
Review Article
Apelin in Reproductive Physiology and Pathology of Different
Species: A Critical Review

Patrycja Kurowska,1 Alix Barbe,2 Marta Różycka,1 Justyna Chmielińska,1 Joelle Dupont ,2

and Agnieszka Rak 1

1Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in
Krakow, 30-387 Krakow, Poland
2INRA, Unité Physiologie de la Reproduction et des Comportements, 37-380 Nouzilly, France

Correspondence should be addressed to Agnieszka Rak; agnieszka.rak@uj.edu.pl

Received 4 January 2018; Accepted 2 April 2018; Published 6 June 2018

Academic Editor: Ludwik K. Malendowicz

Copyright © 2018 Patrycja Kurowska et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is properly cited.

Apelin has been isolated from the bovine stomach extracts as an endogenous ligand of the previously orphan receptor APJ.
Expression of the apelinergic system (apelin and APJ) was described in many organs where pleiotropic effects like regulation of
food intake, body weight, or cardiovascular and immune function were described. Recent studies have shown that apelin also
plays an important role in the regulation of female and male reproduction. Some data showed that the gene and protein of
apelin/APJ are expressed in the hypothalamic-pituitary-gonad (HPG) axis tissue. Thus, apelin is synthesized locally in the
hypothalamus, pituitary, ovaries, and testis of many species and has autocrine and/or paracrine effects. Most research indicates
that apelin has an inhibitory effect on gonadotropin secretion and participates in the direct regulation of steroidogenesis, cell
proliferation, and apoptosis in gonads. The article summarizes also results of a series of recent studies on the effect of apelin
on reproduction pathology, like polycystic ovarian syndrome, endometriosis, and ovarian cancer. Many of these pathologies
are still in critical need of therapeutic intervention, and recent studies have found that apelin can be targets in reproductive
pathological states.

1. Introduction

The hormonal interactions of the hypothalamic–pituitary–
gonadal (HPG) axis are accountable for a proper physiology
of both female and male reproduction. It is of importance to
have knowledge of new regulators/hormones controlling
reproduction. It is well known that adipose tissue is impli-
cated in the secretion of several hormones such as adiponec-
tin, resistin, leptin, visfatin, and apelin called adipokines
“adipose tissue-derived hormones.” There is evidence that
the increased production of adipokines might have a strong
link to insulin resistance, metabolic syndrome, and obesity
[1]. Apelin is a regulatory peptide, identified as an endoge-
nous ligand of the apelin receptor named APJ [2]. Recently,
the apelinergic (apelin and APJ) system was found in the
HPG axis and apelin has been extensively described as a ben-
eficial factor controlling reproduction both in females and in

males. The intention of this paper is to review current knowl-
edge concerning the expression of apelin/APJ in tissue of the
HPG axis and physiological aspects of apelin on the physiol-
ogy of both female and male reproduction. It will also
describe apelin linked with reproduction dysfunctions like
infertility, polycystic ovarian syndrome (PCOS), endometri-
osis, and ovarian cancer. Many of these pathologies are still
in critical need of therapeutic intervention, and recent studies
have found that apelin can be targets in pathological states.
Therefore, apelin activity could be applied in the future in
the treatment of many diseases of the reproductive system.

2. Apelin: Structure, Expression, and Function

2.1. Structure of Apelin. Apelin has been isolated from the
bovine stomach extracts as an endogenous ligand of the
previously orphan receptor APJ (putative receptor protein
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related to the angiotensin receptor ATl), which is a G
protein-coupled receptor [2]. Human apelin is encoded by
the APLN gene located on chromosome Xq 25-26 [2]. This
peptide has a 77-amino-acid preproapelin precursor and
exists in multiple molecular forms with different biological
activities. Native preproapelin, as a result of enzymatic
hydrolysis, is transformed into active forms: apelin-36
(preproapelin-42–7), -17 (preproapelin 61–77), and -13
(preproapelin-65–77) and pyroglutamate-apelin-13 (pyr-
apelin-13) (Figure 1) [2, 3]. Shorter forms of apelin (apelin-
13) show much higher biological potency than longer forms
do (apelin-36); thus, apelin-13 has been used for many differ-
ent in vitro and in vivo experiments to investigate several
physiological functions of apelin [2]. Additionally, pyr-
apelin-13 and apelin-17 show a conserved binding to the
angiotensin-converting enzyme 2 (ACE2) catalytic site and
human ACE2 can cleave pyr-apelin-13 and apelin-17 [4].
Pyr-apelin-13 is a major isoform in human tissues, for
example, in cardiac tissue from patients with coronary
artery disease [5], and the plasma ranges from 7.7 to
23.3 pg/ml [6]. Moreover, pyr-apelin-13, apelin-13, and
apelin-36 have similar efficacy and potency in cardiovascular
tissues of humans [5].

The N-terminal region of apelin is rich in hydrophobic
amino acids, indicating that these represent secretory signal
sequences, while the C-terminal region has a sequence of 23
amino acids. It is conserved and critical for biological activity
[2, 7]. Bovine, human, rat, and mouse preproapelin precur-
sors have 76–95% homology. The endogenous form of these
proteins is a dimer linked by a disulfide bond [6]. Mature
forms of apelin do not have cysteine residues, and they are
probably only monomeric proteins [7]. In order to bind
apelin to its receptor, it is necessary to have a 13-amino-

acid C terminus, which is observed in the in apelin-36 and
pyr-apelin-13 [8].

2.2. Expression of Apelin. Apelin expression (mRNA and
protein) was detected in various tissues and organs such as
stomach, brain, heart, lung, uterus, and ovary (Figure 2)
[8–10]. Additionally, literature data also documented apelin
localization in the endothelia of small arteries in many organs
such as lung, spleen, liver, pancreas, and adipose tissues in
rats [3, 11]. Expression of apelin increases during adipocyte
differentiation, and its production is regulated by several fac-
tors such growth hormone (GH) or tumor necrosis factor
(TNF-α) and insulin which increased apelin production by
adipocytes [12].

2.3. Function of Apelin. The apelin signaling pathway plays a
role in the central and peripheral regulation of the cardiovas-
cular system, such as blood pressure and blood flow, in water
and food intake, energy metabolism, and possibly immune
function (Figure 2) [10, 13]. Apelin causes endothelium-
dependent vasorelaxation by triggering the release of nitric
oxide (NO), and it increases myocardial contractility [3, 14].
Moreover, it is reported that apelin is a potent angiogenic
factor inducing endothelial cell proliferation, migration,
and the development of blood vessels in an in vivo study
[14, 15]. APJ mRNA expression was detected in areas of
the brain critical for the control of fluid homeostasis, so
apelin may play a role in the regulation of water balance
[7]. Levels of apelin and APJ mRNA increase in white adi-
pose tissue and plasma with obesity than in control subjects.
However, obesity has to be associated with hyperinsulinemia
[12, 16], so it may be the main cause for the rise in the
expression of apelin. On the other hand, apelin inhibits
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Figure 1: Amino acid sequence of native apelin and apelin isoform structure. ACE2: angiotensin I-converting enzyme 2.
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insulin release [17]. Data of Heinonen et al. [16] showed a
positive correlation between the level of apelin in plasma
and the body mass index (BMI). Furthermore, research
studies based on young females with eating disorders
showed the highest level of apelin in the group of obese
patients [17]. Apelin serum levels are related to the nutri-
tional status and parallel insulin plasma levels in mice and
humans [12, 18]. Furthermore, apelin plasma concentrations
are increased in obese [16] and type 2 diabetic subjects [19]
as well as in hyperinsulinemic obese mice [12]. In mice,
apelin inhibited glucose-stimulated insulin secretion in pan-
creatic islets [20], suggesting a link with glucose homeosta-
sis. Recently, a 14-day apelin treatment in mice was shown
to regulate adiposity and to increase uncoupling protein
expression [21], suggesting a role of apelin in energy
metabolism. Literature data documented also that apelin
has anti-inflammatory effects on the release of inflamma-
tory mediators [22]. It also inhibits release of reactive
oxygen species (ROS) in adipocytes and promotes an
expression of antioxidative enzymes [23]. Additionally,
apelin may play an important role in lymphatic tumor
progression, because its overexpression was proved in rat
malignant cells [24].

3. Characteristic of Apelin Receptor: APJ

3.1. Apelin Receptor (APJ). This receptor is encoded by
the APLNR (also known as AGTRL1, APJR, APJ, and
FLJ90771) gene [25]. APJ is a class G protein-coupled recep-
tor (GPCR) identified in 1993, and its structure shows high

homology (40–50% in the transmembrane region) with
angiotensin II receptor type AT1, but angiotensin II is
unable to attach to this receptor [26]. The exact location
of this gene was also determined for mice on chromosome
2E1 and for rats on chromosome 3q24 [27]. Both the struc-
ture and functioning of the human gene promoter APJ
have not been fully understood [7]. APJ has a high (90%)
similarity between human, rat, and mouse [28, 29] and
about 50% between man and royal macaque, cow, frog,
and zebrafish Danio rerio [7].

APJ, due to the different affinity for various forms of
apelin and cointeraction with different G (Gα, Gβ, and Gγ)
proteins, interacts with activation of many signaling path-
ways [2] (Figure 3), thereby causing various effects in the
body. In early experiments, apelin-13 has been observed to
inhibit forskolin’s stimulating effect on 3′,5′-cyclic adenosine
monophosphate (cAMP) by binding APJ to the Gi/o protein
[2]. These studies have been confirmed by Habata and coau-
thors [6], who proved that both apelin-13 and apelin-36 are
not capable of generating calcium (Ca2+) mobilization in
Chinese hamster ovary (CHO) cells. The different effects of
both of these apelin isoforms are observed in neurons and
in the human embryonic kidney cell line (HEK-293), where
both isoforms increase Ca2+ levels [30]. APJ can also act via
Gαi1 and Gαi2 proteins to inhibit adenylate cyclase in rats
[31]. In turn, the CHO and the HEK-293 cell lines bind
apelin with the APJ receptor via Gαi2 and then consequently
activate the extracellular signal-regulated kinase (ERK 1/2)
pathway [32]. Additionally, apelin binding APJ activated
phosphorylation of phosphoinositide 3-kinase (PI3K) and
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Figure 2: Apelin expression and function in the organism. ACTH: adrenocorticotropic hormone; PRL: prolactin; LH: luteinizing hormone;
FSH: follicle-stimulating hormone.
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protein kinase B (Akt), which play an important role in cell
proliferation or apoptosis. Apelin phosphorylates also the
ribosomal S6 kinase (p70S6K) in human umbilical vein cells
(HUVEC), thereby promoting the proliferation of these cells
[31]. APJ signaling changes the level of ROS, so that apelin
with APJ can stimulate catalase production and inhibit the
production of hydrogen peroxide, thus protecting against
cardiac hypertrophy [33]. In addition, apelin, by reducing
ROS production and activating the actin kinase, protects
mouse neurons from cell death [34]. One form of apelin, ape-
lin-13, through kinase 5′AMP-activated kinase (AMPK)
phosphorylation, lowers the process of mouse neuronal apo-
ptosis after stroke. Studies on APJKO knockout mice have
shown that apelin-13 by binding with APJ negatively regu-
lates AMPK, which lowers the lipolysis process, the hydro-
lytic degradation of triglyceride in adipose tissue to fatty
acids and glycerol [35, 36].

Gene and protein expression of APJ has been demon-
strated in several tissues including the brain, ovary, kidney,

pancreas, breast, and heart. Moreover, in humans, expression
of APJ was high in the human brain and spleen and slightly
lower in the ovary and placenta. In contrast, in the case of
rat and mouse, the highest APJ expression was observed in
the heart cells [7]. APJ expressions are regulated by many
factors, for example, estrogens, insulin, cAMP, and CCAAT-
(C/EBP-) binding protein, and strong brain stress signifi-
cantly stimulates APJ secretion by adipose tissue cells [37].

3.2. ELABELA/Toddler as a Ligand of APJ. The recent discov-
ery of a new endogenous peptide ligand for APJ, currently
known as both Toddler [38] and ELABELA [39], followed
screens to discover signals regulating early development.
Although characterized in zebrafish, a high degree of conser-
vation of the ELABELA/Toddler gene in vertebrate species
including humans implies likelihood of similar importance
in human development, but this has yet to be shown. Like
apelin, this peptide exists in multiple endogenous isoforms
[40]. ELABELA/Toddler signaling is motogenic, and its
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absence or overproduction reduces the movement of mesen-
dodermal zebrafish cells during gastrulation, inhibiting
proper development [38]. Moreover, in ELABELA/Toddler
KO knockout zebrafish, the cells of the endoderm have
impaired differentiation potential and embryos exhibit
stunted or completely absent heart development. This
mirrors the phenotype observed in targeted deletion of APJ
(APJKO) embryos [39]. Apelin KO embryos, on the other
hand, do not have this phenotype. Systemic administration
of ELABELA/Toddler in ELABELA/Toddler KO zebrafish
rescues the otherwise aberrant phenotype [38].

Receptor activation studies revealed that the zebrafish
Toddler-21 peptide acts by binding APJ and inducing recep-
tor internalization [38]. Moreover, the expression profiles of
ELABELA/Toddler and apelin differ during zebrafish devel-
opment [38]. In particular, during gastrulation ELABELA/
Toddler is highly expressed, whereas apelin expression
remains low. Following this period, however, ELABELA/
Toddler expression drops sharply and apelin levels begin to
rise steadily. All these findings indicate that ELABELA/Tod-
dler is a developmentally critical APJ ligand whose signaling
behavior differs significantly from that of apelin. The exact
intracellular signaling mechanism(s) of ELABELA/Toddler
remains unknown. ELABELA/Toddler by activated G pro-
tein- and β-arrestin-dependent pathways acts in the human
heart. Moreover, apelin acting on cardiac contractility and
vasodilatation in in vitro experiments in rat heart [41].
Another team discovered that ELABELA/Toddler increases
cardiac contractility in an ERK1/2-dependent manner in
adult rat hearts [42].

4. Physiology and Pathology of Apelin in the
Hypothalamus–Pituitary Axis

4.1. Expression and Effect of Apelin on the Hypothalamus–
Pituitary–Axis. The central nervous system, especially in
the hypothalamus and pituitary, contains primary sites of
apelin action. The apelinergic neurons were firstly observed
in the central nervous system of rats using the immunohisto-
chemistry method [43], indicating the topographical distri-
bution of apelinergic neurons suggesting multiple roles for
apelin in the control of behaviors, pituitary hormone release,
and circadian rhythms. Apelin and APJ gene expression was
observed in the hypothalamic supraoptic nucleus and in the
magnocellular and parvocellular parts of the paraventricular
nucleus (PVN) in rats [43]. In the hypothalamus, apelinergic
nerve fibers were detected in the periventricular, suprachias-
matic, ventromedial, dorsomedial, nucleic, and retrochias-
matic areas. The immunofluorescence method shows that
apelin-immunoreactive neuronal cell bodies were localized
throughout the rostrocaudal extent of the mouse activity-
regulated cytoskeleton-associated protein (Arc). Moreover,
apelin localized with proopiomelanocortin (POMC) and
weakly with neuropeptide Y (NPY). By immunohisto-
chemistry using in situ hybridization, APJ is present in
Arc POMC neurons. Apelin/APJ mRNA was also detected
in the anterior and posterior pituitary and in intermediate
lobes of the rat pituitary [29]. Moreover, Reaux et al. [43]
using immunofluorescence staining discovered that apelin

is coexpressed in the anterior pituitary with corticotrophs
and somatotrophs using rats as model.

The hypothalamic localization of apelin fibers and recep-
tors suggests an involvement of apelin in the control of
hormone release [44]. In an ex vivo perifusion system of rat
anterior pituitaries, apelin-17 significantly increased basal
adrenocorticotropic hormone (ACTH) release [45]. More-
over, results of the perifusion technique for hypothalamic
explants have been demonstrated that apelin-17 increased
α-melanocyte-stimulating hormone (α-MSH) release, sug-
gesting that apelin released somatodendritically or axonally
from POMC neurons may stimulate α-MSH release in an
autocrine manner [46]. In the hypothalamus, apelin may be
involved also in food intake; in rats, apelin-13 intracerebro-
ventricular (icv) injection increased food intake by inhibited
cocaine- and amphetamine-regulated transcript (CART)
mRNA expression and serotonin secretion and by increased
orexin mRNA expression in the hypothalamus [47]. Chronic
icv infusion of apelin in the mouse hypothalamus increased
also the expression of proinflammatory factors, associated
with higher levels of interleukin-1 beta in plasma [48].
Apelin-13 in the PVN increased c-Fos expression [49] and
secretion of both plasma ACTH and corticosterone (CORT)
[50, 51]. Moreover, icv administration of pyr-apelin-13 was
used to indicate where the postranslation modification
occurs and showed apelin-13 decreasing prolactin (PRL),
luteinizing hormone (LH), and follicle-stimulating hormone
(FSH) levels [50]. An in vitro study documented that apelin-
13 increased the release of corticotropin-releasing hormone
(CRH) and vasopressin (AVP) from hypothalamic explants,
with no effect on NPY release [44, 50], suggesting that apelin
may play an important role in the hypothalamic regulation of
water intake and endocrine axes. Newson et al. [52] using
APJ KOmice had established a role for APJ in the integration
of neuroendocrine responses to acute stress and had demon-
strated a gender-specific function of apelin in peripheral
immune activation of the hypothalamus–pituitary–adrenal
axis [52]. Moreover, Tobin et al. [53] documented that
apelin-13 administration onto the hypothalamic supraoptic
nucleus increased the firing rates of vasopressin cells but
had no effect on the firing rate of oxytocin neurons, suggest-
ing a local autocrine feedback action of apelin on magnocel-
lular vasopressin neurons.

An icv administration of apelin-13 produced a dose- and
time-related antinociceptive effect; this effect was signifi-
cantly antagonized by the APJ receptor antagonist apelin-
13, indicating an APJ receptor-mediated mechanism [54].
Apelin-13 is also involved in the autophagy suppression of
neural cells; thus, it attenuates traumatic brain injury [55].
In lactating rats, apelin modulates the activity of oxytocin
neurons; the activity is inhibited by a direct action of the
apelin on its receptor, expressed by these neurons [56].

5. Physiology and Pathology of Apelin in
the Ovary

5.1. Expression and Function of Apelin/APJ in the Ovary. The
apelinergic system was found in the ovary of many species
like bovine, rhesus monkey, porcine, and human (Table 1)
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[13, 57–61]. Shimizu et al. [62] demonstrated that in bovine
follicles the expression of apelin mRNA was not found in
granulosa cells (Gc), while the APJ gene was increased in
Gc of estrogen-inactive dominant follicles. Additionally, the
expression of apelin mRNA increased in theca cells (Tc) of
estrogen-inactive dominant follicles but APJ expression in
Tc increased with follicle growth [62]. In vitro experiments
of bovine ovarian cells showed that several factors regulated
apelin/APJ expression; for example, progesterone (P4) and
FSH stimulated the expression of APJ mRNA in the cultured
Gc, while LH induced the expression of apelin and APJ in
cultured Tc [62]. In the next study, Schilffarth et al. [13]
observed that in the bovine ovary, the expression level of
apelin during the oestrous cycle was significantly higher
compared to the one during pregnancy. Moreover, apelin
mRNA was high during the cycle and decreased after corpus
luteum (CL) regression, while in ovarian follicles the expres-
sion of apelin/APJ was significantly upregulated in follicles
with an estradiol (E2) concentration of more than 5ng/ml,
suggesting that the apelin/APJ system is involved in the
mechanism regulating angiogenesis during follicle matura-
tion as well as during CL formation and function in the
bovine ovary [13]. Our last data demonstrated that the
expression of both apelin and APJ in bovine granulosa and
oocytes significantly increased with ovarian follicle size
whereas it was similar in theca interstitial cells [59]. Further-
more, in vitro experiments showed that insulin-like factor I
(IGF1) increased apelin expression, whereas it decreased
the mRNA expression of APJ [59]. In the porcine ovary, ape-
lin concentration in the follicular fluid and expression of both
apelin and APJ increased with follicular growth; the greatest
values were found in large follicles [61]. Immunohistochem-
istry revealed the positive staining for apelin and APJ in
membranes of porcine Gc, than in Tc; additionally, a strong
expression of apelin in oocytes and APJ in the zona pellucida
was observed [61]. Similar as in bovine CL, our data also
documented that in porcine CL, apelin/APJ is dependent
on the CL growth and development phase; apelin expression
was similar in early and middle CL and then decreased in
regressing CL [63]. Moreover, localization of apelin was
found in the cytoplasm of luteal cells in all stages of CL devel-
opment, while the strongest APJ staining was found in mid-
dle cells [63]. Roche et al. [58] demonstrated apelin and APJ
at the gene and protein levels also in human ovarian cells and
granulosa cell lines (KGN). These authors demonstrated
higher immunolocalization of APJ in human Gc, cumulus,
and oocyte as compared to Tc. The high expression is also
demonstrated in primary, medium, and mature follicles;
apelin/APJ is expressed in the cytoplasm and nuclei of
Gc [58].

The presence of apelin/APJ (Table 1) in various ovarian
cells and its change during ovarian follicles and CL develop-
ment suggests a potential role of apelin in the control of
several aspects of ovarian cell function such as folliculogen-
esis, steroid hormone secretion, proliferation, or apoptosis.
In vitro studies indicate that apelin may directly regulate
steroidogenesis in ovarian cells. Apelin by activation of the
APJ receptor causes a statistically significant increase in P4
and E2 secretion and 3β-hydroxysteroid dehydrogenase/

Δ5–4 isomerase (3βHSD) protein level both in primary cell
cultures and in IGFI-induced human and porcine ovarian
cells [58, 59, 61]. As a molecular mechanism of apelin
action on the steroid synthesis process authors considered
activation of the serine–threonine kinase, mitogen acti-
vated protein kinase (MAPK3) and AMPK kinase path-
ways [58]. Similar results have been obtained in in vitro
studies of bovine ovarian cells, which show that apelin
stimulates P4 production and proliferation of these cells
by activating Akt kinase [59]. In addition, the authors
demonstrated an inhibitory effect of apelin on the
in vitro maturation of bovine oocytes and the release of
P4 by cumulus cells, indicating the direct role of this adi-
pokine in the maturation of oocytes. Shuang et al. [64]
showed that apelin stimulates proliferation and inhibits
the process of apoptosis in rat Gc by activating the Akt
kinase pathway. In addition, Shimizu et al. [62] suggest
involvement of apelin in follicular atresia induced by Gc
apoptosis during bovine follicular because they have
demonstrated high expression of the APJ receptor in atretic
bovine follicles.

Apelin is also a regulator of the CL luteolysis process [57].
In the middle CL (sensitive to PGF2α), a transient increase in
blood flow associated with the stimulation of endothelium
nitric oxide (eNOS) was observed, which is the first signal
that initiates luteolysis [65]. Apelin activates the eNOS path-
way through stimulation of nitric oxide production, resulting
in the expansion of blood vessels [3]. Another mechanism to
explain the luteolytic effect of apelin is CL apoptosis. Apelin
is one of the factors that slow down the process of ovarian
apoptosis. On the other hand, apelin induces the expression
of the antiapoptotic B-cell lymphoma 2 (Bcl-2) protein, while
decreasing proapoptotic Bax production further blocks the
release of cytochrome c and activates the caspase-3 apoptosis
executive enzyme resulting in apoptosis suppression in
osteoblast cells [66].

5.2. Apelin and Ovarian Pathology. PCOS is the most
common cause of infertility due to lack of ovulation. This
syndrome was first described by Stein and Leventhal in
1935. They described women with excessive hair, obesity,
and ovaries covered with cysts. It is the main endocrinopathy
of reproductive-age women. PCOS also binds to insulin resis-
tance, which results in hyperinsulinism, which affects the
production of androgens by the ovaries and adrenal glands.
There are also changes in the lipid and carbohydrate econ-
omy, which in turn leads to diabetes type 2 and cardiovascu-
lar and biliary tract diseases. Increased risk of endometrial
cancer and diabetic pregnancies, preeclampsia during preg-
nancy, or venous thrombosis are also symptoms of this
condition [67]. Genetic factors responsible for PCOS patho-
genesis are mutations in the genes responsible for steroid
hormone synthesis, regulation of gonadotropins, and those
associated with the pathway for weight regulation. Environ-
mental factors can also be classified as obesity, occurring in
50% of patients, resulting in disorders of implantation, cycle,
ovulation, and miscarriage [68]. The results of Roche’s et al.
[58] data compared the expression of apelin and APJ in Gc
from obese or nonobese patients with or without PCOS. They
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observed that apelin and APJ mRNA expression is increased
in PCOS patients, and it was higher in obese patients [58],
suggesting the role of apelin as a marker of PCOS pathogen-
esis (Figure 4). Moreover, higher levels of apelin-13 in
follicular fluid in obese women compared to nonobese
women in both the PCOS and non-PCOS groups was
observed [58]. However, the published data comparison of
serum apelin levels in PCOS and non-PCOS women is incon-
clusive. Some authors point to its considerable elevation in
serum PCOS [69–74]. Data of Sun et al. [72] indicated a
weight-dependent increase in the concentration of apelin in
obese women with PCOS compared to PCOS-deficient
women. Apelin was found to be higher in PCOS patients by
Gören et al. [70] but without a significant correlation with
homeostatic model assessment (HOMA-IR). Olszanecka-
Glinianowicz et al. [73] reported an inverse association
between apelin and glucose, insulin, and HOMA-IR values,
supporting the role of apelin in the regulation of insulin
sensitivity. Apelin levels were higher in nonobese PCOS
patients, suggesting a compensatory mechanism for meta-
bolic consequences of insulin resistance. Comparative results
of studies showing lower serum apelin levels in PCOS have
been obtained by several authors [73–76]. Different from
Cekmez et al.’s study [69], lower serum concentrations of
apelin were found in PCOS subjects by Altinkaya et al. [75]
with a positive correlation with BMI, insulin, HOMA-IR,
triglyceride, and free testosterone, speculating that apelin
can be used as a marker for insulin sensitivity. Conversely,
Sun et al. [72] observed a significantly enhanced apelin
concentration in PCOS patients with a positive association
with BMI and HOMA-IR; treatment with drospirenone–
ethinylestradiol plus metformin improved insulin resistance
and apelin levels. Discrepant findings among the published

studies may be attributed to the differences in ethnicity,
age, study design, sample size, genetic characteristics of
populations, and assessment methodology, defining PCOS
definitions; the difference in the test was used to analyze the
concentration of different apelin isoforms.

Another ovarian pathology that has been recently linked
to apelin action is endometriosis. Endometriosis is a disease
which is characterized by the survival and growth of endome-
trial tissue outside the uterus primarily in the pelvic area. It is
one of the most common gynecological diseases with up to
10% of women in the USA suffering from its symptoms
which include infertility and severe pelvic pain [77]. This
disease is highly estrogen-dependent and is accompanied by
a major inflammatory response. Apart from surgical removal
of endometriotic lesions, the main therapeutic approach is
continuous treatment with progestins to inhibit the prolifer-
ation of this ectopic tissue which is not always effective [77].
Therefore, investigation of steroid hormone signaling in this
disease is critical to identifying new therapeutic targets.
Apelin might be a factor playing a role in the endometrial
regeneration via angiogenesis. Ozkan et al. [77] using the
immunohistochemistry method and immunoassay detected
apelin in the eutopic and ectopic endometrium of women
with or/and without endometriosis. Apelin concentrations
increased during the secretory phase and decreased during
proliferative phases of eutopic and ectopic endometrial tis-
sue. Moreover, the higher immunoreactivity of apelin was
observed in the endometrium in the secretory phase and in
glandular cells of both eutopic and ectopic endometrial
tissues, suggesting that increased local apelin concentration
may indicate a paracrine function on the endometrium
[77]. Additionally, apelin causes endothelium-dependent
vasorelaxation by triggering the release of nitric oxide and

Physiology Pathology

[58, 66] ↑Luteolysis
eNOS pathway activation

[61, 65] ↓ Apoptosis
↑ BCL-2, ↓ Bax

[60, 62, 65] ↑ Steroidegenesis
Activation of APJ and Akt/MAPK/AMPK

[60, 65] ↑ Proliferation
PI3K/Akt activation

PCOS [70−71]
inconsistent:
↑ ↓ 

Ovarian cancer [80]
↑ Proliferation 

Endometriosis [78]
↑ Angiogenesis
↓ Blood vessel development

Figure 4: Apelin effect on ovarian physiology and pathology. eNOS: endothelium nitric oxide; Bcl-2: B-cell lymphoma 2; APJ: apelin receptor;
Akt: protein kinase B; MAPK: mitogen-activated protein kinases; AMPK: 5′AMP-activated kinase; PI3K: phosphoinositide 3-kinase;
PCOS: polycystic ovary syndrome.
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is a potent angiogenic factor inducing endothelial cell (EC)
migration, proliferation, and blood vessel in vivo develop-
ment, indicating its effects as a chemoattractant for endo-
thelial cell growth [77].

Recent data indicate the relationship between apelin and
ovarian cancer. Ovarian tumors, the second most common
type of gynecological malignancy [78], are heterogeneous
neoplasms classified into three major categories, namely,
epithelial ovarian tumors, sex cord-stromal tumors (e.g.,
granulosa cell tumors), and germ cell tumors. Epithelial
tumors account for 80% to 90% of ovarian malignancies,
whereas Gc tumors account for 1% to 2% of ovarian malig-
nancies in the USA and Europe. Data of Hoffmann et al.
[79] documented the expression of apelin/APJ in different
ovarian cell lines; they observed that the APJ expression level
was higher in epithelial cancer cells than in Gc tumor,
whereas the reverse was true for apelin expression and secre-
tion. Additionally, these data indicate that apelin stimulated
OVCAR-3 cell proliferation and suggest its mitogenic action
in ovarian epithelial cancer cells. Furthermore, recent studies
report that apelin stimulates cancer cell migration in the
lung, oral cavity, and colon [80, 81].

6. Physiology and Pathology of Apelin in
the Testis

To our knowledge, there is one published data demonstrating
the effect of apelin on male reproduction. Infusion of apelin-
13 in male rats significantly suppressed LH release compared
with the vehicle values, while levels of FSH did not signifi-
cantly differ among the groups [82]. Furthermore, serum
testosterone levels in the apelin-13 group were statistically
lower than in the control group; histological examination
showed that infusion of apelin-13 significantly decreased
the number of Leydig cells, suggesting that apelin may play
a role in the central regulation and decrease testosterone
release by suppressing LH secretion. Finally, these authors
concluded that the agonist of APJ may be a useful drug for
pharmaceuticals in the treatment of male infertility [82].

7. Summary and Conclusion

In summary, the apelinergic (apelin and APJ) system was
found in the hypothalamus, pituitary, ovaries, and testis of
many species and has autocrine and/or paracrine effects on
control reproduction both in female and in male regulation
of their physiology. Most research indicates that apelin has
an inhibitory effect on gonadotropin and PRL secretion in
females, while in male rats, an inhibitory effect of apelin on
LH and testosterone was observed in in vivo experiments.
Apelin also participates in the direct regulation of ovarian
physiology; it was clearly documented that apelin has a
stimulatory effect on steroidogenesis and proliferation but
an inhibitory action on cell apoptosis by activation on several
kinase pathways such as AMPK, ERK, and Akt. Based on
available data, we speculated that apelin has a connection
with such dysfunctions like PCOS, endometriosis, and
mitogenic action in ovarian cancer. Many of these patholo-
gies are still in critical need of therapeutic intervention, and

recent studies have found that apelin can be a target in
pathological states. Therefore, apelin activity could be
applied in the future in the treatment of many diseases of
the reproductive system.
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