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Objectives. Our goal was to apply statistical and network science techniques to depict how the clinical pathways of patients can be
used to characterize the practices of care providers.Methods. We included the data of 506,087 patients who underwent procedures
related to ischemic heart disease. Patients were assigned to one of the 136 primary health-care centers using a voting scheme based
on their residence. The clinical pathways were classified, and the spectrum of the pathway types was computed for each center, then
a network was built with the centers as nodes and spectrum correlations as edge weights. Then Louvain clustering was used to group
centers with similar pathway spectra. Results. We identified 3 clusters with rather distinct characteristics that occupy quite compact
spatial areas, though no geographical information was used in clustering. Network analysis and hierarchical clustering show the
dominance of medical university clinics in each cluster. Conclusion. Though clinical guidelines provide a uniform regulation for
medical decisions, doctors have great freedom in daily clinical practice. This freedom leads to regional preferences of certain
clinical pathways, the intercenter professional links, and geographical locality and coupled with quantifiable consequences in
terms of care costs and periprocedural risk of patients.

1. Introduction

Publicly financed health care is a special segment of the
economy, in which the utility and the cost of individual
procedures frequently diverge. Patients are maximally inter-
ested in the most effective services and are blind for the
expenses, while physicians have a similar preference for effec-
tiveness, but a heterogeneous sensitivity for the expenses of
applied services. In well-controlled health-care systems, this
latter heterogeneity can be minimized, but in Hungary, the
country investigated in this paper, the control is dominantly
of administrative type, so physicians have a relatively great
freedom regarding the chosen treatment. The clinical prac-
tice is regulated by scientific guidelines, but the limited
effect of such guidelines on the clinical practice is well
documented [1, 2].

On the other hand, the systematic recording of performed
procedures in the publicly financed healthcare generated
rapidly growing electronic biomedical databases. If suitable,

innovative data mining and analysis methods are employed
to leverage this data; the resource allocation and the overall
quality of healthcare delivery can be improved. Our working
group already evaluated earlier the characteristics of patients
referred to the first investigation in different areas of the coun-
try [3] and documented the systematic bias due to factors like
geographical distance to the invasive diagnostic centers [4, 5]
or local volume capacity of invasive diagnostics [6].

It is not so easy, however, to depict the complex pattern
of patient evaluation pathways consisting of a time series of
investigations and procedures. Interactive tools and visuali-
zation have been proposed for mining clinical event patterns
in [7]. Another possible approach is the network-based
representation and analysis of data, a widely used method
in the social and business sciences to both visualize and iden-
tify the components as well as their structure and interac-
tions [8–10], in some cases applied also in the health
domain [11], but not yet for the study of the interactions
among clinical care providers.
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Network-based analysis often relies on clustering, a
method of grouping a set of objects in such a way that
objects in the same group or cluster are more similar (in
one or more characteristics) to each other than to those
in other clusters. Clustering, a standard method of busi-
ness intelligence, has already been successfully and innova-
tively applied to the biomedical data, cases, trials, clinical
models, and other entities of the health-care domain
[12–16]. In this paper, we present our results using a net-
work science-based approach in the field of health-care
pathway analysis.

2. Methods

The proposed method can be briefly outlined as a sequence of
the following steps:

(1) Data cleaning and classification of care events

(2) Assigning a dominant “de facto” care provider to
each ZIP area by a voting scheme

(3) Forming event series using the events of the same
patient and classifying the series in one of the 15
distinct series types

(4) Computing the event series spectrum for each
provider and the correlation among providers based
on the series spectra

(5) Building a network of the providers using the correla-
tions as edge definition

(6) Cluster and analyze the network using standard
network science methods

The steps are detailed below.

2.1. Data Preparation and Cleaning. The basic source of the
data was the Hungarian national health-care reimburse-
ment register run by the National Healthcare Services
Center (ÁEEK) from which we queried the patients who
underwent ischemic heart disease- (IHD-) related diagnos-
tic procedures between 1 January 2004 and 31 December
2008 in outpatient or inpatient care, a total of 506,087
patients. The case data contained the recorded diagnoses
and procedures, excluding cases with acute myocardial
infarction (AMI). We categorized the care events of a case
based on the International Classification of Disease (ICD)
codes and International Classification of Procedures in
Medicine (ICPM) related to each event, and we also cre-
ated an event from each death case. This resulted in a
time-stamped event list for each patient. For a more
detailed description of the categorization scheme, please
see the Appendix of [3].

In the next phase, we merged some events in the event
list according to a set of rules to eliminate redundant
(phantom) events due to the known common practice of
coding the relevant procedures (e.g., two-day single pho-
ton emission computed tomography protocol). Since we
wanted to focus on patients with stable conditions at the
time of onset, we considered only patients who had at

least 180 days long event-free period followed by an
“index” event. The rules applied for qualifying an event
as index are detailed in the Supplement of [4] along with
other details of the data cleaning process. For each such
patient, we defined the “event series” as the part of the
event list that started with the index event and ended by
the next 180 days long event-free period, death, or the
end of the observation period.

Since the basic objective of this work was the characteriza-
tionof theprofessional behavior patternsof the care providers,
we distinguished three different types of care procedures:

(i) “E” type: noninvasive, nonimaging investigations,
that is, stress electrocardiography

(ii) “NI” type: noninvasive imaging investigations like
single photon emission computed tomography
(SPECT) and stress echocardiography

(iii) “I” type: invasive procedures like coronary angiogra-
phy (CA), percutaneous coronary intervention (PCI),
or coronary artery bypass grafting (CABG)

Invasive procedures require a special attention because
they are generally more risky and more expensive than the
noninvasive ones. The clinical pathways were then built up
from a combination of events of these three types, all other
events were excluded from the analysis. We considered E
type events as belonging to the “primary” care, NI type
events to the “secondary” care, and I type events to the
“tertiary” care.

In the next step, we identified the dominant de facto
primary care center for each ZIP area using the patients’
residential ZIP code and a simple voting scheme based
on the patients’ first stress electrocardiography in the
observation period, so each patient with at least one
event had a single vote. In order to tackle the large num-
ber of providers that appear in the reimbursement data-
base, we considered the various departments of a large
institution (e.g., a municipal hospital) with the same
entity. This process yielded 136 de facto primary care
centers. The same procedure was repeated for NI- and
I-type events to identify the secondary and tertiary care
providers, respectively [4].

The formation of the event series as described above
and the identified de facto care centers were our earlier
results and formed the starting point of the work pre-
sented in this paper. Our new contribution consists of
three parts:

(1) Classification of the event series and the characteriza-
tion of care centers

(2) Building a network of care centers based on event
series profile correlations

(3) Cluster analysis of the network of centers

2.2. Characterization of Care Centers.We computed an event
series type flag for each event series based on the relative
order of the first “E,” “I,” and “NI” events starting from the
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index event. For example, NI-I type means an NI-type event
followed by an I-type event, but not preceded by an E-type
one in the event list. We considered all of the 15 possible
event series types, that is, “E,” “E-NI,” “E-NI-I,” “E-I,”
“E-I-NI,” “NI,” “NI-E,” “NI-E-I,” “NI-I,” “NI-I-E,” “I,”
“I-E,” “I-E-NI,” “I-NI,” and “I-NI-E.”

According to the general practice and guidelines [17], the
expected clinical pathway is E-NI-I, but the physicians have
the freedom to skip the E or NI steps for patients with a
higher coronary artery disease risk or due to inability to
perform the noninvasive imaging or nonimaging tests.

Table 1 shows an overview of the distribution of the 15
event series types. In the vast majority of cases, patients had
only a single cardiac stress test (E). One-year mortality is
naturally increased for those event series that start with an
invasive event.

Since the average cost of the treatment is also an impor-
tant feature of the care system, we computed the estimated
cost for each individual event series. The calculation was
based on the official reimbursement costs of the diagnostic
as well as therapeutic events that appeared in the event series.
Since slight yearly variations in these costs appeared over
the study period, we used averaged values. Table 2 shows
the costs of the six basic event types in national currency
(HUF) as well as Euro, at the currency exchange rate of
December 2008.

In the next step, we aggregated the number of the occur-
rences of the various event series types for each care center
and used the relative ratios of the various types of event series
to characterize the centers.

2.3. Network Building. The primary care centers were com-
pared with each other using Pearson’s correlation according
to the distribution of different clinical pathways. Pearson’s
correlation coefficient for a dataset {x1, …, xn} containing n

values and another dataset {y1, …, yn} containing n values
was calculated according to the following formula:
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where x = 1/n∑n
i=1xi is the sample mean. The same holds for

y. In our case, n = 15 as we have 15 relative occurrence rates
for the 15 event series types in each center.

The correlation matrix of 136 clinical pathway distribu-
tions of health-care centers X1, …, X136 is the 136× 136
matrix, whose i,j entry is corr(Xi, Xj) Pearson’s correlation
coefficient. The correlation matrix is symmetric because the
correlation between Xi and Xj is the same as the correlation
between Xi and Xj. We calculated all of the coefficients with
a 95% confidence level.

We made a network based on this correlation matrix
in which nodes are primary care centers and edge weights
are linearly transformed correlation coefficients. The trans-
form was necessary because the network contained
negative edge weights. Since most clustering methods, such
as modularity-based methods, cannot handle negative
weights, we transformed the correlation matrix into the
edge weight matrix using the following simple linear
transform:

wij = cij + 2, 2

where wij represents the edge weight of the edge between i
and j nodes (primary health-care centers), and cij denotes
Pearson’s correlation coefficient between i and j nodes. The
constant 2 was applied in (2) to eliminate the 0 values.

We also tried several other linear and nonlinear trans-
forms like cij + 2 ∗100, cij + 2 2, or cij + 2 3 in order to
amplify the differences between health-care centers, but in
all cases, the resulting clusters were nearly the same.

2.4. Network Clustering. Since the number of nodes of the
generated network was small but the network was extremely
dense, a modularity-based algorithm, the Louvain method

Table 1: Data summary: patient numbers and 365-day relative
mortality of different clinical event series types.

Event series type
% of patients

(%)
(n = 506087)

Relative mortality
(%)

(n = 7543)
E 76.11 0.77

E-NI 3.33 0.76

E-NI-I 0.70 0.64

E-I 4.15 1.62

E-I-NI 0.12 0.45

NI 5.00 2.33

NI-E 0.09 1.19

NI-E-I 0.02 0.72

NI-I 0.88 2.83

NI-I-E 0.11 0.71

I 7.80 8.03

I-E 1.36 1.64

I-E-NI 0.04 1.75

I-NI 0.19 4.56

I-NI-E 0.02 N/A

Table 2: Reimbursement costs of events in the event series.

Diagnostic or therapeutic event type
Associated

reimbursement cost
HUF Euro

Stress electrocardiography 3408 13

Stress echocardiography 12,962 49

Single photon emission
computed tomography

35,379 134

Coronary angiography 145,274 549

Percutaneous coronary intervention 804,834 3040

Coronary artery bypass grafting 1,262,914 4770
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was chosen for network clustering [18, 19]. This method is
a simple and is an efficient method for modeling commu-
nities, that is, clusters of closely connected nodes, in large
networks. The method is a greedy optimization method
that attempts to optimize the modularity of a partition
of the network. Modularity functions were introduced by
Newman and Girvan [20, 21]. The modularity is a scalar
value between −1 and 1 that measures the density of links
inside communities as compared to links between commu-
nities. The modularity function can be written as follows:

Q = 1
2m〠

i,j
Aij −

kikj
2m δ ci, cj , 3

where

(i) ci denotes the community (cluster) which node i has
been assigned

(ii) Aij represents the weight of edge between i and j; if
there is no edge then Aij = 0

(iii) ki is the sum of the weights of the edges attached to
node i

(iv) δ u, v function is 1 if u = v and 0 otherwise

m = 1
2〠i,j

Aij 4

In order to generate the Louvain clusters, we used the
modularity optimizer tool [22] with the default settings and
the following parameters:

(i) Number of random starts: 10

(ii) Number of iterations: 10

2.5. Hierarchical Clustering and Opinion Leaders. We used
the same clustering method (i.e., Louvain clustering) with
the same parameters on the subgraphs that formed the clus-
ters of the first level clustering as a hierarchical clustering
method to identify second level clusters. In a similar manner,
we used again the same clustering method with the same
parameters inside the second level clusters to identify the
third level clusters.

Using classical social network analysis techniques [23, 24],
we also analyzed the importance of nodes for the network to
identify the “opinion leaders.” For this purpose, we calculated
the “degree” and “betweenness centrality” network centrality
measures [25] on the whole health-care center network and
on the subnetworks of the first level clusters.

2.6. Revascularization Rate. In order to characterize the clus-
ters, we also computed the revascularization rate, a feature
that shows the invasive nature of the care methodology.
Revascularization is the common name of the invasive PCI
and CABG procedures, both of which are used to restore
the perfusion. The revascularization rate is the ratio of those

cases in which CA procedure was followed by revasculariza-
tion within 180 days, compared to the total number of cases
with CA. This rate can be used as an index for the rationale
behind referring the patient for CA, a potentially life-
threatening and costly examination. If this index is extremely
low compared to the average, then an unreasonably high
proportion of patients was referred to CA.

2.7. Data Processing, Statistical Analysis, and Data
Visualization Tools. For data preparation and data cleaning,
we used the Microsoft SQL Server 2012 database manage-
ment system [26]. All statistical analyses were performed
using the R 3.1.1 tool [27]. We used Fisher’s exact test to
determine statistical significance. A p value <0.05 was consid-
ered statistically significant for all analyses.

For mortality rate standardization, we used direct
standardization [28]. Calculation of network centralities and
network visualization was performed using Gephi 0.9.1 [29].

The spatialmapwas produced using theQuantumGIS 2.8
open source software package [30]. The Louvain clustering
method and smart local moving algorithm were performed
using the modularity optimizer tool [29]. The ModuLand
network modularization method was run on our network
with the ModuLand plug-in of Cytoscape 2.8.2 [31].

3. Results

We built the correlation matrix and the network of the 136
health-care centers based on Pearson’s correlation coeffi-
cients. Using Louvain clustering in this network, 3 first level
health-care center groups were identified.

Figure 1 displays the “heat map” of correlations among
health-care centers grouped by clusters. Each center has a
corresponding row and column, and the colored patch at
the intersection of a center’s row with another’s column
represents the correlation between the two centers’ pathway
distribution. We used a color range from red over black to
green, red representing negative, black neutral, and green
positive correlation. The centers belonging to the same
cluster are placed next to each other, so the figure shows
the internal structure of the cluster as well as the intercluster
relations. The color key shows the distribution of the correla-
tion values over the whole matrix as a continuous white line.

It is clear from the figure that the strongest intracluster
connections, that is, the strongest green patches, appear in
cluster 1 and that cluster 2 is the most diffused (i.e., least
characteristic) cluster.

We also computed the average intercluster correlation
between the three pairs of clusters, as the simple average of
all correlation values between all pairs of nodes that belong
to the two clusters. The values are −0.04 between clusters 1
and 2, −0.05 between clusters 1 and 3, and −0.20 between
clusters 2 and 3.

We have also observed a correlation between the spatial
position of health-care centers and the cluster membership
(see Figure 2). Cluster 1 was dominant in Western Hungary,
cluster 2 in Eastern Hungary, and cluster 3 in Central
Hungary. This fact is quite remarkable because the center
characterization method used no geographical information.
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Figure 1: Heat map of the correlation matrix of health-care centers grouped in three first level clusters. See explanation in the text.

Provider clusters
Cluster 1
Cluster 2

Cluster 3
No data

Figure 2: Position of health-care centers belonging to the three clusters. The capital (Budapest), home of about 20% of the total population, is
enlarged at the top left. The blue balloon markers show the major tertiary care clinical centers with at least a total of 3000 tertiary cases in the
observation period.
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The map in Figure 2 also shows the major tertiary centers at
the blue markers. Some of the tertiary centers are run by a
local medical university in the biggest cities of the country
like Budapest, the capital, Pécs, Szeged, or Debrecen. For
the sake of anonymity, the most important local medical
universities will be referred to by the codes of University
“A,” “B,” “C,” and “D.” We think that medical universities
are important because they can exert a strong influence on
the accepted standards of professional conduct at clinics.

Tables 3 and 4 show the numerical characteristics of the
clusters. The average cost per patient was computed using
the financial data in Table 2. Table 4 highlights the relative
differences among the clusters using the data of Table 3.

The results are evaluated in Discussion. However, the
geographical and numerical results of Figures 1 and 2 and
Tables 3 and 4 can be summarized as follows.

(i) Cluster 1 has a relative preference for invasive imag-
ing, proven by the high proportion of “I” and “I-E”
event series types. The cluster is dominant in
Western Hungary. It includes the clinic of the C
university. This cluster has the highest intracluster
average edge weight which means strong internal
connections, shown also by the strong green patches
in the heat map in Figure 1.

(ii) Cluster 2 has a relative preference for noninvasive
imaging (“NI” and “NI-E” types), and it is dominant
in Eastern Hungary. It includes the clinics of both
the A and B universities. This cluster has the lowest

intracluster average edge weight, that is, this is the
most “diffused” cluster of the three.

(iii) Cluster 3 has a relative preference for invasive treat-
ment followed by noninvasive imaging (“I-NI”
type), and it is dominant in Central Hungary. It
includes the clinic of the D university. This cluster
has high intracluster average edge weight.

Using the financial data in Table 2, we computed the
average reimbursement cost of an event series in each cluster.
The result for cluster 1 was 75,783 HUF (€ 286), for cluster 2,
it was 54,182 HUF (€ 205), and for cluster 3 it was 66,953
HUF (€ 253).

In order to test the robustness of the clustering, we have
also processed our network using several other different
clustering methods as well, with the following results:

(i) The Markov cluster algorithm [32], a random walk-
based clusteringmethod, gave almost the same result.

(ii) The K-means clustering [33], a vector quantization
method, provides 21 clusters as subnetworks of our
3 clusters.

(iii) TheModuLand tool is able to determine hierarchical
layers of overlapping network modules [34]. When
used this tool on our network, it produced 37
clusters at the hierarchical level 0 which were
subnetworks of our clusters, and it produced only 1
cluster with all nodes at the hierarchical level 1.

Table 3: Upper section: distribution of event series types for each cluster and the whole population. The lower section contains outcome
parameters: revascularization rate, 365-day mortality rate, and the average cost of treatment of the patients for each cluster and the whole
population. Bottom line: average intracluster correlation coefficient for the cluster.

Pathway type
Cluster 1
n = 130327

Cluster 2
n = 217514

Cluster 3
n = 158246

Whole population
n = 506087

E (%) 75.61 76.49 75.99 76.11

E-NI (%) 2.32 3.84 3.44 3.33

E-NI-I (%) 0.51 0.8 0.71 0.70

E-I (%) 5.09 3.39 4.41 4.15

E-I-NI (%) 0.08 0.12 0.17 0.12

NI (%) 3.27 6.55 4.3 5.00

NI-E (%) 0.02 0.14 0.08 0.09

NI-E-I (%) 0.01 0.04 0.02 0.02

NI-I (%) 0.58 1.15 0.75 0.88

NI-I-E (%) 0.09 0.12 0.11 0.11

I (%) 10.28 6.04 8.18 7.80

I-E (%) 1.88 1.02 1.4 1.36

I-E-NI (%) 0.03 0.04 0.05 0.04

I-NI (%) 0.16 0.17 0.26 0.19

I-NI-E (%) 0.01 0.01 0.05 0.02

REVASC R. (%) 4.63 3.09 4.05 3.79

MORT. (%) 1.38 1.45 1.61 1.48

AVG COST (HUF) 75,783 54,182 66,953 63,738

AVG CORR. 0.38 0.12 0.37 N/A
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(iv) We also tried two another modularity-based
algorithms: smart local moving algorithm [22] and
multilevel local search algorithm [35]; these pro-
duced completely the same results.

The next stage in cluster analysis was the test of the
nodes’ relative importance in the three clusters based on
node degrees and node betweenness centralities. We found
that the university clinics A, B, C, and D are always located
in the top 30% but are never in the top 10% of the strongest
members in their cluster. The same holds when we consider
the whole network of 136 nodes, so this behavior may be a
scale-free feature of university clinics. Budapest, the capital
located in the middle of Hungary, has 18 clinics with various
clinical pathway spectra. All of three clusters have some
health-care centers in Budapest.

Finally, the second level clustering of cluster 2 resulted in
two subclusters; the university clinics A and B were placed in
the same subcluster which also had a stronger cohesion than
the other one. Only at third level clustering were the A and B
clinics placed in two different sub-subclusters.

4. Discussion

As the results show, we found clear network type relations in
the selection of patient evaluation pathways, which was also
related strongly to the geographic location of the institutions.
It is a reasonable assumption that the decision patterns of
individual primary care decision-makers are influenced by
the patterns used in their neighborhood. This is why we
applied the tools of network analysis. Though the idea is
quite straightforward, such methods have not been yet used
in the field of health-care pattern analysis, to the best of our

knowledge. In the healthcare domain, widely known applica-
tion fields of network science are gene coexpression network
research and microarray studies [36–38]. In these studies, a
threshold or cutoff value, usually above 0.6, is normally used
for the absolute value of edge weights in the network, below
which the edge is not considered present. The aim of using
cutoff values is to simplify the network and strengthen the
statistical features. In our study, we applied no cutoff values
because the three clusters were rather different even without
thresholding. This feature shows a strong network organizer
effect and lends robustness to our network building algo-
rithm. The robustness of the clustering step was also shown
by the cluster assignments being quite independent from
the edge weight transform formula. The Louvain method
for clustering proved a good choice as it provided a low
number of clusters with good characteristics, independently
from the nonlinear transforms of the correlation coefficient.
Also, the results were confirmed by other clustering methods
as well.

We can regard the averaged intercluster Pearson correla-
tions as measure of similarity between two clusters. Though
strong negative correlation could mean a strong inverse
relation in other domains, in our case, the negative values
show even less similarity in the health-care process method-
ology. The measured, close to zero intercluster values show
that there is a weak similarity between clusters 1 and 2 and
also between clusters 1 and 3, and the stronger negative
correlation of −0.20 shows an even weaker connection
between clusters 2 and 3.

According to the financial results, though cluster 1
and cluster 2 have a similar population demography, there
is a considerable difference between average care costs as
cluster 1 (the “invasive” cluster) has a 28.5% higher average

Table 4: Percent rate differences of cluster features compared to each other in pairs. For an explanation on features, see Table 3 caption.

Pathway Cluster 1 versus cluster 2 Cluster 1 versus cluster 3 Cluster 2 versus cluster 3

E −1.14% (p < 0 05) −0.5% (p = 0 37) +0.65% (p = 0 19)
E-NI −39.58% (p < 0 01) −32.5% (p < 0 01) +11.7% (p < 0 01)
E-NI-I −36.64% (p < 0 01) −28.7% (p < 0 01) +12.75% (p < 0 01)
E-I +50.17% (p < 0 01) +15.36% (p < 0 01) −23.18% (p < 0 01)
E-I-NI −34.2% (p < 0 01) −51.6% (p < 0 01) −26.44% (p < 0 01)
NI −50.08% (p < 0 01) −23.92% (p < 0 01) +52.43% (p < 0 01)
NI-E −79.93% (p < 0 01) −66.21% (p < 0 01) +68.89% (p < 0 01)
NI-E-I −86.13% (p < 0 01) −70.81% (p < 0 01) +111.6% (p < 0 01)
NI-I −49.48% (p < 0 01) −22.91% (p < 0 01) +52.64% (p < 0 01)
NI-I-E −21.33% (p < 0 05) −14.47% (p = 0 2) +8.71% (p = 0 41)
I +70.15% (p < 0 01) +25.66% (p < 0 01) −26.14% (p < 0 01)
I-E +83.1% (p < 0 01) +33.63% (p < 0 01) −27.01% (p < 0 01)
I-E-NI −21.76% (p = 0 19) −37.27% (p < 0 01) −19.72% (p = 0 15)
I-NI −3.38% (p = 0 7) −37.42% (p < 0 01) −35.23% (p < 0 01)
I-NI-E −37.93% (p = 0 31) −89.69% (p < 0 01) −83.34% (p < 0 01)
REVASC R. +49.39% (p < 0 01) +14.25% (p < 0 01) −23.57% (p < 0 01)
MORT. −5.67% (p = 0 18) −15.25% (p < 0 01) −10.16% (p < 0 01)
AVG COST +39.86% +13.18% −19.07%
AVG CORR. +219.64% +1.68% −68.11%
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cost per patient than cluster2 (the “noninvasive” cluster). This
is not surprising considering the several high-cost invasive
events in the event series.

It is also not surprising that each cluster contains at least
one major medical university and a tertiary center run by the
university. The fact that university clinics are strongly linked
to the other cluster members and they are among the 30%
most important “opinion leader” nodes in their cluster fur-
ther supports the assumption that medical universities may
have a stronger impact on the distribution of health-care
pathways, and therefore on the real clinical practice, than
official professional guidelines or protocols.

The correlation between the spatial position of health-
care centers and cluster membership suggests that there is a
kind of local information spread between neighboring insti-
tutions. Another finding that supports this hypothesis is that
in all of the cities like Budapest, Debrecen, Szeged, Miskolc,
and Pécs, there are at least two clinics with almost the same
clinical pathway distribution.

The resulting three clusters can be characterized as
follows.

(1) Cluster 1 (the “invasive” cluster) has a much higher
revascularization rate than cluster 2 (p < 0 01), but
the 365-day mortality rates for the two clusters are
almost the same (p < 0 05) according to Table 3. This
indicates that in many cases, the revascularization
procedure may be unsuccessful or unnecessary. The
deficient impact of revascularization procedures on
the survival of patients with stable coronary artery
disease was demonstrated several years ago by multi-
national, multicenter randomized studies like [38],
but this result had hardly any consequence in the
clinical practice. We can be sure that also in our
country, a great proportion of patients who under-
went coronary angiography and subsequent coronary
revascularization had no documented severe myo-
cardial perfusion abnormalities. In such cases, the
invasive procedures increase the periprocedural
risk of patients without a clear, long-term beneficial
effect [39].

(2) Cluster 2 is the most diffused cluster, and the only
one which includes clinics of two different medical
universities (universities A and B). Hierarchical clus-
ter analysis has shown that these two clinics are
indeed closely connected. The background of this
close relation is clearly connected to history of the B
center. The head of this center spends the first two
decades of his/her carrier in the A center, while the
third and fourth decades in the B center. The other
subcluster is centered around a new subsidiary insti-
tution of center B working since the middle of the
observation period of this study.

(3) Cluster 3 is quite different from the other two
clusters. The somewhat strange pattern of invasive
procedures followed by noninvasive ones is an
admixture of the two previous patterns. The physi-
cians in this cluster prefer to start directly with an

invasive procedure, but they are very careful in the
follow-up of the patients. The mortality rate is signif-
icantly higher than in the other clusters. The average
age of patients is also significantly higher, which can
in part explain both the increased mortality and the
biased evaluation pattern.

The strength of the study and the conclusions are that
Hungary has a unified, free health insurance system operated
by the state; the share of the private sector in our field of
interest is negligible; therefore, the input data can be consid-
ered complete for the whole population.

There are several limitations of the approach presented.
Though the input data that we used spans five years ending
in 2008, we considered the health-care system “static” in
the analysis, that is, the effect of changes occurring in the
system during the period, such as new care centers entering
the system, was neglected. At the data preparation phase,
the voting scheme that assigns a ZIP area to a single
“dominant” care provider may produce distorted results in
areas where two or more strong providers compete; however,
we felt that sharing ZIP areas among the providers would
overcomplicate the analysis. In the analysis, we use mortality
ratios, influenced to some extent by the chosen clinical
pathway itself, to characterize the providers and clusters.
However, as we argued in [4], this influence should be rather
limited as revascularization procedures hardly affect survival.
Finally, we characterize each center as a single entity though
several doctors working in the institution, in spite of being in
close day-to-day professional communication, may follow
different practices.

5. Conclusion

Using a totally data-driven method, we observed in our study
that despite national and international clinical guidelines,
there are strong regional patterns in medical practice.

The significantly different regional behavior in the care
methodology has quantifiable consequences in terms of care
costs and periprocedural risk of patients as significantly
higher revascularization rates and clinical procedure costs
are coupled with almost identical 365-day mortality rates.
These results may call for review of the revascularization
practices in some parts of the country.

Our network analysis of the care system has also shown
that doctors are social people who intensively communicate
professional issues. As we observed, medical universities with
their university clinics can act as opinion leaders and thus
have an important role in shaping the care process.

Further work in the field includes analyzing whether the
differences in the available care facilities at the centers have
an impact on the costs associated with the clinical care.
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