
Systems biology

An algorithm for automated layout of process

description maps drawn in SBGN

Begum Genc1,2 and Ugur Dogrusoz2,3,*

1The Insight Centre for Data Analytics, University College Cork, Western Road, Cork, Ireland, 2Computer

Engineering Department, Faculty of Engineering, Bilkent University, Ankara 06800, Turkey and 3Sander Lab,

Memorial Sloan-Kettering Cancer Center, 417 E68th St., New York, NY 10065, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on June 8, 2015; revised on August 12, 2015; accepted on August 25, 2015

Abstract

Motivation: Evolving technology has increased the focus on genomics. The combination of today’s

advanced techniques with decades of molecular biology research has yielded huge amounts of

pathway data. A standard, named the Systems Biology Graphical Notation (SBGN), was

recently introduced to allow scientists to represent biological pathways in an unambiguous, easy-

to-understand and efficient manner. Although there are a number of automated layout algorithms

for various types of biological networks, currently none specialize on process description (PD)

maps as defined by SBGN.

Results: We propose a new automated layout algorithm for PD maps drawn in SBGN. Our algo-

rithm is based on a force-directed automated layout algorithm called Compound Spring

Embedder (CoSE). On top of the existing force scheme, additional heuristics employing new

types of forces and movement rules are defined to address SBGN-specific rules. Our algorithm is

the only automatic layout algorithm that properly addresses all SBGN rules for drawing PD

maps, including placement of substrates and products of process nodes on opposite sides, com-

pact tiling of members of molecular complexes and extensively making use of nested structures

(compound nodes) to properly draw cellular locations and molecular complex structures. As

demonstrated experimentally, the algorithm results in significant improvements over use of a

generic layout algorithm such as CoSE in addressing SBGN rules on top of commonly accepted

graph drawing criteria.

Availability and implementation: An implementation of our algorithm in Java is available within

ChiLay library (https://github.com/iVis-at-Bilkent/chilay).

Contact: ugur@cs.bilkent.edu.tr or dogrusoz@cbio.mskcc.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Popular belief is that diagrams directly address people’s innate cog-

nitive abilities (Larkin and Simon, 1987). Due to the fact that sym-

bols, diagrams and other graphical representations vary widely

around the world, it is necessary to have a common interpretation.

Standard notations play an important role in communication and

facilitate rapid development in many research areas.

To address this issue in the field of systems biology, a group of

modelers, biochemists and software engineers published the Systems

Biology Graphical Notation (SBGN), which allows scientists to rep-

resent biological pathways and networks in an easy-to-understand

and efficient way (Le Novère et al., 2009). It consists of three com-

plementary languages: process descriptions (PD), activity flows and

entity relationships.

VC The Author 2015. Published by Oxford University Press. 77
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 32(1), 2016, 77–84

doi: 10.1093/bioinformatics/btv516

Advance Access Publication Date: 10 September 2015

Original Paper

https://github.com/iVis-at-Bilkent/chilay
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv516/-/DC1
http://www.oxfordjournals.org/


In this article, we propose a new automated layout algorithm

that enforces SBGN-specific rules for PD maps. As depicted in

Figure 1, layouts produced by general purpose graph layout algo-

rithms fall short in certain significant ways:

i. Product and substrate edges of a process node are not necessar-

ily placed on opposite sides of associated process nodes.

Moreover, SBGN states that each process has two ports as at-

tachment points.

ii. Degree zero members inside a molecular complex are not effi-

ciently packed, often wasting large amounts of area.

iii. Cellular locations of processes are not shown in the map.

Our proposed layout algorithm is the only one that successfully

addresses these issues, producing layouts that comply with SBGN-

PD notation. Other software providing SBGN-PD maps make use of

generic layout algorithms with limited success. For instance, Vanted

(Junker et al., 2006) provides generic force-directed layout with no

support for compound structures. CellDesigner (Funahashi et al.,

2003) also provides a rich set of generic layout algorithms, including

one with compound support imported from a commercial library.

2 Background

2.1 Graphs and PD maps
The basics of graph theory are provided in the Supplementary

Material. A compound graph (Fig. 2) C¼ (V, E, F) consists of nodes

V, adjacency edges E and inclusion edges F (Dogrusoz et al., 2009).

An SBGN-PD map represents all the molecular processes and

interactions taking place between biochemical entities, and their re-

sults. The underlying representation is essentially a bipartite com-

pound graph. These maps depict how entities or so-called entity

pool nodes (EPN) transition from one form to another as a result of

different influences, portraying the temporal qualities of molecular

events occurring in biochemical reactions (Le Novère et al., 2009).

The way in which one type of entity is transformed into another is

conveyed by a process node. We call EPN’s consumed and produced

by a process substrate (input) and product (output) nodes, respect-

ively. In addition, the EPNs that control (e.g. modulate or stimulate)

a process are called effector nodes (Fig. 3).

An exchange file format for SBGN maps named SBGN-ML was

recently introduced (van Iersel et al., 2012).

2.2 Automated layout and Compound Spring

Embedder (CoSE)
The purpose of performing layout on a graph is to make a pictorial

representation that is as clear and pleasant as possible. A poor lay-

out of a graph may confuse the user, whereas a well-organized and

aesthetically pleasing layout can improve the user’s ability to under-

stand the underlying data. Criteria of a good layout may differ from

person-to-person. However, among the generally accepted ones

(Battista et al., 1998) are minimal total drawing area, number of

edge–edge crossings and total edge length, producing uniform edge

lengths, and ability to reflect any symmetries in the network.

Fig. 1. SBGN states that product and substrate edges of a process node (small gray squares) should be placed on opposite sides of the associated process node,

attached via an input and an output port, respectively (A). A general purpose layout algorithm will not properly pack degree 0 members (rounded rectangles with

information bulbs) inside a molecular complex (B). The processes that take place inside a cellular compartment are not clearly separated from those occurring

outside that compartment (C)

Fig. 2. An example compound graph of multiple levels of nesting, where

V ¼ fa;b; . . . ; jg; E ¼ ffa;bg; fa;gg; fd ; eg; fd;gg; ff ;gg; ff ;hg; fg;hg; fi; jgg
and F ¼ fbc;bd;be; cf ; cg; ch; ei ; ejg

Fig. 3. A sample process node with three subtsrate nodes and two product

nodes, and two effector (one modulator and one stimulator) nodes

78 B.Genc and U.Dogrusoz

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv516/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv516/-/DC1


Force-directed layout algorithms (also known as spring embed-

ders) are arguably the most popular type of automatic graph layout,

where the basic idea is to simulate a physical system obeying the

laws of Hooke and Coulomb.

CoSE is a force-directed layout algorithm that supports com-

pound nodes (Dogrusoz et al., 2009). Certain additions have been

made on the basic spring embedder model to handle compound

nodes. The main idea is to represent an expanded node and its asso-

ciated nested graph as a single entity, similar to a ‘cart’, which can

move freely (details provided in the Supplementary Material).

2.3 Rectangle packing and compaction
The rectangle packing problem can be defined as packing a number

of non-uniformly sized, rectangle-shaped objects into a container,

such that there will be no overlaps between the objects and the con-

tainer will be as compact as possible. This problem, defined in two-

dimensions, is an NP-hard problem (Garey and Johnson, 1979).

Almost all graph drawing algorithms try to minimize drawing

area by assuming that the graph is connected (Dogrusoz et al.,

2002). However, if the graphs have disconnected members (e.g.

members of molecular complexes), most such algorithms yield poor

results in respect to minimizing wasted area. Various packing tech-

niques have been used in graph layout to pack disconnected parts

(disconnected nodes or connected components) of a graph, including

tiling (Dogrusoz, 2002) and polyomino packing (Freivalds et al.,

2001). Success of a packing method is usually measured by the ad-

justed fullness of the resulting drawing, which is basically the ratio

of the total area of the nodes being packed to the area of the tightest

bounding rectangle with specified aspect ratio for the drawing.

Results of packing could often be improved through computa-

tion of a visibility graph and applying compaction (de Berg et al.,

2008). The visibility in this context refers to the feasibility of draw-

ing a collision-free straight line between two nodes.

3 Methods

We introduce a new, specialized algorithm for layout of SBGN-PD

maps. Since SBGN-PD notation makes exclusive use of compound

structures, our algorithm was based on CoSE, addressing SBGN-specific

rules in PD maps as summarized here and detailed subsequently:

i. Additional force types and associated procedures on top of the

force scheme employed by CoSE were introduced to congregate

substrate and product edges at input and output process ports,

respectively, and to place substrate and product entities on op-

posite sides of the associated process.

ii. Tiling or other packing methods are employed to produce more

compact and aesthetically pleasing layouts of disconnected

nodes.

iii. Display of cellular locations is no longer an issue since CoSE

can handle any level of nesting.

3.1 Handling process nodes
SBGN rules state that substrates and products of a process can only

attach to the process from its input and output ports, respectively,

placed vertically or horizontally on opposite sides. In order to avoid

unnecessary edge crossings and clearly display the flow in a process,

its substrate and product nodes should be positioned near the associ-

ated ports. Besides, not clearly separating substrates and products of

a process via ports will make reversible processes ambiguous.

However, generic layout algorithms, including CoSE, will not re-

spect this convention (Fig. 4).

3.1.1 Handling process ports

In order to equip process nodes with ports in SBGN-PD layout,

without interfering with the existing physical system too much, we

introduce new node and edge types (Fig. 5). A new node type called

port node is introduced to represent ports of a process. These nodes

are set to have negligible dimensions. In addition, a new edge type

called port edge is introduced to keep a process node and its two

associated port nodes together. These edges are assumed to be

‘rigid’, not exerting any spring forces on the associated port and pro-

cess nodes. Finally, a new compound node type called process con-

tainer is introduced to enclose and tightly keep together the

associated process along with the newly introduced dummy port

nodes and edges.

We treat these new node and edge types specially, and do not cal-

culate spring forces for rigid edges, repulsion forces between a pro-

cess and its port nodes, and gravitation forces for process and port

nodes.

3.1.2 Orienting processes

SBGN allows ports of a process node to be placed either horizon-

tally or vertically. Without proper orientation of substrates and

products of a process, layout might easily produce edge crossings

even with a single process (Fig. 6). To avoid such problems and

properly orient processes and place their substrates (products) near

Fig. 4. Drawing of processes in CoSE (left) versus SBGN (right); SBGN makes

use of ports to clearly separate what is consumed and produced by a process

Fig. 5. How a process with two substrates, two products and one effector node should be displayed in an SBGN-PD map (A). How our algorithm internally repre-

sents such a process using newly introduced dummy port nodes (small filled square) and edges, and process container compound node (unfilled rectangle) (B).

Associated physical model of our algorithm (gravitational fields not shown for brevity) (C)

Algorithm for automated layout of SBGN maps 79

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv516/-/DC1


the input (output) port, we introduce a new force type named rota-

tional force into the force scheme.

Rotational forces are exerted on dummy container nodes by the

associated substrate and product nodes, which indirectly results in

rotation of process nodes. The main idea behind applying rotation

is that if a group of neighboring nodes persistently pull their

process node in a direction against the current orientation of the

process, a decision is made to change the orientation of the

container compound node by either applying a 90� or 180� rota-

tion. In SBGN, a process node may assume one of four discrete

orientations: left-to-right, right-to-left, bottom-to-top and top-to-

bottom.

The magnitude of the rotational force Ft(P) acting on a process

node P should be proportional to how much the neighboring nodes

deviate from their ideal positions:

jjFtðPÞjj ¼
Xns

i¼1

ai þ
Xnp

i¼1

bi þ
Xne

i¼1

ci; (1)

where ns (np or ne) denotes the number of substrate (product or ef-

fector) nodes of process P, and ai (bi or ci) denotes the angle ith sub-

strate (product or effector) node makes with the line ray emanating

from the center of the process node and going toward the input port

(output port or ideal effector position) (Fig. 7B).

Absolute value of these angles could be calculated by taking

cross product between the vectors from the connection point (associ-

ated port or center of process) to the neighboring node location and

from the connection point to the ideal position of the neighboring

node. For instance, for substrate i:

jaij ¼ arccos
~Ii;x � ~ds;x þ ~Ii;y � ~ds;y

jj~Ii jj � jj~ds jj
; (2)

where ~Ii is the vector from the input port to the current location of

substrate i, with respective horizontal and vertical components ~Ii;x

and ~Ii;y , and ~ds is the vector from the input port to the ideal loca-

tion of substrate i. The calculation is similar for products and

effectors.

Notice, however, that the signs of these angles should be taken

into account. This could be easily calculated by performing a left

test. If the expression

ðx2 � x1Þðy3 � y1Þ � ðy2 � y1Þðx3 � x1Þ (3)

is >0, it means a left turn was taken, where (x2, y2), (x1, y1) and

(x3, y3), respectively, specify the location of the neighboring node,

the connection point (associated port or the process center) and the

ideal position. A left turn and a right one must signify opposite

signs as exemplified in Figure 7C.

If the net rotational force FtðPÞ acting on a process node P ex-

ceeds a predefined threshold determined empirically, the process is

rotated by 90� in clockwise or counter-clockwise direction, depend-

ing on its sign.

In certain cases, however, this heuristic will not suggest any rota-

tions even though a rotation is strongly needed (Fig. 8). In fact, in

such cases, a 180� rotation or a swap operation is likely to drastic-

ally improve the situation. One can determine such cases by simply

checking whether or not a majority of neighboring nodes have ob-

tuse angles as defined earlier. This check is performed before the 90�

rotation case since it is more drastic, yielding more improvement.

Again, what proportion of the neighboring nodes constitutes a ‘ma-

jority’ is determined empirically.

Rotational forces are summed up for a number of iterations.

Once every pre-defined fixed number of iterations, the sum is

Fig. 7. Rotational force acting on process P is calculated using the angles neighboring nodes make with their connection points. A sample process with three

neighbors, where dp (ds or de) represents the desired location of an input node (output node or effector node) (A). The angles that these neighbors make with the

process node with respect to the current orientation (B). Illustration of how the signs of these angels are calculated using the left-turn rule. In this example, a left

turn is assumed to signify a negative sign (C)

Fig. 8. An example, where a rotation is needed but not detected by the heuris-

tic used for 90� rotations defined earlier (A). The same process, after its ports

are swapped via a 180� rotation (B)

Fig. 6. Illustration of how the orientation of a process might affect layout: original orientation is left-to-right by default (A), left rotation by 90� (bottom-to-top) elim-

inates self crossings (B), and another left rotation by 90� (right-to-left) further improves layout (C)

80 B.Genc and U.Dogrusoz



normalized and each process node is checked for whether or not a

swap or a rotation is needed. For the sake of stability, only one swap

or rotation is allowed even when multiple processes qualify.

3.1.3 Gathering substrates and products

Proper orientation of processes will only be possible if any multiple

substrates (products) are placed near each other. We make use of an

additional location enhancement heuristic for this purpose.

The idea is not to interfere with the placement of ‘hop’ nodes

that are of degree 2 or higher but bring any degree 1 nodes, which

are ‘free’ to move without affecting the overall structure of the

spring system, closer to such high degree nodes. This should not

only help with satisfying the SBGN-PD convention with respect to

properly gathering substrates (products) together but also speed up

convergence. Consequently, we periodically identify a substrate

(product) node with highest degree and place any degree 1 substrate

(product) node near it. In order to avoid any extreme amounts of re-

pulsion forces and exploit the power of randomization, we place de-

gree 1 nodes randomly within a circle centered at this highest degree

node (Fig. 9).

Ideally, an effector should be placed in between products and

substrates. The location enhancement heuristic is similarly per-

formed on effector nodes to avoid an effector node getting ‘stuck’

among product (substrate) nodes. Consequently, once in a while, we

pull all effector nodes near their ideal position. Notice, however,

that for each orientation of a process, there will be exactly two ideal

locations for effectors. For instance, for a process oriented from left-

to-right, these are vertically aligned with the center of the process,

one being on top of the process, and the other on the bottom, both

separated from the process by ideal edge length. Again, we opt to

apply a minimal amount of randomness rather than placing them

on the exact ideal position for the same reasons explained earlier

(Fig. 9).

3.1.4 Modifications on CoSE

In order to properly handle process nodes and satisfy SBGN-specific

constraints on them, we first add a new, second phase to the CoSE

algorithm, and decrease the number of iterations CoSE performs in

the first phase since a ‘draft’ layout should suffice. Starting with this

draft layout, the new phase is responsible for addressing SBGN rules

without ruining the resultant layout, which is assumed to satisfy

generally accepted layout criteria. The difference between the SBGN

phase and earlier one can be summarized as follows. Since the

SBGN phase is expected to make local changes in the layout, the sys-

tem starts out from a lower cooling factor. Rotational forces are cal-

culated for each process node on top of the spring, repulsion and

gravitational forces calculated by CoSE. To represent process nodes

and their ports with newly introduced dummy nodes, associated

CoSE method needs to be expanded as in Algorithm 1. Hence, the

convergence is no longer solely dependent on node movements going

below a certain threshold. We also try to ensure that all substrates

and products of every process are properly oriented (Algorithm 2).

Algorithm 1 Moving nodes and applying rotation

1: function CALCNODEPOSITIONSANDSIZES(C)

2: rotationList ; //candidates for rotation

3: for all process node P 2 VðCÞ with ports pi and po do

4: TRANSFERFORCES(P)

5: RESETFORCES(P, pi, po)

6: end for

7: if ðphase ¼ SBGNÞ ^ ðtotalIter%rotPeriod ¼ 0Þ then

8: for all process node P 2 VðCÞ do

9: if NEEDSROTATION(P) then

10: rotationList:addðPÞ
11: end if

12: end for

13: ROTATERANDOMONE(rotationList)

14: end if

15: CoSE.CALCNODEPOSITIONSANDSIZES(C)

16: end function

Algorithm 2 New second (SBGN-PD) phase

1: function DOPHASE2(C)

2: totalIterations 0

3: initialCoolingFac ccool //start cooler

4: while totalIter < maxIter do

5: totalIter totalIterþ 1

6: if totalIter % apprPeriod ¼ 0 then

7: APPROXIMATELOCATIONS()

8: end if

9: if CONVERGED() ^ EDGESPROPERORIENTED() then

10: break

11: end if

12: UPDATEBOUNDS(C) //resize compounds

13: CALCSPRINGFORCES()

14: CALCREPULSIONFORCES()

15: CALCGRAVITATIONALFORCES()

16: MOVENODES() //move nodes based on total forces

17: end while

18: end function

3.2 Packing disconnected nodes
Disconnected nodes come up quite frequently in SBGN-PD dia-

grams, especially with molecular complexes, where members of a

molecular complex are all degree zero. In fact, a molecular complex

might be recursively defined from another one, resulting in poten-

tially arbitrary levels of nested disconnected nodes. Thus, any algo-

rithm to tightly pack molecular complex members could work

bottom-up, and could be easily implemented recursively.

Disconnected nodes outside molecular complexes, on the other

hand, are highly unlikely but not impossible to come across.

This problem is a special case of the popular rectangle packing

problem discussed earlier. Various techniques such as tiling and

Fig. 9. An example, where locations of substrate, product and effector nodes

(A) are enhanced using our heuristic (B). Higher degree nodes I1 and O2 are

chosen as seeds for substrate and product nodes, respectively. The effector

E1 is closer to the bottom of the two ideal positions for the left-to-right pro-

cess P it is associated with

Algorithm for automated layout of SBGN maps 81



polyomino packing have been used in the past to solve this problem

in the context of graph drawing. Since polyomino packing results

are superior only with larger number of nodes, as will be shown

later on, we went with tiling due to its simplicity for implementation

and faster running time. Notice that, most of the time, the number

of rectangles to be packed is only a few and all with similar dimen-

sions. Hence, use of a complicated algorithm is unlikely to produce

significantly more compact drawings.

Packing can be integrated into SBGN-PD layout without inter-

ference as a pre-processing step as explained in the Supplementary

Material. We would also like to remark that packing should only

be applied to a compound node with no edges (intra-graph or in-

ter-graph edges) in it. Any non-degree 0 node contained in a com-

pound structure should not be forced to a location determined by a

packing algorithm but rather should be free to move near its

neighbor(s).

3.2.1 Further compaction

After application of a packing algorithm, it is common to have more

room for improvement, which can be achieved by calculating the

visibility graph of the disconnected set of nodes to be packed. A visi-

bility graph in a certain orientation, for example bottom-to-top, is a

directed acyclic graph and represents the visibility of each node

when ‘looked’ from that node vertically toward the up direction. We

say that node v is visible by node u in bottom-to-top direction if v is

above u, and u can completely ‘see’ node v with no obstruction in

between two nodes, looking from bottom-to-top. In other words,

the nodes directly below, to the right or to the left of a node u, are

not visible by u. By using the directed acyclic structure of visibility

graphs, a topological sort is applied to get the objects in order, and

one-by-one in the computed topological order, each object is moved

closer to its ascendant.

Even though application of this algorithm in either one of four

directions might produce more compact drawings, the improve-

ments are usually minimal if any. Also notice that a separate calcula-

tion of the visibilities is required for each direction.

3.3 Running time
CoSE algorithm runs in Oðk � ðjVj2 þ jEjÞÞ time, where the under-

lying compound graph is represented with C ¼ ðV;E; FÞ, and k is

the number of iterations needed to converge. This is due to the

simple fact that, in each iteration, repulsion forces are calculated

between each node pair and spring forces are calculated for each

edge. Additional heuristics employed by our algorithm do not in-

crease the asymptotic running time since rotational forces are cal-

culated for each process node. Similarly, packing is linear in the

number of nodes to be packed, which is at most as many as all the

nodes in the compound graph. Our experiments as described in

the following section confirm this theoretical running time

analysis.

4 Implementation and Results

We implemented SBGN-PD layout within an open source layout li-

brary called Chisio Layout (ChiLay). The experiments outlined

below were performed on an ordinary PC (with IntelVR CoreTM

i7-4600U 2.10 GHz processor, 8 GB RAM, and 256 GB SSD). For

each measurement for a layout algorithm, 10 executions were per-

formed and the average was taken since spring embedders start out

from random initial positions, and this might highly affect the con-

vergence speed.

4.1 Packing
For comparing tiling and polyomino packing methods, random

compound graphs with no edges were generated. Details of these

can be found in the Supplementary material. Further compaction

through visibility is usually of no use with tiling. More importantly,

as can be seen from the results, polyomino packing has a clear ad-

vantage over tiling with large number of nodes (>60) but for smaller

graphs, like SBGN-PD maps, tiling performs just as well.

As our tests confirm, tiling is significantly faster than polyomino

packing. However, since SBGN maps have relatively small number

of nodes, running time spent on packing is negligible.

4.2 Parameter tuning
Our layout algorithm has a number of parameters to customize its

behavior. We tested the behavior of our algorithm with respect

to each such parameter and applied a comprehensive test to fine-

tune it.

In order to perform these experiments, we used 34 ‘real-life’

SBGN-PD maps as taken from Pathway Commons (Cerami et al.,

2011) database, using querying and conversion (to SBGN-ML)

facilities of Paxtools (Demir et al., 2013). These maps were chosen

to be of varying types including regulation and signaling networks,

not larger than a few hundred nodes. For larger graphs, at least one

complexity management technique can be used (Dogrusoz and

Genc, 2006).

The main criterion used for the success of the algorithm is the

ratio of ‘properly oriented’ edges to total number of edges in the

graph. To decide when an edge is properly oriented, we use a param-

eter named angle tolerance (at). Other parameters of our algorithm

are approximation distance (ad), approximation period (ap),

rotation period (rp), 90-degree rotation force threshold ðc90Þ,
180-degree rotation ratio threshold (c180) and phase 1 maximum it-

eration count (ip1).

Before experimenting with individual parameters, we wanted to

find the most coherent set of values of these parameters given a

discrete set of values for each parameter as specified earlier.

The best results are obtained when ad ¼ 50; ap ¼ 211;

rp ¼ 2; c90 ¼ 70; c180 ¼ 0:5, and ip1 ¼ 200. To confirm that

changes in these parameters do not interfere with each other, we

performed tests where only one parameter at a time was changed.

The results can be found in the Supplementary Material along with

other details.

4.3 Comparison with CoSE
We have compared the success rate of our algorithm in properly ori-

enting edges with the generic algorithm CoSE. As Figure 10 shows,

there is a clear advantage of using the extra heuristics.

Fig. 10. Comparison of the success of our algorithm with CoSE (graph size

versus ratio of properly oriented substrate, product and effector edges)

82 B.Genc and U.Dogrusoz

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv516/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv516/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv516/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv516/-/DC1


In terms of execution time, our algorithm performs as well as

CoSE (Fig. 11). Actually, as the iteration count required to complete

phase 2 increases, the number of rotation operations needed by our

algorithm increases as well. However, since our algorithm applies

tiling to disconnected nodes and ignores such nodes during layout,

the decreased graph size seems to compensate for the extra time

used by newly introduced heuristics.

We also investigated whether or not the behavior of our algo-

rithm depends on graphs being simple or not. Our experiments

show that when there are no compound structures in the graph,

ratio of properly oriented edges goes up even further to around

95%.

Figures 12, 13 and 14 show sample SBGN-PD maps laid out

using our algorithm using SBGNViz, which is a specialized visual-

ization tool developed for SBGN PD maps (Sari et al., 2015). More

examples are available in the Supplementary Material.

The success of a spring embedder layout algorithm relies on

the density of the graph more than it does on the number of

nodes in the graph. For instance, even when there are a small num-

ber of nodes in a map, high connectivity in a small part of the map

might make it impossible to successfully orient the edges in that

part.

Figure 14 illustrates the fact that, some substrate and production

nodes of a process node may be placed in another compound node

(cellular location). During layout, the location of this compound

node is determined with respect to the forces acting on it. Those

additional forces may disrupt the proper orientation. This is a typ-

ical example, where multiple conflicting constraints are impossible

to satisfy.

5 Conclusion

The main motivation behind this study was to build a specialized

automated layout algorithm for PD maps that comply with the con-

ventions in SBGN-PD maps. Our proposed algorithm adds the ne-

cessary heuristics to achieve this on top of a CoSE algorithm.

The first enhancement provides proper packing of complex

members and disconnected molecules by using two different rect-

angle packing algorithms: tiling and polyomino packing. The second

one supports port nodes and provides rotation ability for process

nodes by introducing a new force type. An important point to note

here is that, those enhancements are added without disturbing the

force-directed structure of the algorithm. There is still room for im-

provement, however, especially in handling special cases such as ir-

reversible processes.

Our proposed layout algorithm has been integrated into ChiLay

library, which is also available through Paxtools.

Acknowledgement

The authors thank Dr. Debbie Bemis for critical reading of the manuscript.

Fig. 11. Comparison of the running time of our algorithm with CoSE (graph

size versus execution time in milliseconds)

Fig. 12. Paths between ATRIP and CHEK1 as laid out by our algorithm

Fig. 13. Vitamins B6 activation to pyridoxal phosphate as laid out by our algo-

rithm; all edges were properly oriented

Fig. 14. Aspirin blocks signaling pathway involved in platelet activation as

laid out by our algorithm

Algorithm for automated layout of SBGN maps 83

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv516/-/DC1


Funding

This work was supported by the Scientific and Technological Research

Council of Turkey (grant [111E036] to U. D. and a scholarship to B. G.) and

by NIH grants [U41HG006623] and [P41GM103504].

Conflict of interest: none declared.

References

Battista,G.D. et al. (1998) Graph Drawing: Algorithms for the Visualization

of Graphs, 1st edn. Prentice Hall PTR, Upper Saddle River, NJ.

Cerami,E. et al. (2011) Pathway commons, a web resource for biological path-

way data. Nucleic Acids Res., 39(suppl 1), D685–D690.

de Berg,M. et al. (2008) Visibility graphs. Computational Geometry:

Algorithms and Applications, 3rd edn. Springer, Berlin Heidelberg.

Demir,E. et al. (2013) Paxtools: a library for accessing, analyzing and creating

biological pathway data. PLoS Comput. Biol., 9, e1003194.

Dogrusoz,U. (2002) Two-dimensional packing algorithms for layout of dis-

connected graphs. Inf. Sci., 143, 147–158.

Dogrusoz,U. and Genc,B. (2006) A multi-graph approach to complexity man-

agement in interactive graph visualization. Comput. Graph., 30, 86–97.

Dogrusoz,U. et al. (2002) Graph visualization toolkits. IEEE Comput. Graph.

Appl., 22, 30–37.

Dogrusoz,U. et al. (2009) A layout algorithm for undirected compound

graphs. Inf. Sci., 179, 980–994.

Freivalds,K. et al. (2001) Disconnected graph layout and the polyomino pack-

ing approach. In: Mutzel,P. et al (eds), Graph Drawing. Springer-Verlag,

Berlin Heidelberg, pp. 378–391.

Funahashi,A. et al. (2003) CellDesigner: a process diagram editor for gene-

regulatory and biochemical networks. BIOSILICO, 1, 159–162.

Garey,M.R. and Johnson,D.S. (1979) Computers and Intractability: A Guide

to the Theory of NP-Completeness (Series of Books in the Mathematical

Sciences). W. H. Freeman, San Francisco.

Junker,B.H. et al. (2006) VANTED: a system for advanced data analysis and visu-

alization in the context of biological networks. BMC Bioinformatics, 7, 109.

Larkin,J. and Simon,H. (1987) Why a diagram is (sometimes) worth ten thou-

sands words. Cogn. Sci., 11, 65–100.

Le Novère,N. et al. (2009) The systems biology graphical notation. Nat.

Biotechnol., 27, 735–741.

Sari,M. et al. (2015) SBGNViz: a tool for visualization and complexity man-

agement of SBGN process description maps. PLoS One, 10, e0128985.

van Iersel,M.P. et al. (2012) Software support for SBGN maps: SBGN-ML and

LibSBGN. Bioinformatics, 28, 2016–2021.

84 B.Genc and U.Dogrusoz


