 immune responses in the pathogenesis of asthma, we next 
investigated whether miR-1165-3p could alter type 2 inflammation in airways in vivo. We 
designed a LentimiRa-GFP-miR-1165-3p virus (enhancer) or Lenti-III-mir-GFP control virus 
(blank), and approximately 5 × 107 lentiviral particles were injected through the tail vein into 
a mouse on day 7 in an HDM acute asthma model (Fig. 3A).13 Compared to control virus, 
enhancer virus significantly increased miR-1165-3p in the lung (Fig. 3B). In parallel, airway 
hyper-responsiveness and total serum IgE were significantly decreased in the asthma model 
mice treated with miR-1165-3p enhancer virus (Fig. 3C and D). Furthermore, eosinophils 
infiltration in BALF (Fig. 3E) and eotaxin-1 was also decreased in the asthmatic mouse 
treated with miR-1165-3p enhancer lentivirus (Fig. 3F). Inflammatory response in the lung 
parenchyma (Fig. 3G) was comparably significantly alleviated in the mouse treated with 
miR-1165-3p enhancer lentivirus. Moreover, goblet cell hyperplasia and mucus secretion 
in the lumen of the bronchioles were significantly relieved (Fig. 3H). In summary, with the 
up-regulation of miR-1165-3p in the lung, type 2 pulmonary inflammation in a mouse model 
of acute asthma was significantly alleviated, suggesting that miR-1665-3p might negatively 
regulate the differentiation of Th2 cells.

MiR-1165-3p represses Th2 cells in vivo
To explore whether Th2 cells were inhibited in the asthma model mice treated with miR-
1165-3p enhancer lentivirus, we quantified cytokines in BALF and infiltrated CD4+ T cells 
in the lung parenchyma. As shown in Fig. 4A, miR-1165-3p significantly decreased the type 
2 cytokines IL-4, IL-5 and IL-13. Intracellular transcription factor staining revealed that 
CD4+GATA-3+ (Th2) cells were significantly reduced from the allergic airway inflammation 
mouse model infected with miR-1165-3p enhancer lentivirus, while CD4+T-bet+ (Th1) cells 
were increased (Fig. 4B). In summary, miR-1165-3p suppressed Th2 cell differentiation in vitro 
and in an allergic airway inflammation mouse model.

PPM1A and IL-13 are the direct targets of miR-1165-3p
To identify mRNAs directly targeted by miR-1165-3p, we used a biotinylated miRNA-mRNA 
pull-down approach.21 Considering cell number and transfection efficiency, we took NIH-
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3T3 as a replace.28 NIH-3T3 cells were transfected with biotinylated miR-1165-3p or negative 
control. RNAs pulled down by biotinylated miR-1165-3p or the negative control miRNA were 
subjected to RNA-seq analysis. Compared with the negative control, 159 mRNAs (including 
IL-13, PPM1A and other potential targets) were enriched in the bio-miR-1165-3p pull-down 
(Fig. 5A and B). The intersection of different bioinformatics analyses suggested that PPM1A 
was significantly associated with miR-1665-3p (Fig. 5C).

IL-13 had a putative binding site for miR-1165-3p within its 3′-UTR, which was further 
confirmed using a luciferase reporter assay (Fig. 5D). As IL-13 was elevated in asthma and Th2 
cells, PPM1A was also increased in the mouse model of allergic airway inflammation (Fig. 5E)  
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and in vitro Th2 cells (Fig. 5F). In the luciferase reporter assay, cotransfection with the 
luciferase construct (containing the 3′-UTR of PPM1A) and the miR-1165-3p mimic resulted 
in a decrease in luciferase signal compared to mutant plasmids or empty plasmids (Fig. 5G), 
implying that PPM1A was one of the direct targets of miR-1165-3p. Furthermore, PPM1A was 
significantly reduced in Th2 cells infected with miR-1165-3p enhancer lentivirus (Fig. 5H and I). 
Collectively, IL-13 and PPM1A were direct targets of miR-1165-3p in Th2 differentiation.
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PPM1A regulates Th2 differentiation via STAT and AKT signaling
PPM1A is a type of Ser/Thr protein phosphatase, which negatively regulate STAT1 and AKT 
during the differentiation of bone marrow monocytes to macrophages.29 Therefore, Th2 
cells were transfected with PPM1A-ORF, which increased PPM1A expression. Furthermore, 
the phosphorylation of STAT1 and AKT was repressed. In contrast, STAT5 phosphorylation 
was increased. STAT2, STAT3 and STAT6 showed no difference in the Th2 cells electro-
transfected with PPM1A coding plasmid or blank control plasmid (Fig. 6A).

To better explore the roles of miR-1165-3p and PPM1A in Th2 differentiation, we co-
transfected Th2 cells with miR-1165-3p enhancer lentivirus and PPM1A-ORF plasmid (Fig. 6B).  
PPM1A overproduction in Th2 cells infected with miR-1165-3p lentivirus at least partially 
restored the expression of the master transcription factor GATA-3, further suggesting that 
PPM1A may be required for the differentiation of Th2 cells. To add the clinical significance 
of our study, we sampled plasma from allergic asthmatic patients, in which total IgE was 
significantly increased (Supplementary Fig. S2). In these allergic asthmatic patients, PPM1A 
was also elevated (Fig. 6C), which may further support the importance of PPM1A for Th2 cells 
and the pathogenesis of allergic asthma.

DISCUSSION

The functions of miRNAs in Th2 differentiation in allergic asthma remain largely elusive. 
In this study, we reported that the over-expression of miR-1165-3p decreased the production 
of IL-4, IL-5 and IL-13. Furthermore, GATA-3 was reduced in CD4+ cells infected with 
lentivirus-encoding miR-1165-3p. In contrast, upon the down-regulation of miR-1165-3p, 
type 2 cytokines (IL-4, IL-5 and IL-13) and the Th2 master transcription factor GATA-3 were 
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increased. In the HDM-induced allergic airway inflammation model, miR-1165-3p lentivirus 
treatment relived airway hyper-responsiveness, total IgE and pulmonary inflammation. 
Moreover, miR-1165-3p suppressed Th2 differentiation in vivo. MiR-1165-3p was shown 
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to target IL-13 and PPM1A, which regulated Th2 polarization via STAT1, STAT5 and AKT 
signaling pathways. Ectopic expression of PPM1A in CD4+ T cells over-expressing miR-1165-
3p promoted Th2 differentiation. In addition, PPM1A was significantly elevated in asthmatic 
patients. Combined with our previous observation that miR-1165-3p was a diagnostic marker 
for asthma,12 these results suggested that miR-1165-3p targeted IL-13 and PPM1A to control 
Th2 differentiation and pulmonary inflammation in asthma.

The prevalence of asthma has increased considerably in the past 3 decades.30 Though 
heterogeneity in asthma phenotypes has been recognized, allergic asthma is the most 
common type.31 For almost 3 decades, the Th1 and Th2 paradigm has provided a productive 
model for exploring the pathogenesis of allergic diseases.32 Though Th9,33 Th17,34 Th22,35 
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transfected with either pcMV6-entry (vector) or PPM1A-ORF. STAT and AKT were analyzed by western blot. β-actin was included as an internal control (n = 3–6). 
PPM1A-ORF vs. vector; (B) Flow cytometry analysis of GATA-3 expression or T-bet expression in Th2-polarized CD4+ T cells infected with miR-1165-3p enhancer 
lentivirus and/or transfected with PPM1A-ORF. Data are representative of independent experiments with similar results (n = 3–6) (C) PPM1A in the plasma of the 
asthmatic and control groups was quantified (n = 18–20). 
PPM1A, protein phosphatase, Mg2+/Mn2+-dependent 1A; STAT, signal transducer and activator of transcription; NS, not significant; miR-1165-3p, microRNA-1165-3p. 
*P < 0.05, †P < 0.01, ‡P < 0.001 vs. blank group; §P < 0.05, ‖P < 0.01, enhancer + PPM1A-ORF vs. enhancer + vector.



Tfh,36 Treg37 and other non-Th2 CD4+ cells may contribute to asthma development, Th2 cells 
still orchestrate the type 2 immune response, leading to IgE-primed sensitization, airway 
hyper-reactivity and eosinophilia.38 Therefore, a better understanding of the mechanisms 
behind the differentiation of Th2 in asthma is a prerequisite for Th2-based therapy for 
allergic asthma and other diseases.

In a previous study, we reported that miR-1165-3p was lower in Th2 cells.11 Therefore, we 
transfected Th2 cells with lentivirus-encoding miR-1165-3p. With elevated miR-1165-3p, 
type 2 cytokines (IL-4, IL-5 and IL-13) were decreased in Th2 cells; furthermore, the Th2 
master transcription factor GATA-3 was also suppressed, suggesting that miR-1165-3p down-
regulated GATA-3-dependent Th2 differentiation. Moreover, in the HMD-induced allergic 
airway inflammation model, ectopic expression of miR-1165-3p suppressed Th2 pulmonary 
inflammation, suggesting that miR-1165-3p may be a potential candidate for therapeutic 
intervention against allergic airway inflammation.

To explore the direct targets of miR-1165-3p, we used biotin-miRNA pull-down and RNA-seq, 
in which 159 mRNAs were enriched in the Bio-miR-1165-3p pull-down compared to the RNA 
pull-down with a biotinylated negative control. Using the combination of bioinformatics 
analysis and a luciferase reporter assay, we further demonstrated that IL-13 and PPM1A were 
direct targets of miR-1165-3p. As a fundamental mediator of allergic asthma, IL-13 mediates 
eosinophilic infiltration, mucus secretion and airway hyper-responsiveness.39 In addition, 
IL-13 mediates tissue fibrosis40; therefore, miR-1165-3p-dependent degradation of IL-13 may 
alleviate chronic asthma as well as acute asthma.

In genome-wide association studies (GWAS), PPM1A was a risk factor for allergic rhinitis.41 In 
resting CD4+ T cells, PPM1A is relatively high.42 Compared to Th1 cells, PPM1A transcripts were 
higher in Th2 cells,43 suggesting that PPM1A may regulate Th2 differentiation. In fact, PPM1A 
is a negative threshold regulator of type 1 macrophage differentiation through AKT or STAT1, 
establishing it as a key phosphatase that orchestrates cell polarization.29 The direct association 
between PPM1A and IL-13 remains elusive in the literature. However, PP1β augmented IL-5 and 
IL-13 expression in IL-2 stimulated T cells.44 In contrast, protein tyrosine phosphatase Shp-1 
is a negative modulator of IL-13,45 implying that protein phosphatase may be involved in IL-13 
and Th2 differentiation. Collectively, our results showed that PPM1A activated STAT5, and 
inhibited AKT and STAT1, which cooperatively promoted Th2 differentiation.

The clinical observation that plasma PPM1A was higher in asthmatic patients further 
supported the importance of PPM1A in Th2 allergic asthma. Previously, we have showed that 
miR-1165-3p was lower in Th2 cells or CD4+ T cells from asthmatic mice11 and that miR-1165-
3p was paradoxically increased in the sera from clinical asthmatic patients.12 Extracellular 
miRNAs may not necessarily reflect the abundance of miRNAs in the cell of origin. For 
example, miR-141 was up-regulated in the plasma of prostate cancer patients and was 
down-regulated in prostate cancer cell lines.46 Patients with asthma were given medications 
to control symptoms, which may influence the release of miR-1165-3p from cells into 
blood. Moreover, expression levels of miRNAs may be not associated with their regulatory 
activities.47 For example, miR-34c-5p and its target STAB2 were both down-regulated in 
CRC tissues,48 implicating that interactions between miRNAs and their targets may be 
more intricate. The mechanisms for the discrepancy of miR-1165-3p and the target PPM1A 
in asthma warrant further research. Indeed, our study was hampered by the inadequate 
clarifications in the expression and the regulation of miR-1165-3p.

872https://e-aair.org https://doi.org/10.4168/aair.2020.12.5.859

MiR-1165-3p Suppresses Th2 in Allergy



In summary, we investigated the role of miR-1165-3p in the progression of allergic airway 
inflammation and its potential underlying mechanism to regulate Th2 differentiation. Our 
results provided direct evidence that miR-1165-3p inhibits the Th2 response of allergy through 
the STAT and AKT signaling pathways by targeted inhibition of PPM1A, shedding the light 
that miR-1165-3p and PPM1A may be effective targets for the prevention and treatment of 
allergic asthma and associated diseases.
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