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Obligate intracellular pathogens depend

on cell-surface molecules to attach and

enter into host cells. Pathogen receptors

may be highly specialized proteins, such as

complement receptors or neurotransmitter

receptors, or more ubiquitous components

of cell membranes, such as integrins or

sialic acid–containing oligosaccharides.

The immunoglobulin superfamily (IgSF)

of molecules contains several members

that are expressed at the cell surface, bind

diverse ligands, and contribute to a variety

of cellular activities, including adhesion

and immune responses. Many viruses have

usurped the adhesive properties of IgSF

proteins to mediate attachment (Table 1).

Strategies used by viruses to engage IgSF

receptors provide clues to general mecha-

nisms by which IgSF proteins bind differ-

ent types of ligands, including antigens.

Members of the IgSF have diverged in

sequence and function. However, all

contain domains with the characteristic

immunoglobulin fold, which is defined by

two opposing antiparallel b-sheets con-

nected in a unique manner [1,2]. The core

of the immunoglobulin fold is formed by

four b-strands (B, C, E, and F) augmented

with three to five additional b-strands (A,

C9, C0, D, and G) to yield several distinct

subtypes [1,2]. Most common are the V-

set and C-set immunoglobulin domains,

which are named according to their

occurrence in the variable and constant

regions of immunoglobulins, respectively.

A third type, the I-set, is an intermediate

structure between the V- and C-sets found

frequently in cell-surface receptors. Immu-

noglobulin domains rarely occur in isola-

tion but typically form concatenated

chains, often with a V-set or I-set domain

at the N-terminus.

Biochemical and structural analyses of

interactions between viruses and their

cognate IgSF receptors reveal several

striking similarities. First, in cases in which

structural information about virus–recep-

tor complexes is available, the viral

attachment proteins exclusively bind to

the most membrane-distal, N-terminal

domain (D1) of the IgSF receptors [3–10].

While structural information about com-

plex formation is lacking for the IgSF

receptors carcinoembryonic antigen-relat-

ed cell adhesion molecule, nectin-1, nec-

tin-2, and signaling lymphocyte-activation

molecule (SLAM), biochemical studies also

implicate their respective D1 domains in

virus binding [11–14]. Second, virus-

contacting residues lie towards the upper

‘‘tip’’ of the IgSF D1 domain. Third, the

viral receptor-binding region engages the

CC9FG b-sheet of the IgSF receptor D1

domain. Fourth and finally, almost all of

the receptor domains interacting with

viruses belong to the V-type IgSF fold.

The single exception, the D1 domain of

ICAM-1, belongs to the I-set type, which

is structurally similar to the V-set domain.

Although the database of viral proteins

in complex with IgSF receptors is still

quite small, interactions of viruses with

their receptors parallel the recognition

mode of immunoglobulins, which also

recognize their cognate antigens via resi-

dues at the tip of their N-terminal, V-set

domains. The case of the receptor-binding

head domain of reovirus attachment

protein s1 in complex with the D1

domain of its receptor, junctional adhesion

molecule-A (JAM-A) [9], serves to illus-

trate this point (Figure 1A). The JAM-A

homodimer strikingly resembles the dimer

formed by the V-set domains of the light

and heavy chains of immunoglobulins. In

both structures, the two V-set domains

face each other with similar orientations.

Moreover, residues in the receptor re-

quired for virus attachment reside in b-

strands and intervening loops that juxta-

pose the complementarity determining

regions (CDRs) of antibody molecules.

Thus, residues known to interact with

ligands map to corresponding regions near

the tip and one side of the V-set domains.

These similarities extend beyond reovirus

receptor JAM-A. Other IgSF virus recep-

tors, such as the coxsackievirus and

adenovirus receptor (CAR) [5] and HIV

receptor CD4 [4], also recognize their

viral ligands via residues that partially

overlap with the CDR region of immuno-

globulins (Figure 1B–F). CAR forms a

homodimer via its D1 domain that is very

similar to the JAM-A homodimer [15].

CD4 also forms homodimers, albeit via its

D4 domain [16].

The immunoglobulin fold predates the

evolution of vertebrates. Genomes of

invertebrate organisms encode numerous

molecules that belong to two families with

homologs in vertebrates: the JAM/cortical

thymocyte marker of Xenopus (CTX) family

and the nectin family [17]. Vertebrate

counterparts of these genes are found in

discrete blocks, and many are now diver-

sified to encode molecules that function in

adaptive immunity, including CD3 and

SLAM [17]. Invertebrates do not encode

recombination-activating genes (RAGs)

and generally display only limited anti-

gen-specific immunity. Therefore, the core

structural element of adaptive immunity,

the immunoglobulin fold, evolved prior to

a mechanism to generate a highly diver-

sified antigen-specific repertoire.

Similarities in mechanisms of ligand

engagement by IgSF pathogen receptors
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and immunoglobulins, coupled with the

evolution of the immunoglobulin fold

prior to the existence of the vertebrate

adaptive immune system, suggest the

possibility that primitive members of the

JAM/CTX and nectin families evolved to

become soluble adaptive immune media-

tors in modern vertebrates. One attractive

hypothesis is that soluble forms of patho-

gen receptors served as precursors to

molecules of the adaptive immune system.

Soluble receptors would neutralize viral

Table 1. IgSF Receptors Used by Selected Viruses.

Virus Receptor Number of Immunoglobulin Domains References

Adenovirus Coxsackievirus and adenovirus receptor (CAR) 2 [31,32]

Coronavirus Carcinoembryonic antigen glycoprotein family (CEACAM) 4 [33–35]

Coxsackievirus B Coxsackievirus and adenovirus receptor (CAR) 2 [31,32]

Herpes simplex virus Nectin-1 (PRR1/HveC) 3 [36]

Nectin-2 (PRR2/HveB) 3 [37]

Human immunodeficiency virus CD4 4 [38,39]

Measles virus Signaling lymphocyte-activation molecule (SLAM) 2 [40]

Poliovirus Poliovirus receptor (PVR, CD155) 3 [41]

Rabies virus Neural cell adhesion molecule (NCAM-1, CD56) 5 [42]

Reovirus Junctional adhesion molecule-A (JAM-A) 2 [28,43]

Rhinovirus Intercellular adhesion molecule-1 (ICAM-1) 5 [44–46]

doi:10.1371/journal.ppat.1000481.t001

Figure 1. Contact areas in Fab and virus receptors. (A) Ribbon drawing of mFab 231 (left) ([27]; 1IGT) and the extracellular domains of hJAM-A
(right) ([28]; 1NBQ). Variable (V) and constant (C) domains of heavy (H) and light (L) chains and D1 and D2 domains of JAM-A are labeled. (B) Ribbon
drawing of the variable domain of the light chain (VL) of the mFab shown in (A). CDRs are colored green. (C–E) Ribbon drawings of the complexed D1
domains of (C) CD4 ([4]; 1GC1), (D) hJAM-A ([9]; 3EOY), and (E) CAR ([5]; 1KAC). Residues contacting the virus proteins with a distance cutoff of 4 Å are
colored green. (F) Structural alignment of mFab 231 VL ([27]; 1IGT), CD4 D1 ([29]; 1CDJ), hJAM-A D1 ([28]; 1NBQ), and CAR D1 ([30]; 1EAJ) performed
using MODELLER (program Web site: http://salilab.org/modeller/). b-strands are indicated, and conserved residues are highlighted in grey. mFab 231
VL CDRs and residues in CD4, hJAM-A, and CAR that contact the viral attachment proteins gp120, s1, and fiber, respectively, with a distance cutoff of
4 Å, are highlighted in green.
doi:10.1371/journal.ppat.1000481.g001
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infection by competing with surface-ex-

pressed versions of the receptor for

binding sites on the virus. In modern

vertebrates, some viruses manipulate sur-

face-expressed and soluble forms of their

receptors to maximize the efficiency of

infection. For example, human rhinovirus

upregulates membrane-bound ICAM-1,

while diminishing expression of the soluble

form of the receptor to increase target cell

infectivity [18]. Expression of a soluble

pathogen receptor followed by duplication

within the primitive genome and acquisi-

tion of mutations that permitted recogni-

tion of additional pathogens could confer a

strong selective advantage. Upon intro-

duction of RAGs into the vertebrate

genome, such a gene family would have

been primed to express molecules akin to

present-day immunoglobulins. Alterna-

tively, membrane-anchored forms of IgSF

molecules that arose in primitive inverte-

brates may have been maintained in the

genome due to their cell-adhesion func-

tions, followed by the serendipitous intro-

duction of mechanisms for the secretion

and generation of diversity. In this scenar-

io, pathogens may have contributed to the

evolution of the modern adaptive immune

system at much later evolutionary times.

Is there evidence that favors either of

these potential evolutionary mechanisms?

In addition to similarities in their ligand-

binding strategies, many of the closest

structural homologs of JAM-A are immu-

noglobulins, which raises the possibility

that immunoglobulins are more closely

related to JAM-A than to other IgSF

molecules. A search for structural homo-

logs of the JAM-A D1 domain using the

Dali algorithm [19] provides support for

this hypothesis. The closest structural

homologs of the JAM-A D1 domain are

immunoglobulin domains, with the high-

est Dali Z-score of 14.6 for an IgAk
variable domain (PDB code 2FBJ)

(Table 2). Other IgSF proteins with

similarity to JAM-A D1 have significantly

lower Z-scores. The Z-scores correlate

well with root mean square deviations for

superpositions of JAM-A D1 with immu-

noglobulins, which also are lower (i.e.,

more similar) than the corresponding

values for superpositions of JAM-A D1

with other IgSF proteins. This homology

search can be extended to CAR, neural

cell adhesion molecule, and nectin-like

molecule 1, which result in Z-scores that

are generally higher for the superposition

of their D1 domains with immunoglobu-

lins than with other cell adhesion mole-

cules. In urochordates (Ciona) and cepha-

lochordates (Branchiostoma), evolutionarily

close relatives of the vertebrates, there

are homologs of JAM/CTX and nectin

IgSF molecules with features of mem-

brane receptors. Ciona encodes only a

single JAM/CTX-like molecule and two

nectin-like molecules [20]. In humans,

these molecules are all part of a single

linkage group involved in immune func-

tion [17,20]. Taken together, these results

suggest that relatively few JAM/CTX and

nectin family IgSF molecules were main-

tained in invertebrates, and the expansion

and duplication resulting in the evolution

of immunoglobulins may have occurred

after the introduction of these molecules

into the vertebrate genome.

There also is evidence of expansion of

IgSF molecules in invertebrates. For

example, like many immunoglobulins,

chitin-binding protein (CBP) of Branchios-

toma is a close structural homolog of JAM-

A (Table 2). Variable region-containing

(V) CBPs contain a V-type immunoglob-

ulin domain with extensive sequence

diversity in the N-terminal region

[21,22]. This diversity is thought to result

from high haplotype variation, including

variable copy number, polymorphisms,

and potential for alternative splicing [23].

Another of the closest structural homologs

of JAM-A is Down syndrome cell adhesion

molecule (Dscam), an IgSF member of the

more evolutionarily distant invertebrate

Drosophila (Table 2). Dscam is an immune

mediator found in clusters of variable

exons flanked by constant exons [24,25].

Thousands of different Dscam molecules

can be generated via alternative splicing, a

mechanism that is highly conserved across

insect orders [26]. Secreted isoforms of

Dscam circulating in insect hemolymph

contribute to phagocytic uptake of bacte-

ria. While the structural similarities be-

tween JAM-A and VCBP or Dscam may

not indicate a direct evolutionary relation-

ship, it is clear that diversification and

secretion of soluble forms of IgSF mole-

cules can occur in invertebrates and raise

the possibility that pathogens have had

selective influence on the diversification

and secretion of these molecules. Thus,

IgSF proteins that served as precursors to

soluble adaptive immune effectors may

have diversified both prior to and follow-

ing their introduction into the vertebrate

genome. A more thorough examination of

IgSF members in invertebrates may clarify

mechanisms that led to the evolution of

modern adaptive immune mediators and

the role of JAM/CTX family molecules in

this evolutionary process.

The evolution of JAM family members

prior to the biochemical means to effi-

ciently and extensively diversify antigen

receptor genes, along with the structural

similarities in the binding surfaces of virus

receptors and immunoglobulins, provides

strong support for the contention that

viruses and perhaps other pathogens that

engage IgSF receptors contributed to the

selection of humoral mediators of adaptive

immunity. These observations provide a

new framework for understanding how

pathogen–host interplay during a pro-

longed period of evolutionary struggle

may have led to the development of

antigen-specific immune responses in

vertebrates.
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Table 2. Dali Search for JAM-A D1 Structural Homologs.

Hit Number Z-scorea r.m.s.d. (Å)b Percent Identical Protein PDB Code-Chain

1–9 24.1–20.3 0.0–0.7 100–65 hJAM-A and mJAM-A

10 14.6 1.8 16 IgA Fab J539 light chain 2FBJ-L

264 13.0 2.4 17 VCBP3 2FBO-J

543 11.7 2.3 22 Dscam 2V5R-A

572 10.5 2.1 19 NCAM 1IE5-A

aA Z-score above ([number of residues/10]–4) is considered significant.
br.m.s.d., root mean square deviation.
doi:10.1371/journal.ppat.1000481.t002
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