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Artificial intelligence-driven pan-cancer analysis
reveals miRNA signatures for cancer stage prediction
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Summary
The ability to detect cancer at an early stage in patients who would benefit from effective therapy is a key factor in increasing survivabil-

ity. This work proposes an evolutionary supervised learning method called CancerSig to identify cancer stage-specific microRNA

(miRNA) signatures for early cancer predictions. CancerSig established a compact panel of miRNA signatures as potential markers

from 4,667 patients with 15 different types of cancers for the cancer stage prediction, and achieved a mean performance: 10-fold

cross-validation accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of 84.27% 5 6.31%,

0.81 5 0.12, 0.80 5 0.10, and 0.80 5 0.06, respectively. The pan-cancer analysis of miRNA signatures suggested that three miRNAs,

hsa-let-7i-3p, hsa-miR-362-3p, and hsa-miR-3651, contributed significantly toward stage prediction across 8 cancers, and each of the

67 miRNAs of the panel was a biomarker of stage prediction in more than one cancer. CancerSig may serve as the basis for cancer

screening and therapeutic selection..
Introduction

Cancer is one of the major health problems in the world

and causes millions of deaths every year. According to

the Cancer Statistics, in 2019, there were 1,806,590 new

cancer cases and 606,520 cancer deaths that were esti-

mated to occur in the United States alone.1 The cure for

this complex disease remains elusive. Detecting cancer at

an early stage in patients who would benefit from effective

therapy is a key factor to increase survival. As regulators of

gene expression in health and disease, microRNAs (miR-

NAs) may have potential roles as predictive biomarkers in

cancer.2

MicroRNAs are a class of noncoding RNAs involved in

the regulation of gene expression and control a number

of diverse biological processes, including but not limited

to differentiation, development, and growth, and are ex-

pressed in wide variety of organisms. These RNAs are tran-

scribed from DNA sequences and consist of an average

length of 22 nucleotides. Currently, there are 48,860

known mature miRNA sequences from 271 organisms,

including 2,654 mature miRNA sequences from humans

listed in miRBase,3 although the functions of many of

these miRNAs have yet to be discovered.

Next-generation sequencing has made it possible to

examine the expression levels of numerous miRNAs in

various cancers and investigate their association with can-

cer development and progression. Over the last two de-

cades, crucial evidence has demonstrated that miRNAs

and miRNA biogenesis mechanisms are involved in the
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development of various cancers.4–6 There is considerable

evidence that the expression of miRNAs has been linked

to a number of human cancers.4–6 Depending on their

target genes and under certain conditions, miRNAs

either have oncogenic or tumor suppressor properties.

MicroRNA expression profiles can also define cancer sub-

types and are associated with varying treatment responses7

and overall survival.8 Identifying cancer-specific miRNA

signatures and corresponding changes in gene expression

over time is important for understanding themolecular ba-

sis of cancer and detecting early-stage cancers.

Accumulating evidence suggests that miRNA biomarkers

can be effective in predicting early stages of cancer. For

instance, miR-205, miR-210, and miR-708 have been

used for early-stage detection of squamous cell lung can-

cer,9 and 34miRNAs as a signature for early-stage detection

in breast cancer.10,11 However, numerous miRNAs are ex-

pressed in cancers, and variability among different patients

makes it challenging to determine true association be-

tween cancer and miRNA from spurious associations. Arti-

ficial Intelligence/machine learning methods may sur-

mount these challenges by integrating and analyzing

large datasets from numerous sources. Previously, we

developed various machine learning-based cancer predic-

tion models that contributed to survival prediction8,12–14

and early-stage detection10 in different cancer types.

Here, in pursuit of identifying themiRNA signatures that

could aid in early-stage detection and may serve as general

biomarkers for multiple cancer types, we present an evolu-

tionary learning method called CancerSig. CancerSig is a
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machine learning method using an inheritable bi-objec-

tive combinatorial genetic algorithm (IBCGA)15 to identify

cancer stage-specific miRNA signatures from 15 cancer

types. Consequently, the miRNAs in each signatures were

ranked based on their contribution to the prediction of

early and advanced stages, and the top-ranked miRNAs

analyzed using Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) pathways and Gene Ontology (GO) anno-

tations to evaluate the biological significance of these con-

nections. Pan-cancer analysis revealed similarities and

differences inmiRNA signatures across the 15 cancer types.

CancerSig established a compact panel of 242 significant

miRNAs across the 15 cancer types with a mean cross-vali-

dation accuracy of 84.27%. Analysis of the identified panel

of miRNAs may serve as a predictive measure for early-

stage diagnosis of cancer and have important implications

in biomarker-based cancer therapeutics.
Material and methods

MicroRNA expression profiles
The dataset was retrieved from TCGA. We initially considered all

33 cancer types available in the TCGA database; however, the

amount of miRNA data and clinical information for certain can-

cer types was limited and therefore excluded. Cancer types with a

minimum number of 80 patients with miRNA expression profiles

were included for analysis and limited the number of cancer

types to 15 for further analysis. With this criterion, our dataset

contained 6,578 clinical samples with miRNA expression profiles

across 15 cancer types. After removing the samples without can-

cer staging information and miRNA sequence data, each cancer

type contained an average of 311 clinical samples with 311 corre-

sponding miRNA expression profiles where each miRNA profile

contained an average of 474.46 miRNAs. Overall, there were

4,667 clinical samples with miRNA expression profiles, which

included 7,117 miRNAs (with duplication) for 15 cancer types.

Normalized mature miRNA sequence data for analysis was ob-

tained using the Illumina HiSeq 2000 platform. For prediction

purposes, the dataset was divided into early (stages I and II)

and advanced stages (stages III and IV) based on stage informa-

tion. The number of samples and miRNAs for each cancer type

are shown in Table 1.

Artificial intelligence-based prediction method

CancerSig
The novel cancer stage prediction method CancerSig identifies

miRNA signatures to distinguish the early stage from advanced

stage of various cancer types using theirmiRNA expression profiles

with stage labels as input data. The output of CancerSig is the can-

cer-specific miRNA signatures and the panel of miRNA biomarkers

for predicting cancer stages of multiple cancers. High performance

of CancerSig arises mainly from an optimal feature selection algo-

rithm IBCGA15 incorporated with a support vectormachine (SVM)

classifier,16,17 and pan-analysis of the miRNA signature. A brief

summary of themethods is presented in the following paragraphs.

The schematic diagram of CancerSig method is shown in Figure 1.

Identifying a minimal set of m miRNAs, i.e., a miRNA signature

from a large set of n candidate miRNAs while maximizing the pre-

diction performance, is a bi-objective combinatorial optimization
2 Human Genetics and Genomics Advances 4, 100190, July 13, 2023
problem C(n, m) where the best value of m is not known in

advance. The feature selection algorithm IBCGA uses an intelli-

gent evolutionary algorithm18 to solve a large combinatorial opti-

mization problem and an inheritance mechanism to efficiently

identify a robust set of m features in a single run. IBCGA uses an

orthogonal array crossover operation with a systematic reasoning

ability to reproduce better offspring instead of random recombina-

tion used for traditional crossover operations. Accumulated evi-

dence has indicated that IBCGA is good at identifying informative

signatures in various cancers8,10,12,13,19 and other bioinformatics

problems.20,21

SVM is a well-known powerful classifier, which has been applied

to a wide variety of biological applications.17 SVM uses nonlinear

transformation to map data from an input space to a higher-

dimensional space to establish an accurate predictionmodel, espe-

cially when the training sample size is relatively small. We utilized

the LibSVM22 package with the radial basis function kernel to

implement CancerSig. The scoring function of the RBF kernel is

computed in the feature space between the two data points, xi
and xj, defined as follows:

K
�
xi; xj

� ¼ exp
�� gkxi � xjk

�2
(Equation 1)

To identify themiRNA signature and design an optimal classifier,

the feature selection of IBCGA and parameter setting (cost C and

kernel g) of SVM play a vital role in modeling. IBCGA solves the

problem C(n, m) for each cancer type independently. Taking

bladder urothelial carcinoma (BLCA) with 477-miRNA expression

profiles as an example, n ¼ 477, and the value of m and the corre-

sponding m miRNAs are determined by IBCGA. The parameter

setting of IBCGA was rstart ¼ 10 and rend ¼ 50 meaning that the

search for the m value is from 10 to 50. The fitness function is

to maximize prediction accuracy of 10-fold cross-validation

(10-CV). The tuning parameters of the CancerSig were indepen-

dent for the each cancer type. The detailed description of parame-

ters and IBCGA algorithm can refer to the studies.10,12 The main

steps of IBCGA for identifying a signature of m miRNAs and the

SVM classifier are as follows.

Step 1 Randomly generate a population of Npop individuals.

In this work,Npop ¼ 50, Gmax ¼ 60, rstart ¼ 10, rend ¼ 50,

r ¼ rstart.
Step 2 Evaluate the fitness value of all individuals using the

fitness function.

Step 3 Use a tournament selection method that selects the

winner from two randomly selected individuals to

generate a mating pool.

Step 4 Select two parents from the mating pool to perform an

orthogonal array crossover operation.

Step 5 Apply a conventional mutation operator to the

randomly selected individuals in the new population.

To prevent the highest fitness value from deterio-

rating, mutation is not applied to the best individuals.

Step 6 If the stopping condition ofGmax generation is satisfied,

the best individual is the solution Sr. Otherwise, go to

step 2.

Step 7 If r < rend, randomly change one bit in the binary genes

for each individual from 0 to 1; increase the number r

by one, and go to step 2. Otherwise, output the solution

Sm with m miRNAs as a signature where Sm is the most

accurate solution among the Sr solutions and stop the

algorithm.



Table 1. TCGA datasets considered and used for miRNA and cancer stage association analyses after filtration

Dataset Abbreviation Original samples Final samples miRNAs

Bladder urothelial carcinoma BLCA 412 407 477

Breast invasive carcinoma BRCA 1097 386 503

Colon adenocarcinoma COAD 458 221 444

Esophageal carcinoma ESCA 185 162 459

Head and neck squamous cell carcinoma HNSC 528 420 498

Kidney renal clear cell carcinoma KIRC 537 256 420

Kidney renal papillary cell carcinoma KIRP 291 261 438

Liver hepatocellular carcinoma LIHCC 377 348 540

Lung adenocarcinoma LUAD 522 452 477

Lung squamous cell carcinoma LUSC 504 339 494

Skin cutaneous melanoma SKCM 470 389 483

Stomach adenocarcinoma STAD 443 381 459

Thyroid carcinoma THCA 503 500 474

Rectum adenocarcinoma READ 171 66 465

Uveal melanoma UVM 80 79 486
Robust signature
The selection of a robust signature is necessary when using the

nondeterministic algorithm IBCGA in which the solutions of mul-

tiple runs are not always the same. For each cancer type, the robust

signature among R ¼ 30 solutions Sm had the largest appearance

score using the following procedure.

Step 1 Perform R independent runs of IBCGA to obtain R

signatures. There are Pt features (or miRNAs) in the

t-th signatures, t ¼ 1, ., R.

Step 2 The appearance score of a signature is calculated as fol-

lows:

a) Calculate the feature frequency score f(p) for each miRNA p

that ever appears in the R signatures.

b) Calculate the score Ft, t¼ 1,., Rwhere Sti is the i-th miRNA

in the t-th signature:

Ft ¼
XPt

i¼1

f ðStiÞ =Pt (Equation 3)

Step 3 Output the t-th signature with the largest appearance

score Ft as the robust signature.

KEGG pathway and GO annotation analysis
We utilized the DIANA-miRPath web-based server to analyze the

miRNA signatures for downstream biological pathway analyses us-

ing KEGG and GO.23 Plausible miRNA targets identified from the

DIANA-TarBase/microT-CDs algorithm analyzed via hypergeomet-

ric distribution method using Fisher’s exact test for enrichment

analysis. A p value of <0.05 was used as the threshold to describe

statistical significance. To estimate the specificity of the results, we

performed another pathway analysis for all identified miRNA sig-

natures across the 15 cancer types. The GO annotations of the

miRNA signatures were analyzed to identify miRNAs belonging

to the specific GO categories of biological process, cellular compo-

nents, and molecular function.
Hu
Results

Identification of miRNA signatures across cancers

To identify themiRNA signatures associated with early and

advanced stages across cancers, we obtained miRNA

expression profiles from the clinical samples of 6,578 pa-

tients with cancers from TCGA. The TCGA network con-

tains clinical and molecular information on 33 cancer

types from tumor samples collected from 68 primary sites.

After preprocessing the data, which included removal of

duplicate samples, samples without stage information,

and miRNAs that were not expressed in more than 80%

of samples, the final dataset consisted of 4,667 clinical

samples with cancer stage information. The clinical sam-

ples, miRNAs, and cancer types used in this study are sum-

marized in Table 1.

To distinguish between early-stage and advanced-stage

cancers via miRNA expression profiles, we proposed an

evolutionary learning method, CancerSig, based on the

feature selection algorithm IBCGA and SVM. Identifying

a minimum number of features from a large number of

candidate features whilemaximizing the prediction perfor-

mance is a bi-objective combinatorial optimization prob-

lem that is effectively solved by IBCGA.20,24 Because

IBCGA is a nondeterministic method, we performed 30 in-

dependent runs and measured the appearance frequency

of selected features to select one robust feature set of

miRNAs as an miRNA signature for each of 15 cancers.10

The schematic diagram of the CancerSig method is

depicted in Figure 1.

The prediction performance of CancerSig across 15

cancer types is shown in Table 2. CancerSig identified 15

signatures with an average size of 21.93 miRNAs from
man Genetics and Genomics Advances 4, 100190, July 13, 2023 3



Figure 1. Schematic diagram of the CancerSig method and analysis of the panel of miRNAs
MicroRNA expression profiles of 15 cancer types along with cancer stage information are input in the workflow of the CancerSigmethod
to identify miRNA signatures.

4 Human Genetics and Genomics Advances 4, 100190, July 13, 2023



Table 2. Prediction performance of CancerSig across 15 cancers

Dataset miRNA signature 10-CV accuracy Sensitivity Specificity MCC AUC

1 BLCA 35 84.40 5 1.27 0.64 5 0.04 0.93 5 0.01 0.65 5 0.02 0.82 5 0.01

2 BRCA 34 80.38 5 1.55 0.79 5 2.7 0.81 5 2.26 0.60 5 0.03 0.81 5 0.02

3 COAD 21 86.67 5 2.40 0.89 5 0.02 0.82 5 0.03 0.73 5 0.04 0.81 5 0.02

4 ESCA 22 87.97 5 2.35 0.93 5 0.02 0.78 5 0.06 0.75 5 0.04 0.78 5 0.03

5 HNSC 20 85.20 5 1.4 0.52 5 0.06 0.95 5 0.01 0.57 5 0.05 0.71 5 0.03

6 KIRC 18 87.14 5 1.76 0.85 5 0.02 0.87 5 0.02 0.75 5 0.03 0.87 5 0.01

7 KIRP 12 89.43 5 2.01 0.96 5 0.01 0.73 5 0.06 0.76 5 0.04 0.87 5 0.03

8 LIHCC 23 89.56 5 1.27 0.94 5 0.01 0.73 5 0.03 0.71 5 0.03 0.86 5 0.02

9 LUAD 29 74.29 5 1.33 0.80 5 0.02 0.65 5 0.03 0.53 5 0.02 0.7 5 0.01

10 LUSC 18 79.11 5 2.28 0.74 5 0.06 0.81 5 0.02 0.61 5 0.03 0.80 5 0.02

11 SKCM 27 78.71 5 2.47 0.79 5 0.03 0.76 5 0.04 0.60 5 0.03 0.75 5 0.02

12 STAD 20 77.03 5 1.9 0.70 5 0.03 0.79 5 0.13 0.58 5 0.03 0.78 5 0.03

13 THCA 26 76.37 5 1.20 0.86 5 0.02 0.61 5 0.04 0.55 5 0.02 0.71 5 0.01

14 READ 11 94.57 5 2.8 0.90 5 0.05 0.97 5 0.02 0.88 5 0.05 0.95 5 0.03

15 UVM 13 93.33 5 3.5 0.93 5 0.04 0.90 5 0.13 0.86 5 0.06 0.85 5 0.03

Mean 5 SD 21.93 5 7.30 84.27 5 6.31 0.81 5 0.12 0.80 5 0.10 0.67 5 0.11 0.80 5 0.06

10-CV, 10-fold cross-validations; MCC, Matthews correlation coefficient; AUC, area under the ROC curve; SD, standard deviation.
the profiles with an average of 474.5 miRNAs. CancerSig

achieved a mean performance: 10-CV accuracy, sensitivity,

specificity, Matthews correlation coefficient (MCC), and

area under the receiver operating characteristic (ROC)

area under the curve (AUC) of 84.27% 5 6.31%, 0.81 5

0.12, 0.80 5 0.10, 0.67 5 0.11, and 0.80 5 0.06, respec-

tively. The prediction performance was evaluated using

ROC curves and AUC in the range of 0.70–0.95 for 15 can-

cers, as shown in Figure 2A.

We compared the prediction performance of CancerSig

with various machine learning algorithms using the

same number of features based on feature importance.

LightGBM25 achieved a mean performance: 10-CV accu-

racy, sensitivity, specificity, and AUC of 72.22 5 0.04,

0.83 5 0.06, 0.51 5 0.14, and 0.72 5 0.06, respectively,

while distinguishing early and advanced stages of BLCA.

XGBoost26 achieved a mean 10-CV accuracy, sensitivity,

specificity, and AUC of 72.70 5 0.06, 0.88 5 0.06,

0.41 5 0.16, and 0.73 5 0.05, respectively. Random For-

est27 achieved a mean 10-CV accuracy, sensitivity, speci-

ficity, and AUC of 70.98 5 0.05, 0.77 5 0.07, 0.59 5

0.16, and 0.74 5 0.05, respectively. CatBoost28 achieved

a mean 10-CV accuracy, sensitivity, specificity, and AUC

of 73.93 5 0.06, 0.91 5 0.07, 0.39 5 0.12, and 0.74 5

0.05, respectively. Extra Trees achieved amean 10-CVaccu-

racy, sensitivity, specificity, and AUC of 72.72 5 0.04,

0.78 5 0.07, 0.63 5 0.11, and 0.74 5 0.06, respectively.

CancerSig achieved a mean 10-CV accuracy, sensitivity,

specificity, and AUC of 84.40 5 1.27, 0.64 5 0.04,

0.93 5 0.01, and 0.82 5 0.01, respectively, shown in

Table S1. The prediction performance of CancerSig is better
Hu
than other machine learning methods in predicting cancer

stage of BLCA. In addition, the prediction performance of

the optimizing technique in distinguishing breast invasive

carcinoma (BRCA) and liver hepatocellular carcinoma

(LIHCC) was compared with other machine learning

methods in our previous studies.10,29

A panel of miRNAs across 15 cancers

A panel is designed as a compact set of informative miR-

NAs obtained from the 15 miRNA signatures, which has

329 miRNAs in total. After removing duplication, the

union has 242 informative miRNAs in the designed can-

cer-stage panel. The panel can predict the cancer stage

across 15 cancer types. In predicting the stage of a specific

cancer, the same prediction model with the corresponding

signature in the panel can be used. Therefore, the predic-

tion performance using the panel of miRNAs for predicting

the 15 cancers achieved 10-CV accuracy, sensitivity, speci-

ficity, MCC, and AUCs of 84.27% 5 6.31%, 0.81 5 0.12,

0.80 5 0.10, 0.67 5 0.11, and 0.80 5 0.06, respectively,

as shown in Table 2.

Prioritization of the miRNA signatures

Each cancer type had an average of about 22 miRNAs in a

signature. To rank the miRNAs of a signature according to

the degree of contribution to prediction performance, a

main effect difference (MED) analysis8,30 was performed.

A higher MED score represents a greater contribution of

the specific miRNA to the stage prediction. The miRNAs

with the greatest predictive ability can be ranked highest

in the signature. The identified miRNA signatures, ranks
man Genetics and Genomics Advances 4, 100190, July 13, 2023 5



of their miRNAs, and corresponding MED scores are listed
Figure 2. CancerSig prediction performance across cancers
(A) Evaluating the prediction performance of CancerSig using receiver operating characteristic (ROC) across 15 cancers. CancerSig ob-
tained a mean area under the curve (AUC) of 0.80 across all cancers.
(B) Ranking of the relative miRNAs within the signature using MED analysis.

6 Human Genetics and Genomics Advances 4, 100190, July 13, 2023



in Tables S2.1–S2.15. The top 10 ranked miRNAs across 15

cancers are shown in Figure 2B.

Prevalent miRNAs across cancers

Next, we determined if there are any similarities among

themiRNAs of each signature in addition to distinguishing

stages across the 15 cancers. In this context, we identified

some commonmiRNAs that were found to be expressed in

more than one cancer. Three miRNAs, hsa-let-7i-3p, hsa-

miR-362-3p, and hsa-miR-3651, contributed more toward

stage prediction across eight cancer types (BLCA, BRCA,

esophageal carcinoma [ESCA], kidney renal clear cell carci-

noma [KIRC], LIHCC, lung adenocarcinoma [LUAD],

stomach adenocarcinoma [STAD], and uveal melanoma

[UVM]) than any other miRNAs. According to the MED

analysis, hsa-let-7i-3p ranked 5th, 7th, 9th, and 22nd in

predicting cancer stage in KIRC, UVM, LIHCC, and

BLCA, respectively; hsa-miR-362-3p ranked 6th, 8th,

11th, and 16th in STAD, ESCA, UVM, and BLCA, respec-

tively; and hsa-miR-3651 ranked 2nd, 13th, 22nd, and

26th in LUAD, LIHCC, BRCA, and BLCA, respectively.

These miRNAs were annotated with miRBase accession

numbers and used in subsequent pathway analyses.

The three target miRNAs were first analyzed via predic-

tion interaction networks supported by Cytoscape v.3.731

to explore the proposed target gene interactions. From

the three miRNA target prediction databases, miRTarBase,

MicroCosm, and TargetScan, 1,839 predicted miRNA-

target interactions were identified. The predicted miRNA-

gene target network is shown in Figure S1. In addition to

the three primary miRNAs, 64 additional miRNAs were

identified in the signatures where each was involved in

more than one cancer. Among the 64 miRNAs, each of

14 miRNAs was involved in 3 cancers while each of the re-

maining 50miRNAs was involved in 2 cancers. These prev-

alent miRNAs and their contribution in predicting the

stage across cancers are depicted in Figures 3A–3C.

To confirm that the expression levels of the identified

target miRNAs differ significantly between tumor and

non-tumor samples for each cancer type, we compared the

relative expression difference of the three miRNAs, hsa-let-

7i-3p, hsa-miR-362-3p, and hsa-miR-3651. Significant

differences in expression levels between tumor samples

and normal samples for all miRNAs analyzed were reported

for BRCA, lung squamous cell carcinoma (LUSC), and STAD.

Hsa-let-7i-3p and hsa-miR-362-3p were significantly ex-

pressed in BLCA, KIRC, LIHCC, and LUAD, while hsa-miR-

362-3p and hsa-miR-3651 had significant differences in

head and neck squamous cell carcinoma. A statistically

significant difference in expression level for kidney renal

papillary cell carcinoma (KIRP) was only detected for hsa-

miR-362-3p; similarly, significant differences in expression

for hsa-miR-3651were only noted for ESCA and thyroid car-

cinoma. The relative expression levels of these miRNAs and

corresponding comparisons are shown in Table S3.

As the MED analysis, the top-ranked miRNAs are poten-

tial predictors of cancer stage. However, some miRNAs had
Hu
low ranks in some cancers yet high ranks in other cancer

types. For instance, hsa-let-7i-3p ranked 22nd in BLCA

but ranked 5th in KIRC meaning that its contribution to

cancer stage was higher for KIRC. This analysis revealed a

panel of 242 miRNAs that are associated with the cancer

stage inmore than 1 cancer. The heatmap of themost prev-

alent miRNA rankings across the 15 cancer types is de-

picted in Figure 3D.

Co-expression analysis of the miRNA signatures

Though IBCGA identified critical miRNA signatures for can-

cer stage prediction, the algorithm might exclude some

informative miRNAs from the signatures to select a small

set of candidate miRNAs to enhance prediction perfor-

mance. To ensure a robust set of miRNAs selected

by IBCGA, co-expression analysis was performed via series

of correlational analyses. First, correlation coefficient

(R) between the miRNAs in the signatures was measured

andthenthecoefficientsbetweenall themiRNAs(anaverage

474.46) and individualmiRNAs in the signature for eachcan-

cer type were measured. The miRNAs pairs with R R 0.80

were considered for further analysis. There were 154miRNA

pairs that co-expressed with the miRNAs of 15 cancer stage-

specific miRNA signatures. Of the signatures analyzed by

cancer type, the miRNA signature for LUSC did not have

co-expressedmiRNAswithRR0.8.The correlationheatmap

ofmiRNAs in eachof the 15 signatures is shown in Figure S2,

and the correlation coefficients of the154 miRNA pairs for

the 15 miRNA signatures are listed in Table S4.

Significance of the identified miRNA signatures in

cancers

We evaluated the significance of the identified miRNAs

for each cancer type based on experimentally validated liter-

ature and, of these miRNAs, only the top 10 rankedmiRNAs

of each signature were considered, as shown in Tables S5–

S19. Among the identified 15 cancer stage-specific miRNA

signatures, most of have experimentally validated evidence

to support their dysregulation and potential role in various

cancers. However, of the 15miRNA signatures, the role of 34

miRNAs was not reported in the earlier literature leading us

to believe that these 34 miRNAs are novel biomarkers for

predicting the cancer stage (listed in Table S20). The roles

of these miRNAs in cancer stage detection need to be vali-

dated to further determine their significance.

To confirm that the selected miRNAs had differing

expression levels by stage within each cancer, wemeasured

the expression differences of the identified top 10 ranked

miRNAs between the early- and advanced-stage groups

across 15 cancers, as shown in Figure S3. All of the identi-

fied miRNA signatures are significantly different between

early- and late-stage cancers, which supports the use of

these miRNAs in predicting early-stage cancers.

Biological relevance of miRNA signatures across cancers

Employing KEGG analysis, we found that each miRNA

signature was involved in several cancers and signaling
man Genetics and Genomics Advances 4, 100190, July 13, 2023 7



Figure 3. The predictive ability of miRNAs as a biomarker for cancer stage across cancer types
(A) Three signaturemiRNAs and their contributions to stage prediction across eight cancer types. EachmiRNA contributed to at least four
cancers. The size of the line is proportional to the percent contribution toward the stage prediction.
(B) Fourteen miRNAs contributed across cancers, and each miRNA contributed to at least three cancers.
(C) Fifty miRNAs contributed to at least two cancers.
(D) Heatmap showing 67 miRNAs and their ranks based on their predictive ability across 15 cancer types.

8 Human Genetics and Genomics Advances 4, 100190, July 13, 2023



Table 3. KEGG pathways commonly appearing in more than five
cancers

KEGG pathways No. of cancers

Proteoglycans in cancer 15

Signaling pathways regulating pluripotency
of stem cells

14

Beta signaling pathway 13

Axon guidance 11

Glioma 10

Hippo signaling pathway 10

Renal cell carcinoma 10

ErbB signaling pathway 9

FoxO signaling pathway 9

Pathways in cancer 9

Prion diseases 9

Rap1 signaling pathway 9

Long-term depression 8

Ras signaling pathway 8

Circadian rhythm 7

Focal adhesion 7

Thyroid hormone signaling pathway 7

Adherens junction 6

Colorectal cancer 6

ECM-receptor interaction 6

Estrogen signaling pathway 6

Melanoma 6

Morphine addiction 6

Adrenergic signaling in cardio myocytes 5

Choline metabolism in cancer 5

Fatty acid biosynthesis 5

Mucin type O-glycan biosynthesis 5

Oxytocin signaling pathway 5

Phosphatidylinositol signaling system 5

Prolactin signaling pathway 5

Prostate cancer 5

Wnt signaling pathway 5
pathways, including transforming growth factor b, hippo,

and the thyroid hormone signaling pathways as well as

signaling pathways related to axon guidance (see

Table S21). Of the cancer types analyzed, the proteoglycans

in cancer pathway was observed in all 15 cancer types,

which is consistent with the role of proteoglycans and

extracellular matrix components in cancer development

and progression.32–41 In addition, the second KEGG

pathway commonly found in 14 cancers was ‘‘Signaling

pathways regulating the pluripotency of stem cells,’’ which

has a wide range of applications in regenerative medicine
Hu
and significance in cancer.42 A summary of the miRNA sig-

natures that appeared in more than five cancer types and

were identified as having potential involvement in biolog-

ical pathways by KEGG pathway analysis is provided

in Table 3. The identified miRNA signatures enriched in

KEGG pathways across the 15 cancer types are shown in

Figures S4.1–S4.15.

To support the biological validity of our findings, we per-

formed GO enrichment analysis and identified GO terms

that were enriched by the identified miRNA signatures.

Among the 15 cancer types analyzed, 9 GO terms consis-

tently appeared. The most frequent and significant GO

terms that appeared were biosynthetic process, cellular

component assembly, cellular nitrogen compound meta-

bolic process, cellular protein modification process,

epidermal growth factor receptor signaling pathway, Fc-

epsilon receptor signaling pathway, gene expression, neuro-

trophin TRK receptor signaling pathway, transcription, and

DNA template synthesis, listed in Tables 4 and S22. The

identifiedmiRNA signatures enriched in the various GO cat-

egories across 15 cancers are shown in Figures S5.1–S5.15.
Discussion

Due to the different types of cancers and the frequent emer-

gence of cancer symptoms at advanced stages, it is chal-

lenging to detect cancer at an early stage. Identifying broad

and reliable biomarkers for cancer detection and prediction

in the early stagemayprovide timely treatment for patients.

In this study, we describe the development and prelimi-

nary predictive ability of cancer stage prediction method

CancerSig using SVM combined with an optimal feature se-

lection algorithm IBCGA to identify miRNA signatures

associated with staging across various cancers. CancerSig

identified 15 cancer stage-specific miRNA signatures for

15 different cancer types that are associated with the stage

of patients with cancers. There were 242 miRNAs that

showed promising predictive ability as a panel for stage

detection across the 15 cancer types. Rankings of miRNAs

via MED analysis highlighted the contribution of each

miRNA to stage prediction. Of these, three miRNAs, hsa-

let-7i-3p, hsa-miR-362-3p, and hsa-miR-3651, consistently

had statistically significantly different expression levels be-

tween tumor and non-tumor samples and by cancer stage

within the 15 cancer types analyzed. The biological plausi-

bility of these miRNAs as reliable predictors of cancer

development and progression are supported by the

following evidences in the literature. Hu et al., Cai et al.,

and Zhao et al. reported that the hsa-let-7 family of miR-

NAs are dysregulated in several cancer types, such as,

breast,43 ovarian,44 and non-small cell lung cancer.45

Hsa-miR-362-3p and hsa-miR-3651 are also found to be

regulated in different cancer types.46,47

Analysis of prevalent miRNAs within the total set of 242

miRNAs highlighted 67 miRNAs that contributed to 2 or

more cancers. Out of the 67 miRNAs, 3 miRNAs each
man Genetics and Genomics Advances 4, 100190, July 13, 2023 9



Table 4. GO category frequency in more than five cancers

GO category No. of cancers

Biosynthetic process 15

Cellular component assembly 15

Cellular nitrogen compound metabolic
process

15

Cellular protein modification process 15

Epidermal growth factor receptor signaling
pathway

15

Fc-epsilon receptor signaling pathway 15

Gene expression 15

Neurotrophin TRK receptor signaling
pathway

15

Transcription, DNA template 15

Catabolic process 14

Cytosol 14

Enzyme binding 14

Ion binding 14

Nucleic acid binding transcription factor
activity

14

Nucleoplasm 14

Organelle 14

Protein binding transcription factor activity 14

Protein complex 14

Small-molecule metabolic process 14

Blood coagulation 13

Cytoskeletal protein binding 13

Symbiosis, encompassing mutualism
through parasitism

13

Viral process 13

Macromolecular complex assembly 12

Fibroblast growth factor receptor signaling
pathway

11

Response to stress 11

Cell death 10

Phosphatidylinositol-mediated signaling 10

Nucleobase-containing compound catabolic
process

9

Synaptic transmission 9

Mitotic cell cycle 7

Protein complex assembly 7

Enzyme regulator activity 6

Transcription initiation from RNA
polymerase II promoter

6

contributed to four cancers, 14 miRNAs each contributed

to 3 cancers, and 50miRNAs each contributed to 2 cancers.

The 15 miRNA signatures were all significantly involved in
10 Human Genetics and Genomics Advances 4, 100190, July 13, 202
various signaling pathways, extracellular matrix-associated

signaling, and stem cell pluripotency according to KEGG

pathway analysis and GO term assignment post-enrich-

ment analysis. One hundred and fifty-four miRNAs co-ex-

pressed with the miRNA signatures across cancers were

associated with cancer progression and early-stage detec-

tion. Of the miRNAs detected within the signature and

associated with cancer stage, 34 miRNAs that we describe

here have not been reported before. Further research of

these miRNAs may provide new avenues for therapeutic

and diagnostic test development.

Across all cancer types, miRNA signatures were enriched

for proteins associated with proteoglycans. Proteoglycans

are macromolecules and the major component of the extra-

cellular matrix. They act as co-receptors for enhancing pro-

liferative signaling and tumor growth.34 Notably, the altered

expression of proteoglycans correlates with prognosis in

various malignant neoplasms.33,35 In addition, proteogly-

can-dependent pathways are involved in promoting metas-

tasis and cell motility in breast cancer.36,37 The miRNAs

regulate enzymes that are directly linked to proteoglycan

function and are involved in tumor progression.38,39 The

aberrant expression of miRNAs affects the expression pat-

terns of laminins, proteoglycans, and proteases in the tumor

microenvironment40; consequently, cell adhesion, migra-

tion, and apoptosis and cancer stem cell properties are

affected.41 In addition, multiple roles of miRNAs in pluripo-

tency have been investigated, including but not limited to

cell fate during embryogenesis48 and the regulation of

stem cells.49 The upregulation of miR-495 was observed in

breast cancer stem cells,50 and miR-34a is downregulated

and regulates cancer stem cells in prostate cancer.51 The

finding suggests that a specific miRNA signature regulates

proteoglycans in the tumor microenvironment and stem

cell pluripotency, which may have a profound impact on

early-stage cancer detection.

High performance of CancerSig arises mainly from an

optimal feature selection algorithm IBCGA incorporated

with an SVM classifier. IBCGA is effective at solving bi-

objective combinatorial optimization problems and has

been proven to be efficient at identifying suitable bio-

markers in various cancers.8,10,12,13,52 CancerSig achieved

a promising accuracy while predicting the cancer stage

across 15 different cancer types; and obtained a mean per-

formance of 10-CV accuracy, sensitivity, specificity, MCC,

AUC of 84.27 5 6.31, 0.81 5 0.12, 0.80 5 0.10, 0.67 5

0.11, and 0.80 5 0.06, respectively. The limitation of the

currentmethod is using the TCGA data alone for the exper-

iments due to the availability of similar extraction

methods for miRNA expression profiling and clinical infor-

mation. However, CancerSig showed better performance

on all cancer types irrespective of the data size. This

method can be customized based on the availability of

miRNA expression data and clinical samples.

In conclusion, identification of the novel miRNA signa-

tures via CancerSigmay serve as the basis for predicting the

development and stage of various types of cancer. Use of
3



this method may aid in early identification of cancer and

cancer stage, which would facilitate clinician decision

making for treatment plans and provide patients with

timely treatment for cancer. The designed novel panel of

miRNA signatures across cancers would guide the develop-

ment of stage detection chips and miRNA-based target

therapies to treat cancer.
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