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Snail (Sna) plays a pivotal role in epithelia-mesenchymal transition and cancer
metastasis, yet its functions in normal tissue development remain elusive. Here,
using Drosophila as a model organism, we identified Sna as an essential regula-
tor of Hippo signalling-mediated cell proliferation and tissue growth. First, Sna
is necessary and sufficient for impaired Hippo signalling-induced cell prolifer-
ation and tissue overgrowth. Second, Sna is necessary and sulfficient for the
expression of Hippo pathway target genes. Third, genetic epistasis data indicate
Sna acts downstream of Yki in the Hippo signalling. Finally, Sna is physiologi-
cally required for tissue growth in normal development. Mechanistically, Yki
activates the transcription of sna, whose protein product binds to Scalloped
(Sd) and promotes Sd-dependent cell proliferation. Thus, this study uncovered
a previously unknown physiological function of Sna in normal tissue develop-
ment and revealed the underlying mechanism by which Sna modulates Hippo
signalling-mediated cell proliferation and tissue growth.

1. Introduction

Tissue growth and organ size are controlled by coordinated regulation of cell
number and cell size, while maintenance of cell number depends on the balance
of cell death and proliferation. The Hippo pathway, first identified in Drosophila,
enables evolutionarily conserved signalling that regulates tissue growth and
organ size in animal development [1]. The core components consist of the
upstream kinase Hippo (Hpo), which phosphorylates and activates the down-
stream kinase Warts (Wts) [2]. Activated Wts phosphorylates the transcription
cofactor Yorkie (Yki) [3], which is retained in the cytoplasm by physical inter-
action with the adaptor protein 14-3-3 [4]. When the Hippo pathway is inactive,
unphosphorylated Yki enters the nucleus to form a complex with the transcrip-
tion factor Scalloped (Sd), which activates the expression of target genes
involved in the control of cell growth, proliferation, survival and metabolism
[5-7]. Hippo signalling also plays critical roles in stem cell renewal and differen-
tiation, innate immunity and tumorigenesis [8-11]. Although more than 30
components/regulators of the Hippo pathway besides the core kinase cascade
have been characterized over the past decade [12], additional factors that modu-
late Hippo signalling-mediated tissue growth remain to be elucidated.
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snail (sna) encodes an evolutionary conserved zinc finger
transcription factor [13], which was first characterized in Dro-
sophila as a critical regulator of embryonic mesoderm
formation [14] and was late reported to play a key role in
tumour invasion and metastasis, especially in epithelial-
mesenchymal transition (EMT) [15,16]. Sna acts as a tran-
scriptional repressor regulating a large number of genes
involved in the EMT process [17,18]. For instance, the overex-
pression of SNAI1 in tumour cell lines promotes tumour
metastasis [19,20]. Besides its well-known functions in
embryo development and tumour metastasis, other studies
suggest that Sna also plays important roles in regulating mul-
tiple biological processes including cell proliferation, cell
differentiation and cell death [21-26]. However, the mechan-
ism by which Sna regulates tissue homeostasis remains not
fully understood. Due to the low redundancy, Drosophila is
an excellent model system to investigate the physiological
functions of Sna in tissue/organ development.

In this study, we identified Sna as a crucial modulator of
Hippo signalling-mediated tissue growth in Drosophila devel-
opment. Loss of sna inhibits, while overexpression of Sna
promotes, Hippo signalling-mediated cell proliferation and
tissue growth. In addition, Sna is physiologically required
for tissue growth in normal development. The genetic epista-
sis analysis indicates that Sna acts downstream of Yki to
promote target genes expression and cell proliferation.
Mechanistically, Yki activates sna transcription, while elev-
ated Sna binds to Sd and promotes Sd-dependent cell
proliferation. In conclusion, our results identified Sna as an
essential regulator of the Hippo pathway and revealed the
underlying mechanism by which Sna modulates Hippo
signalling-mediated cell proliferation, tissue growth and
tumour progression.

2. Results

2.1. Loss of sna suppresses Hippo signalling-mediated
tissue overgrowth

To investigate the genetic interaction between Sna and Hippo
pathway, we first checked whether Sna is required for Hippo
signalling-mediated overgrowth. Compared with the control
(figure 1a), inactivated Hippo signalling by depleting hpo
along the A/P compartment boundary in third-instar larval
wing discs driven by ptc-Gal4 robustly increased the width
of ptc-expressing stripe (figure 1b) [27]. This phenotype was
significantly suppressed by expressing three independent
sna-IR lines that target distinct regions of the sna transcript
[23] (figure 1c-e), while sd-IR was included as a positive con-
trol (figure 1f). Hippo pathway inactivation promotes tissue
overgrowth mainly through accelerated cell proliferation
[2,28]. Consistently, the depletion of hpo promoted cell pro-
liferation in the corresponding region detected by increased
anti-PH3 staining, which was dramatically suppressed by
knocking-down sna and sd (figure 1a’—f,m; electronic sup-
plementary material, figure S1). In addition, ptc > hpo-IR +
LacZ animals displayed enlarged area between L3 and L4
in the adult fly wings, which was also suppressed by deplet-
ing sna and sd (figure 1g-In). A quantitative reverse
transcription polymerase chain reaction (RT-qPCR) assay
was performed to assess the knockdown efficiencies of the
three sna RNAi lines (electronic supplementary material,

figure S2). By contrast, ptc > sna-IR did not cause any obvious [ 2 |

change in cell proliferation or tissue growth (electronic sup-
plementary material, figure S3). Furthermore, hpo-IR and
hpo-IR + sna-IR did not affect cell death or cell size (electronic
supplementary material, figure S4). Collectively, these results
indicate that Sna is required for hpo depletion-triggered cell
proliferation and tissue overgrowth.

To dissect the mechanism by which Sna modulates
Hippo signalling, we performed genetic epistasis analysis
between Sna and Hippo pathway core components. warts
(wts) encodes a serine/threonine kinase acting downstream
of Hpo, and ptc>wts-IR produced similar phenotypes as
that of pfc>hpo-IR, including expanded ptc-stripe and
increased PH3-positive cell density [29]. Both phenotypes
were suppressed by expressing sna-IR or sd-IR (figure 2a—f),
suggesting Sna modulates Hippo pathway downstream of
Wits.

Impaired Hippo signalling leads to the nuclear transloca-
tion of Yki and promotes Yki-dependent cell proliferation
[3,30]. Ectopic expression of Yki dramatically promoted
tissue overgrowth and cell proliferation [31], which were par-
tially suppressed by depleting sna or sd (figure 2g-I). In
addition, expressing an activated form of Yki (Yki®'®*%) by
en-Gal4 promoted tissue overgrowth and cell proliferation
in the P-compartment of wing discs, both of which were sig-
nificantly suppressed by knockdown of sna or sd (electronic
supplementary material, figure S5).

While sd is reported to be specifically expressed in the
wing pouch of third-instar larvae, we noticed that sd-IR sup-
pressed Hippo-Yki signalling-induced tissue overgrowth and
cell proliferation in the wing pouch as well as in the hinge
region (figures 1 and 2e k; electronic supplementary material,
figure S5E). To explain this, we used the G-TRACE system
and found sd-mediated GFP expression in the entire
wing disc (electronic supplementary material, figure S6),
suggesting sd is expressed in the entire wing disc at an
early larval stage [32].

Together, these results indicate that Sna regulates Hippo
signalling-mediated Yki-dependent tissue growth and cell
proliferation, most likely downstream of Yki.

2.2. Loss of sna suppresses Hippo signalling-mediated
target gene expression

To verify the role of Sna in regulating Hippo signalling, we
checked the expression of Hippo pathway target genes,
including diapl and myc, which are required for cell survival
and proliferation, respectively [33,34]. Compared with the
controls, the overexpression of Yki driven by ptc-Gal4
resulted in upregulated expression of diapl-LacZ and Myc
[35], which were suppressed by depleting sna, while sd-IR
served as a positive control (figure 3). Moreover, upregulated
diap1 expression in Yki overexpression clones was suppressed
by depleting sna (electronic supplementary material, figure
S7), confirming that Sna is required for Yki-triggered target
gene expression.

2.3. Sna is necessary and sufficient for tissue growth

To test whether Sna is sufficient to promote tissue growth, we
generated Flp-out clones that express UAS-transgenes by act-
Gal4. Compared to the control, the expression of Sna resulted
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Figure 1. The loss of sna suppresses hpo depletion-induced cell proliferation and tissue overgrowth. (a—f) Fluorescence micrographs of third-instar larval wing discs
stained with anti-pH3 (red) are shown. Compared with the ptc > GFP control (a,a’), hpo knockdown increases the width of ptc-stripe (b) and pH3-positive cell
density within the stripe (b), both of which are significantly suppressed by expressing three independent sna RNAi (., d,d’, e and €’), sd RNAi serves as a
positive control (ff). (g—-I) Light micrographs of Drosophila adult wings are shown. Compared with the ptc-Gal4 control (g), the expression of hpo-IR + LacZ
causes an expanded L3-L4 area (h), which is suppressed by depletion of sna (i—k) or sd (/). (m) Quantification of PH3-positive cell density ratio for GFP
region/total region (left to right: n=10, =9, n=8, n=9, n=10, n=7). (n) Quantification of size ratio for L3-L4 area/total area (left to right: n =10,
n=15n=24,n=24,n=19, n=20). One-way ANOVA was used to compute p-values, ****p < 0.0001. Scale bar: 100 pm in (a—f), 250 ym in g—/.

in a mild increase of clonal size, while the expression of
the activated Yki®'®®**, which was included as a positive con-
trol, caused dramatic overgrowth of the clones (figure 4a—d).
In addition, Sna expression along the A/P boundary
driven by ptc-Gal4 induced a mild overgrowth in the hinge
region (electronic supplementary material, figure S8A,B),

accompanied by upregulated expression of diapl (electronic
supplementary material, figure S8A’,B’). Furthermore, ecto-
pic Sna expression in the P compartment of wing discs
activated the transcription of diapl (figure 4e,f) and ban
(figure 4gh), another Hippo pathway target gene [36].
Together, these data suggest that ectopic Sna is sufficient to
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Figure 2. The depletion of sna suppresses Hippo pathway-mediated cell proliferation. (a—e, g—k) Fluorescence micrographs of third-instar larval wing discs stained
with anti-pH3 antibody (red) are shown. ptc > wis-IR or ptc > Yki promotes tissue overgrowth (GFP in (a,g)) and increases pH3-positive cell density (red in @’,¢’'),
both of which are suppressed by expressing sna-IR (b—d, h—j) or sd-IR (e, k). (f,/) Quantification of pH3-positive cell density ratio for GFP region/total region. (f)
Left to right: n=14, =10, =12, n=12, n=10. (/) Left to right: =17, =12, n=12, n=9, n=28. One-way ANOVA was used to compute p-values,

***%p < 0.0001. Scale bar: 100 ym in (a—e), (g—k).

activate the expression of Hippo pathway target genes and
promote tissue growth.

To further investigate the physiological function of Sna in
development, we first checked the endogenous expression of
sna in the wing discs. To this end, we used a Sna-GFP repor-
ter, which carries a genomic fragment in which Sna has been
fused in-frame at its C-terminus to GFP. We found that Sna
is ubiquitously expressed in the third-instar wing discs
(electronic supplementary material, figure S9A), and its
expression in the p-compartment was significantly reduced
upon hh-Gal4 driven sna-IR expression (electronic sup-
plementary material, figure S9B,C). Next, we checked
whether sna is required for normal wing growth. As ptc >
sna-IR did not notably affect cell proliferation and tissue
growth along the A/P compartment boundary in the devel-
oping wings (electronic supplementary material, figure S3),
presumably due to the relative mild expression of the ptc-
Gal4 driver, we raised ptc > sna-IR animals at 29°C to increase
the Gal4 activity and observed reduced sizes of the L3-L4
area (electronic supplementary material, figure 510). More-
over, sna depletion in the P compartment of wing discs by

hh-Gal4, a stronger Gal4 driver, resulted in diminished
posterior areas in the adult wings (figure 4i~I), suggesting
that sna is physiologically required for proper tissue growth
in normal development.

Since Sna is required for Yki-triggered tissue overgrowth, cell
proliferation and target gene expression (figures 2¢—j and 3;
electronic supplementary material, figure S5), we reasoned
that Sna might act downstream of Yki. In agreement with
this hypothesis, Sna-induced cell proliferation remained
unchanged upon yki depletion (figure 5a—c,e), while sna tran-
scription was upregulated by activated Yki (figure 5f).
Together, these results indicate that Yki activates the
expression of Sna, which acts as a downstream mediator of
Yki activity.

The Hippo-Yki signalling modulates tissue growth
through the transcription factor Sd [5,37], which has been
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Figure 3. Sna is required for Yki-triggered target gene activation. Fluorescence micrographs of third-instar larval wing discs stained with anti-3-Gal antibody (a—e) or anti-
dMyc antibody (g—k) are shown. Compared with the ptc > GFP controls (a,g), expression of Yki activates Hippo pathway reporter diap7-LacZ (b) and Myc (h), both are
suppressed by the depletion of sna (¢d,ij) or sd (ek). (f/) Quantification of average signal ratios for GFP region/non-GFP region. (f) Left to right: n=3,n=3, n=4,
n=3,n=5. (/) Left to right: n=5n=5n=6,n=7,n="5. One-way ANOVA was used to compute p-values, ****p < 0.0001. Scale bar: 100 ym in (a—e), (g—k).

reported to regulate transcription via interacting with a wide
range of cofactors, including Yki [38]. For instance, the tran-
scription repressor Nerfin-1 antagonizes the activity of Yki-
Sd complex by directly binding to Sd [39]. To investigate a
possible interaction between Sna and Sd, we first examined
whether Sna-induced cell proliferation depends on Sd. We
found ptc > Sna-triggered cell proliferation was significantly
suppressed by knockdown of sd (figure 5d—e), in contrast
with that of yki (figure 5c), suggesting Sna promotes Sd-
dependent cell proliferation. Next, we performed Co-IP
assay and confirmed that Sna physically interacts with Sd
both in Drosophila S2R+ cells (figure 6a) and in vivo
(figure 6b). Intriguingly, the molecular weight of HA-Sd in
vivo appears higher than that in S2R+ cells, implying a poss-
ible post-translational modification of Sd in vivo [40,41]. By
contrast, Sna failed to interact with Yki (figure 6c). In
addition, Sna interacts with the N-terminal half of Sd, but
not its C-terminal part (figure 6d,e). Furthermore, GST pull-
down assay indicated that Sna directly binds to Sd
(figure 6f). Finally, Sna co-localizes with Sd in the nucleus

of the wing pouch (figure 6g—i). Together, these results indi-
cate that Sna might act as a transcriptional cofactor of Sd to
promote Sd-dependent cell proliferation.

Snail (Sna) belongs to the Snail superfamily of C;H,-type zinc
finger proteins [42], which functions as a transcription factor
by binding to the consensus sequence CAGGTG [13]. Sna
was first identified in Drosophila as a transcription regulator
involved in embryonic patterning [14] and was later charac-
terized as a key regulator of EMT and tumour metastasis
by repressing E-cadherin expression [43]. However, the role
of Sna in normal tissue growth has remained unknown
[22]. In this study, we employed Drosophila as a model organ-
ism to investigate the physiological functions of Sna in tissue
growth and revealed that Sna is not only required for
impaired Hippo signalling-induced accelerated cell prolifer-
ation and tissue overgrowth, but also contributes to proper
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Figure 4. Sna promotes Yki target gene expression and tissue growth. Fluorescence micrographs of third-instar larval wing discs with clones (marked by GFP) (a—c),
stained with anti-B-Gal antibody (e—h) are shown. GFP-labelled Sna (b) or Yki*'®" (c) overexpression clones are larger than wild-type controls (a). () Quantification
of clone size/total size shown in (a—c) (n=28, n=10, n=11). One-way ANOVA was used to compute p-values, ****p < 0.0001, *p < 0.05. Expression of Sna
activates Hippo reporter diap7-LacZ (f) and ban-LacZ (h), compared with the controls (e,g). (i—k) Light micrographs of Drosophila adult wings are shown. Compared
with the hh-Gal4 control (/), the depletion of sna reduces the size of posterior compartment ( ji). (/) Statistical analysis of the adult wing size (P/A) is shown (n =
14, n =11, n=12). One-way ANOVA was used to compute p-values, ****p < 0.0001. Scale bar: 100 ym in (a—c), 50 pm in (e—h), 250 pm in (i—k).

tissue growth in normal development. Our genetic epistasis
analysis showed that the loss of sna suppressed hpo or wts
depletion, or Yki overexpression-induced cell proliferation
and tissue overgrowth, whereas ectopic Sna-induced cell pro-
liferation was not suppressed by yki depletion, suggesting
Sna acts downstream of Yki to regulate Hippo signalling-
mediated tissue growth and cell proliferation. Consistently,
sna expression is upregulated by Yki, which provides a

molecular explanation for the above genetic data. Moreover,
Sna forms a transcriptional complex with Sd by direct phys-
ical interaction and promotes Sd-dependent cell proliferation.

In support of our findings, ectopic Sna has previously been
shown to activate the expression of dIAP1 and Myc, both of
which are targets of YKki, yet the role of Sna in Hippo-Yki sig-
nalling was not further investigated in the research [44]. Thus,
our study represents the first report that Sna is involved in
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Figure 5. Sna promotes Sd-dependent cell proliferation. (a—d) Fluorescence micrographs of third-instar larval wing discs stained with anti-pH3 antibody are shown.
Compared with the control (a), the expression of Sna driven by ptc-Gal4 promotes cell proliferation (b), which is suppressed by the depletion of sd (d), but not that
of yki (c). (e) Quantification of pH3-positive cell density ratio for GFP region/total region is shown (n =7, n =11, n =8, n = 6). (f) Histogram showing the levels of
sna mRNAs as measured by RT-qPCR. Error bars represent standard deviation from three independent experiments. One-way ANOVA was used to compute p-values,
**¥Ep < 0.0001, ***p < 0.001, n.s. indicates not significant. Scale bar: 100 ym in (a—d).

Hippo signalling-mediated tissue overgrowth and that Sna is
also required for normal tissue growth in development.
Although we provide evidence here that Sna promotes cell
proliferation and tissue growth, previous studies have shown
that Sna overexpression also triggers cell death and affects
cell size [44,45]. Therefore, as a result of the comprehensive
effect of these cellular processes, Sna overexpression promotes
a mild growth phenotype, much less prominent than that
induced by Yki overexpression (figure 4a—d). Besides regulat-
ing tissue/organ growth and tumour formation, the Hippo
pathway is also involved in other functions, including stem
cell self-renewal and differentiation [46]. Intriguingly, murine
Snail/Slug were reported to form complexes with YAP/TAZ
in regulating skeletal stem cell development and functions

[21,44], suggesting Sna family members may regulate the
Hippo-Yki signalling by distinct mechanisms in a context-
dependent manner. Both Sna and Hippo signalling play pivo-
tal roles in tumour progression [47,48]; therefore, this study
also shed light on the interaction and underlying mechanism
between Sna and Hippo signalling in cancer development.

All flies were raised on a standard cornmeal and agar medium
at 25°C unless otherwise indicated. Fly strains used in this
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article have been described previously: ptc-Gald [49], en-Gal4, from the Bloomington stock centre, UAS-sna-IR (6232), UAS-
hh-Gal4, Sd-Gal4, UAS-LacZ, UAS-GFPE, UAS-hpo-IR and UAS- yki-IR (40497) and Sna-GFP (318402) were obtained from the
wts-IR [50], UAS-Yki, diapl-LacZ, UAS-Sna, UAS-Flp UAS- Vienna Drosophila RNAi Center, UAS-sna-IR (3956R-5) was
RFP act>y+>EGFE, tub-Gal80®. ex-LacZ, ban-LacZ, UAS-sd- obtained from Japanese National Institute of Genetics (NIG).
IR and UAS-HA-Sd were gifts from professor Lei Zhang. Transgenic flies expressing UAS-Myc-Snail was generated by

UAS-sna-IR (28679) and UAS-YkiS'%®* (28816) were obtained standard P element-mediated transformation.
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To induce Flp-out clones, animals were reared at 25°C for
3 days, heat-shocked at 37°C for 15 min and recovered at
29°C for 2 days prior to dissection. To obtain the hh > sna-
IR wing phenotype, animals were raised at 29°C to enhance
the Gal4 activity. For ptc>Sna experiments, animals were
raised at 20°C to avoid ectopic Sna-induced larval lethality.
When tub-Gal80" was used to regulate Sna expression, ani-
mals were raised at 25°C for 3 days, then shifted to 29°C
for 2 days before dissection.

4.2. Immunostaining

Antibody staining was performed by standard procedures for
third-instar larval imaginal discs. Primary antibodies
included rabbit anti-Phospho-Histone H3 (1 : 400, Cell Signal-
ing Technology, CST, cat. no. 9701), mouse anti-3 Gal (1 : 500,
Developmental Studies Hybridoma Bank, DSHB, cat. no. 40—
la), rabbit anti-Myc (1:500, Santa Cruz Biotechnology, d1-
717), rabbit anti-Cleaved Caspased-3 (1:400, CST, cat.
no. 9661), mouse anti-Myc-Tag (1:100, CST, cat. no. 2276),
rabbit anti-HA-Tag (1:100, CST, cat. no. 3724) and mouse
anti-GFP (1:200, Roche, cat. no. 11814460001). Secondary
antibodies were goat anti-rabbit CY3 (1:1000, Life technol-
ogies, cat. no. A10520), goat anti-mouse CY3 (1:1000, Life
Technologies, cat. no. A10521) and goat anti-rabbit Alexa
Flour 488 (1:1000, Life Technologies, cat. no. A32731).

4.3. Image and quantification of fly wings

Wings were dissected and placed on slide with alcohol/gly-
cerol (1:1) medium. Light images of wing were taken by
Olympus BX51 microscope. Adobe Photoshop 2020 was
used to retouch the images.

4.4, Reverse transcription polymerase chain reaction

For heat shock experiment, animals were raised at 25°C, heat-
shocked at 37°C for 30 min and recovered at 29°C for 2 h
before experiments. Total RNAs were isolated from whole
third-instar larvae.

For hh > sna-IR experiments, animals were raised at 25°C.
Total RNAs were isolated from the wing disc of third-instar
larvae, and RT-qPCR was performed as previously described.
rp49 served as the internal control.

Primers used are provided:

rp49-FP: TACAGGCCCAAGATCGTGAA

rp49-RP: TCTCCTTGCGCTTCTTGGA

sna-FP: ATGGCCGCCAACTACAAAAG

sna-RP: GCAAACTGTGAGTCCTTGGTC

4.5. Co-lImmunoprecipitation

Drosophila S2R+ cells were cultured in Corning Insectagro
DS2 with 10% FBS (HyClone). Effectene Transfection Reagent
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