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The importance of oscillations and deterministic chaos in natural biological systems has
been discussed for several decades and was originally based on discrete-time population
growth models (May 1974). Recently, all types of nonlinear dynamics were shown for
experimental communities where several species interact. Yet, there are no data exhibiting
the whole range of nonlinear dynamics for single-species systems without trophic interac-
tions. Up until now, ecological experiments and models ignored the intracellular dimen-
sion, which includes multiple nonlinear processes even within one cell type. Here, we show
that dynamics of single-species systems of protists in continuous experimental chemostat
systems and corresponding continuous-time models reveal typical characteristics of nonlin-
ear dynamics and even deterministic chaos, a very rare discovery. An automatic cell registra-
tion enabled a continuous and undisturbed analysis of dynamic behavior with a high
temporal resolution. Our simple and general model considering the cell cycle exhibits a
remarkable spectrum of dynamic behavior. Chaos-like dynamics were shown in continuous
single-species populations in experimental and modeling data on the level of a single type of
cells without any external forcing. This study demonstrates how complex processes occur-
ring in single cells influence dynamics on the population level. Nonlinearity should be con-
sidered as an important phenomenon in cell biology and single-species dynamics and also,
for the maintenance of high biodiversity in nature, a prerequisite for nature conservation.
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Simple models of population growth can show unpredictable and aperiodic behavior
driven by intrinsic mechanisms (1). This led to an intensive debate on whether natural
systems are characterized by chaotic behavior and how widespread chaotic dynamics
are (2–6). In this context, the term “deterministic chaos” is defined as aperiodic fluctu-
ations with sensitive dependence on the initial conditions (2, 5). Experimental evidence
for the existence of chaos in populations is still rare due to several reasons. Empirical data
can be composed of both deterministic and stochastic parts (5). Highly controlled labora-
tory experiments reducing contaminating external perturbations proved to be a sensitive
method for detecting intrinsic mechanisms (3, 4). Up until now, chaos-like oscillations
without external disturbance have not yet been identified in continuous single-species
populations either in real world experiments or to our knowledge, in models.
A general assumption in ecology is that nonlinear dynamics originate from interaction

processes, species, or cell types (2, 7). Major events of each eukaryotic cell cycle are regulated
by a complex network of biochemical processes interacting within one cell, mostly con-
trolled by different cytokines (Fig. 1A) (8, 9). Nonlinearity and its consequences have been
discussed (8); however, they have seldom been considered regarding the dynamic behavior
of cells (10). Biochemical processes are driven by changes in concentrations of biochemical
products causing ups and downs in regulatory pathways (9); their oscillations are never
exactly repeated (8). Intrinsic oscillations of fast-growing microbial species would allow a
high diversity (6, 7) as an important prerequisite for maximum productivity and system sta-
bility (11), and this knowledge would have fundamental consequences for understanding
key processes, allowing the coexistence of larger species and maintaining a high biodiversity
in nature (6, 11). We hypothesized that the dynamics of one cell type in the absence of
external disturbances should show unforeseeable dynamics, including chaos-like oscillations.

Results and Discussion

Aperiodic Fluctuations in Single-Species Systems. We established bacteria-free chemo-
stat systems (well-controlled flow-through systems) with the stramenopile flagellates
Poterioochromonas malhamensis (Fig. 1 B–D and Dataset S1) and Chlorochromonas danica
(Fig. 1E and Dataset S2) at different dilution rates. These experiments with the unicellular
eukaryotes allow for the analysis of intrinsic dynamics without any external disturbance
(SI Appendix) and provide conclusive insights into dynamics that are difficult to derive
from larger natural systems (4). While ecological theory states that intrinsic population
mechanisms are much more likely to lead to stable dynamics or first-order cycles (2, 5),
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we identified aperiodic (chaos-like) fluctuations for nearly all
experimental systems, a rare discovery in experimental systems.
Due to the limited amount of data available for empirical studies,
distinguishing deterministic dynamics [chaos, stable limit cycles,
damped oscillations (2)] from noise, only approximations are pos-
sible (SI Appendix). Two experiments (Fig. 1 B and E) revealed
positive Lyapunov exponents indicating chaos-like dynamics; one
experiment (Fig. 1D) showed values near zero, indicating stable
limit cycles, and for one experiment (Fig. 1C), the Lyapunov
exponent could not be robustly determined. Two experiments
had the same flow rate (Fig. 1 B and D); the different Lyapunov
exponents could originate from temporary oscillations, multi-
stability, or transient effects of initial conditions. The compara-
tively long time series (in comparison with other studies in the
literature) available for the Chlorochromonas chemostat system
allowed for a split of the data, which in addition to the total data-
set, still revealed positive Lyapunov exponents (Fig. 1E). This
demonstrates that even subsets of our time series show character-
istics of chaotic dynamics. Laboratory experiments with three-
species systems showed that the dynamic behavior may change at
small changes in experimental conditions (4, 12, 13). We assume
that such changes in experimental conditions might also cause
not only chaotic and cyclic but also, damped oscillations. Only
mathematical models could provide enough data to analyze the
dynamic behavior more accurately.

Chaos-Like Dynamics in a Continuous-Time Model. Thus far,
all single-species models exhibiting chaos relied on discrete-time

structure or external forcing (1, 3, 14). However, since chemostat
populations are generationally overlapping and continuously grow-
ing, continuous-time systems are better suited for modeling and
explaining their population dynamics (5). To analyze the dynamics
of our single-species systems, we applied the general cell cycle
model known to be similar for all eukaryotes with its different
phases (G1, S, G2, and M), which can be modulated by nutrients
(Fig. 1A) (e.g., refs. 8, 9, and 14). Even though most of the cell
cycle control is conserved in all eukaryotes (8, 9), in contrast to
yeast, flagellated protists like many other cell types do not take up
nutrients during the M phase (15). Using the basic principles of
cell biology, we established a simple continuous-time mathematical
model (SI Appendix) with the aim to uncover the whole range of
qualitative system dynamics (proof of principle). Using a baseline
set of parameter values, we calculated a bifurcation diagram
depending on the growth rate of the G2 phase, indicating a period-
doubling route to chaos (Fig. 2A). A similar principal behavior for
the same parameter set would be obtained when using the dilution
rate as a bifurcation parameter. This simple model showed all types
of dynamic behavior by modifying a single parameter of the cell
cycle (Fig. 2 B–D). Based on structured variables, the model can be
analyzed for different functional forms of maturation rate, uptake
rate, and cell division. It can simulate the abundance of nearly every
unicellular eukaryote for periods of asexual reproduction.

Aperiodic Fluctuations Could Be More Widespread than
Previously Thought. There are only a very few studies other than
our study that documented long-term dynamics at undisturbed
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Fig. 1. Nonlinear dynamics of single-species systems. (A) Schematic summary of the present understanding of changes in expression levels of eukaryote
cyclins throughout the cell cycle. Cyclin-dependent kinases (CDKs) stimulate the development through the cell cycle and are positively regulated by cyclins
and negatively regulated by CDK inhibitors (p15, p16, p18, p19, p21, p27, p57). All cyclin curves show nonlinear behavior. (B–D) Experimental results of abun-
dance dynamics in bacteria-free chemostat systems (well-controlled flow-through systems) with the stramenopile flagellates P. malhamensis (dilution rates:
0.2 d�1 [B], 0.4 d�1 [C], and 0.2 d�1 [D]). (E) Experimental results of abundance dynamics in bacteria-free chemostats with the stramenopile flagellate
C. danica (dilution rate: 0.2 d�1). (F and G) Literature data (15) on the undisturbed abundance dynamics of the planktonic diatom Synedra sp. (F) and F. croto-
nensis (G). Lyapunov exponents are given when they could be estimated. (F) Adapted from ref. 15. (G) Adapted from ref. 13. (H–J) Time delay reconstructions
of datasets in B, E, and F, respectively (color coded correspondingly). Abundance is given in individuals (ind.) per ml.
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conditions in single-cell systems. The dynamics of the planktonic
diatoms Synedra sp. and Fragilaria crotonensis (13) (Fig. 1 F and
G) showed oscillating abundances with positive Lyapunov expo-
nents and a bounded but not converging time delay reconstruction
(Fig. 1J), indicating chaos-like dynamics in these single-species sys-
tems. Except for a few studies (e.g., refs. 10 and 13), datasets
obtained from experimental time series are usually too short so
that potentially chaotic dynamics cannot be found. This is of spe-
cial importance since oscillations are crucial for the coexistence of
species and allow for a high species diversity (e.g., ref. 6).

Conclusion. Our experimental and model results show character-
istics of deterministic nonlinear dynamics, including chaos-like
oscillations. The theoretical model establishes mechanisms of
nonlinear interactions in single-species systems in general. In
contrast to other single-species studies (e.g., refs. 3, 10, and 14),
we used constant external conditions and no forced cell syn-
chronization for the model and for the experiments. It is a
continuous-time model of a single species that can show deter-
ministic chaos without external forcing. The “zooming in” from
single-species populations to intracellular processes provides
explanations for the appearance of intrinsic nonlinear dynamics
and will have an impact on the determination and understanding
of population dynamics and cell–cell interactions. The phenome-
non also has fundamental consequences for understanding evolu-
tionary processes with the potential coexistence of competing spe-
cies or cell lines at oscillating abundances (6), a basis for the high

biodiversity on Earth. Maintaining these oscillations is essential
for protecting biodiversity and its functions (11).

Materials and Methods

Continuous Cultivation in Chemostat Experiments. To study intrinsically
driven dynamics of protist populations, bacteria-free chemostat experiments
(4, 12) were carried out at 20 °C in fully controlled and constant external condi-
tions. Chemostats inoculated with the heterotrophic flagellate P. malhamensis were
run at dilution rates of 0.2, 0.4, or 0.2 per day (Fig. 1 B–D). Samples were automat-
ically taken every 12 h and microscopically analyzed (38 measurements). Another
bacteria-free chemostat system was run in the dark with the mixotrophic flagellate
C. danica at a dilution rate of 0.2 per day (Fig. 1E) and sampled using a newly
developed automatic single-cell registration by noninvasive video microscopy (220
measurements). Details of all materials and methods are provided (SI Appendix).

Model of the Cell Cycle. The mathematical model extends established cell
cycle models by implementing characteristics of dynamics of cell abundance in
chemostat systems. The model uses the distinction of three stages of the cell
cycle following the cell cycle control stages of eukaryotes (8). The first stage
describes immature cells after cell division (G1 stage), the second considers
mature cells in and after the synthesis stage (S and G2 stages), and the third
stage describes cells during cell division (M stage). The model consists of four
differential equations. Details of the model are provided (SI Appendix).

Data, Materials, and Software Availability. All data generated or analyzed
during this study are included in the article and/or supporting information.
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Fig. 2. Simulations of the single-species che-
mostat model. (A) Bifurcation diagram using
the dependence on the growth rate of cells in
the G2 phase as an example. Arrows are
related to the corresponding graphs in B, C,
and D.Inset illustrates the model structure
showing the cell cycle phases and model
assumptions based on refs. 8 and 15. . Inset is
modified from ref. 14 (# 1997 by the Ecologi-
cal Society of America) and ref. 16. (B–D) Total
abundance over time (Left) and in phase space
(Right), resulting in (B) damped oscillations, (C)
stable limit cycles (two points), (D) stable limit
cycles (four points), and chaotic dynamics.
Abundance is given in individuals (ind.) per μl.
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