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Abstract: In the lungs of patients with cystic fibrosis (CF), the main pathogen Pseudomonas aeruginosa
is often co-isolated with other microbes, likely engaging in inter-species interactions. In the case
of chronic co-infections, this cohabitation can last for a long time and evolve over time, potentially
contributing to the clinical outcome. Interactions involving the emerging pathogens Achromobacter
spp. have only rarely been studied, reporting inhibition of P. aeruginosa biofilm formation. To
evaluate the possible evolution of such interplay, we assessed the ability of Achromobacter spp.
isolates to affect the biofilm formation of co-isolated P. aeruginosa strains during long-term chronic
co-infections. We observed both competition and cohabitation. An Achromobacter sp. isolate secreted
exoproducts interfering with the adhesion ability of a co-isolated P. aeruginosa strain and affected
its biofilm formation. Conversely, a clonal Achromobacter sp. strain later isolated from the same
patient, as well as two longitudinal strains from another patient, did not show similar competitive
behavior against its P. aeruginosa co-isolates. Genetic variants supporting the higher virulence of
the competitive Achromobacter sp. isolate were found in its genome. Our results confirm that both
inter-species competition and cohabitation are represented during chronic co-infections in CF airways,
and evolution of these interplays can happen even at the late stages of chronic infection.

Keywords: inter-species interactions; Achromobacter spp.; Pseudomonas aeruginosa; lung infection;
cystic fibrosis

1. Introduction

Development of chronic lung infections and progressive inflammation is the major
cause of morbidity and ultimate mortality for patients with cystic fibrosis (CF) [1]. Coloniza-
tion with Pseudomonas aeruginosa, the most common pathogen isolated from CF airways,
is particularly difficult to eradicate and is associated with an accelerated decline in lung
function, with a poor prognosis [2]. Other respiratory pathogens play a role at different
stages of the lung disease: Staphylococcus aureus and Haemophilus influenzae are the main pe-
diatric pathogens, while Burkholderia cepacia complex, Achromobacter spp., Stenotrophomonas
maltophilia and nontuberculous mycobacteria are mainly found in adults [3]. In particular,
in the last decade, Achromobacter spp. gained attention as important emerging pathogens
that can cause severe chronic infections in CF patients, associated with lung inflammation
and decline in respiratory function [4–9] and further complicated by their innate and
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acquired multidrug resistance hindering eradication therapies [10,11]. The Achromobac-
ter genus comprises 22 species [12]; Achromobacter xylosoxidans is the most often isolated
species among CF patients, followed by Achromobacter ruhlandii, Achromobacter insuavis,
Achromobacter insolitus, Achromobacter dolens, Achromobacter agrifaciens and Achromobacter
spanius [7,13–17].

Due to the polymicrobial nature of CF lung infection, it is likely that microbes could
engage in inter-species interactions, acting competitively or synergistically with each other
to gain an adaptive advantage, thereby influencing the community composition, resistance
to antibiotics and the course of airway disease [18,19]. In the case of chronic co-infections,
this cohabitation can last for a long time and likely evolve. Interactions are usually favored
by microbial proximity promoted by intra- and inter-species co-aggregation in biofilm
communities [20,21]. The biofilm mode of growth, typical of CF chronic infections, allows
bacteria to form highly organized, structured aggregates attached on the epithelial surface
that protect the community from mechanical forces and penetration of chemicals [22,23].
Thus, biofilms decrease bacterial susceptibility to antimicrobial agents, promoting bacterial
tolerance and/or resistance and favoring the failure of eradication therapies [24].

P. aeruginosa is often co-isolated with other microbial species sharing the same environ-
ment. While its interactions—including both cooperation and competition—with classical
pathogens Burkholderia spp. and S. aureus have been extensively studied [25–32], the avail-
able information regarding interactions with emerging pathogens such as Achromobacter
spp. and S. maltophilia is still limited. Despite the reported co-isolation of P. aeruginosa and
Achromobacter spp. from sputum samples and the increasing number of patients becoming
chronically infected with the latter [6,9,33,34], thus far, only one recent study evaluated
the occurrence of inter-species interactions between these two microorganisms, reporting
that P. aeruginosa biofilm formation can be affected by A. xylosoxidans [35]. To evaluate the
possible evolution of such interplay and its underlying mechanisms, in the present study,
we assessed the ability of Achromobacter spp. isolates to affect the biofilm of P. aeruginosa
strains sharing the same lung environment during long-term chronic co-infections and
searched for genetic features of virulence possibly associated with the competition ability.

2. Results

P. aeruginosa and Achromobacter spp. clinical isolates were longitudinally collected
from two CF patients chronically co-infected for over 9 years: patient A since 1996, and
patient B since 1999. For each patient, the two species were isolated from the same sputum
sample twice: in 2005 and 2008 from patient A, and in 2008 and 2014 from patient B. The
general information on each isolate is presented in Table 1. The genotypic relatedness of
longitudinal isolates was verified by core genome similarity: P. aeruginosa isolates from
patients A and B showed 82% and 83% similarity, respectively, while Achromobacter spp.
isolates from both patients showed 87% similarity. While all Achromobacter spp. isolates had
been initially identified as A. xylosoxidans [36], a recent phylogenetic analysis reclassified
the isolates from patient A as A. insuavis [37]. The first A. insuavis strain collected from this
patient, named isolate A1, was previously classified as a hypermutator [36]. P. aeruginosa
isolates from patient A belong to the DK08 clone type, sampled from multiple patients at
the Copenhagen CF Center [38].
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Table 1. Identification and time of isolation of each clinical strain.

Patient Isolate Species Year of
Isolation Other Characteristics

A A1 A. insuavis 2005 Hypermutator

A P1 P. aeruginosa 2005 DK08 clone type

A A2 A. insuavis 2008

A P2 P. aeruginosa 2008 DK08 clone type

B A3 * A. xylosoxidans 2008

B P3 P. aeruginosa 2008

B A4 * A. xylosoxidans 2014

B P4 P. aeruginosa 2014
* A3 and A4 isolates were called B1 and B2 in a previous study [36].

2.1. Phenotypic Variations

To investigate possible phenotypic variations within the same host over time, we
evaluated features such as growth rate and adhesion, which are known to often undergo
modifications during bacterial adaptation into the CF lung. We previously observed that no
significant changes in terms of growth rate and adhesion ability occurred over time within
the longitudinal Achromobacter spp. isolates from the two patients [36]; growth curves are
shown in Figure S2. On the contrary, P. aeruginosa isolates underwent the phenotypic evolu-
tion known to occur during CF chronic infection: the growth rate significantly diminished
over time in both patients, while the adhesion ability increased significantly in patient A
(Figure 1).
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2.2. Effects of Achromobacter spp. on P. aeruginosa Adhesion

To investigate whether Achromobacter spp. isolates exhibited competition against P.
aeruginosa, we first evaluated the potential effects on its adhesion. This is an essential ability
for biofilm formation, which is considered a key feature for the successful colonization of CF
lungs by P. aeruginosa and other bacterial species. The adhesion of each P. aeruginosa strain
was measured in the absence and presence of the culture supernatant collected from the
co-isolated Achromobacter sp. strain. The culture supernatant contained all the exoproducts
released during bacterial growth, including virulence factors; e.g., we previously observed
a higher protease activity in an A1 culture supernatant than in supernatants from the other
Achromobacter spp. isolates [36]. The P1 isolate showed a significantly lower adhesion
ability when grown in the presence of A1 exoproducts (Figure 2). No such inhibitory effect
was exhibited by the culture supernatants of the other Achromobacter spp. strains on their P.
aeruginosa co-isolates, nor on the P. aeruginosa laboratory strain PAO1 (Figure S3).
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3 experiments. Statistical analysis was performed by t-test, * p < 0.05.

2.3. Effects of Achromobacter sp. on P. aeruginosa Biofilm Formation

To investigate whether the A1 isolate could also inhibit P. aeruginosa biofilm forma-
tion, mixed biofilm cultures were grown in a flow chamber system for up to 5 days. To
distinguish the two species, P. aeruginosa strains were tagged with the green fluorescent
protein (GFP), and the fluorescence emission was checked (Figure S1). In single-species
cultures, as expected, P. aeruginosa isolates could form big, stable aggregates firmly attached
on the glass surface (Figure 3A,B). On the contrary, Achromobacter sp. strains showed a
poor adhesion ability on glass, forming sporadic, unstable aggregates characterized by
the scattering and dispersal of planktonic cells (Figure 3C). When the two microbes were
cultured together, Achromobacter sp. could adhere and form mixed biofilms with P. aerugi-
nosa. However, the Achromobacter sp. A1 isolate interfered with the biofilm formation of the
co-isolated P. aeruginosa P1 strain. As shown in Figure 3D, P1 aggregates are smaller in the
presence of A1, as also confirmed by the P. aeruginosa biomass quantification (Figure 3F).
Such inhibitory effect was not observed in mixed biofilms formed by their longitudinal
co-isolates A2 and P2 (Figure 3E).
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Figure 3. Single-species biofilms formed by P. aeruginosa P1 (A) and P2 (B) isolates, representative
image of Achromobacter sp. biofilm structures (C), mixed biofilms formed by P1 + A1 (D) and P2 + A2
(E) strains and biomass quantification (F). Biofilms were grown in a flow chamber system for 5 days
and monitored by confocal microscopy. P. aeruginosa isolates were tagged with GFP (green), and
Achromobacter sp. cells were counterstained with Syto62 (red). P. aeruginosa biomass in single and
mixed biofilms (P-Single, P-Mixed) and total biomass of mixed biofilms (P+A-Mixed) were calculated
using Comstat2 software. Each value represents the mean ± SEM of 3 experiments. Statistical
analysis was performed by the Mann–Whitney test, * p < 0.05.

2.4. Genetic Variants in Achromobacter sp. Virulence Genes

Previously, we performed variant analysis of Achromobacter spp. isolates and observed
that the A2, A3 and A4 genomes harbor no or few mutations, with a predicted high impact
on protein function, while various frameshift mutations and a stop gain were detected in
the A1 genome [36]. To find genetic evidence that could explain the observed inhibitory
effect of the A1 isolate on the adhesion and biofilm formation of the P1 strain, we evaluated
whether some of the genetic variants in the A1 genome involve genes related to virulence
and inter-species competition. Interestingly, in A1, but not in the A2 genome, we detected
the presence of a type VI secretion system tip protein, the VgrG gene, whose product
is reported to bind antibacterial effectors targeting essential cell structures during inter-
species competition between Gram-negative bacteria such as Acinetobacter baumannii [39].
Moreover, we found a stop gain in the HlyD family efflux transporter periplasmic adaptor
subunit gene, whose product is a component of type I secretion systems involved in the
secretion of virulence factors such as toxins and proteases [40]. When compared to the
reference genome, this A1 gene results in a slightly shorter protein (−15 amino acids),
while for the A2 strain, the predicted length of the same gene product is largely reduced
(−129 amino acids). Although no data are available regarding the effect of these variants
on the protein function, we can hypothesize that the HlyD protein is more likely functional
in the A1 rather than the A2 isolate.

3. Discussion

For a long time, CF lung infection has been studied and treated as a disease caused by a
single pathogen, while, nowadays, we are aware of its polymicrobial nature [41,42]. Within
microbial communities, intra- and inter-species interactions can take place and potentially
influence the course of the infection [18,19]. Interactions involving the emerging pathogens
Achromobacter spp. have only rarely been studied, probably because the clinical relevance of
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this microorganism became evident more recently. Nonetheless, their increased prevalence
in CF and their frequent co-isolation with other pathogens such as P. aeruginosa suggest
that Achromobacter spp. likely have to compete for space and nutrients [43]. In the case of
chronic co-infections, where cohabitation can last for a long time, the evolution of such
interplays might as well be part of the bacterial adaptation processes known to occur in CF
airways. In the present investigation, we focused on Achromobacter spp.’s behavior towards
P. aeruginosa within biofilm communities and observed both competition and cohabitation
interplays during chronic co-infections.

As regards the biofilm mode of growth, Achromobacter spp. are motile (swimming)
via long, peritrichous flagella but lack twitching motility [44,45], which can contribute to
the development of a surface-attached biofilm as it may help in stabilizing interactions
with the surface [46]. Indeed, the poor adhesion ability of this microorganism in vitro (on
polymeric surfaces within 48 h) has been reported [45]. A reduction in surface attachment
over time during infection was also shown in sequential CF isolates, in association with
the acquisition of mutations in genes with a presumptive role in surface adhesion [47].
However, some studies highlighted Achromobacter spp.’s ability to adhere on hydrogel
contact lenses [48,49] and to form unattached or loosely attached aggregates held together
by polysaccharides forming a peripheral shell around the bacterial cells [45,50]. Our
current and previous [36] results confirm the poor adhesion ability of Achromobacter spp.
on polystyrene and glass, and the formation of loosely attached aggregates characterized
by the scattering and dispersal of planktonic cells. Interestingly, when cultured with P.
aeruginosa, the two microbes could form mixed biofilms, suggesting that Achromobacter
spp.’s adhesion might be enhanced on biotic surfaces.

Concerning inter-species interactions, we observed that only the A1 isolate has in-
hibitory effects against the co-isolated P. aeruginosa strain, interfering with its adhesion
ability and affecting its biofilm formation capability. Conversely, the clonal strain A2 later
isolated from the same patient, as well as two Achromobacter sp. strains longitudinally
collected from another patient, did not show similar competitive behavior against their P.
aeruginosa co-isolates. Thus far, only one recent study evaluated the occurrence of inter-
species interactions between Achromobacter sp. and P. aeruginosa CF isolates, reporting
that P. aeruginosa biofilm formation can be affected by A. xylosoxidans [35]. The isolate
showing competition in our study belongs to a different species, A. insuavis, suggesting
that this behavior might be common to various species of the genus. Interestingly, this
isolate was previously classified as a hypermutator [36], and the isolates that Menetrey
and colleagues observed to affect the P. aeruginosa biofilm were morphologically different
clones collected from the same sputum sample of a chronically infected patient [35], a
situation often exactly associated with the presence of hypermutators [51]. Although no
genomic data are available from their study—limiting the evaluation of the hypermutation
contribution—the association of this evolutionary mechanism with Achromobacter spp.’s
competitive behavior should be further verified.

Investigating the genomic features that could be implicated in the observed competi-
tion, in the genome of the A1 isolate, we identified genetic variants supporting its higher
virulence. Only in this isolate, we detected a type VI secretion system tip protein, the
VgrG gene, whose product is known to be involved in inter-species competition between
Gram-negative bacteria [39]. Additionally, VgrG paralogues have also been reported to
regulate bacterial motility, biofilm formation and protease production in Aeromonas sp. [52].
Moreover, the A1 strain harbored a likely functional HlyD gene, while a deleterious variant
was present in the genome of its clonal late isolate. HlyD is essential for the secretion of the
RTX hemolytic toxin HlyA from Escherichia coli [53] and seems to be involved in the pro-
tease secretion mechanisms of P. aeruginosa [54]. We previously observed a higher protease
secretion from the A1 strain in comparison to its clonal late isolate and to isolates from
patient B [36], further supporting a higher expression of virulence traits in this isolate that
could be involved in the observed competition against P. aeruginosa. Additionally, the genes
related to the quorum sensing system were checked in all the P. aeruginosa isolates for the
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presence of variants, but no mutations were detected that could indicate down-regulation
of this system.

Interestingly, 3 years after the A1 and P1 strains’ isolation, their competitive interplay
evolved towards a more indolent cohabitation or even cooperation—similar to the situation
observed in patient B—which might represent a survival advantage. Although major
adaptations of bacteria causing CF chronic infections are likely to happen during the early
stage of chronic infection, while in the late stage, the situation is supposedly more stable,
we observed variations in the interplay between two microorganisms in the late stage
of a chronic co-infection, suggesting that adaptive mechanisms are still ongoing. In the
later stage, isolates A2 and P2 could also grow together in mixed biofilm communities,
supporting the possibility that close microbial interactions might occur between them.
Indeed, bacterial proximity within biofilm communities can favor social exchanges of
signal molecules and genetic elements, influencing many aspects of the community itself
such as the microbial composition, nutrient availability, and antibiotic resistance [21].
Although the occurrence of close microbial interactions within the CF airway has not been
demonstrated, in this particular case, their relevance should be considered: Achromobacter
spp. are usually rich in mobile genetic elements carrying antibiotic resistance [11,55], whose
exchange with and acquisition by other microbes such as P. aeruginosa might influence the
course of infection and the outcome of antibiotic therapies.

In conclusion, despite our observations being limited to restricted mechanisms on a
small number of selected strains, our results show that both inter-species competition and
cohabitation are represented during chronic co-infections in CF airways, and evolution
of these interplays can happen at the late stages of chronic infection. Furthermore, we
provided insights on virulence mechanisms that could be involved in Achromobacter spp.’s
competitive abilities. Future studies on a larger scale, involving more strains from more
patients, are needed to better understand the interplay between competition and adaptation
in the lungs of CF patients. Further mechanisms involved in inter-species interactions
should also be explored, such as regulation of quorum sensing and secretion of specific
virulence factors or metabolic by-products. In addition, evaluating interactions involving
other microbial species would increase insights into the extent and complexity of such
interplays and their contribution to the clinical outcome. This highlights the importance
and necessity of further studies with a larger number of isolates, encouraging further
research on this subject.

4. Materials and Methods
4.1. Bacterial Isolates

Four clinical isolates of Achromobacter spp. and P. aeruginosa were collected from two
CF patients followed in the CF clinic at Rigshospitalet in Copenhagen, Denmark. The use
of the stored bacterial isolates was approved by the local ethics committee at the Capital
Region of Denmark (Region Hovedstaden) with the registration number H-4-2015-FSP. P.
aeruginosa and Achromobacter spp. were isolated from the same sputum sample twice from
each patient: in 2005 and 2008 from patient A, and in 2008 and 2014 from patient B.

4.2. Growth Curves

Bacterial strains were plated on LB agar and incubated at 37 ◦C for 24–48 h. One colony
was picked from the plate and inoculated in 10 mL LB medium, with shaking at 37 ◦C
overnight. Optical density at 600 nm (OD600) was measured using a spectrophotometer,
cultures were diluted to 0.05 OD/mL in LB medium and 150 µL/well was incubated in a
96-well plate for 20–24 h, with shaking at 37 ◦C. Using an automated plate reader, OD600
was measured every 20 min. Growth rate was calculated using GraphPad Prism 7.0.

4.3. Culture Supernatant Collection

Achromobacter spp. strains were plated on LB agar and incubated at 37 ◦C for 24–48 h.
One colony was picked from the plate and inoculated in 10 mL LB medium, with shaking
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at 37 ◦C for 16 h. OD600 was measured, and cultures were diluted to 0.1 OD/mL in 10 mL
of LB medium. After shaking at 37 ◦C for 16 h, cultures were diluted to 1 OD/mL and
centrifuged at 7000× g for 30 min at 4 ◦C. Supernatants were collected and sterile filtered.

4.4. Adhesion Assay

Bacterial strains were plated on LB agar and incubated at 37 ◦C for 24–48 h. One
colony was picked from the plate and inoculated in 10 mL LB medium, with shaking at
37 ◦C overnight. OD600 was measured using a spectrophotometer, cultures were diluted to
0.05 OD/mL in LB medium and 150 µL/well was incubated in a 96-well plate for 20–24 h at
37 ◦C. After measuring OD600, wells were washed twice with water to remove unattached
cells, and surface-attached cells were stained with 0.1% crystal violet solution for 15 min.
Wells were rinsed and washed three times with water and then dried for 1–2 h. Thirty
percent acetic acid was added, incubated at room temperature for 15 min, and absorbance
at 590 nm was measured. Adhesion measured by crystal violet staining (absorbance at
590 nm) was normalized on growth (absorbance at 600 nm). In competition assays, P.
aeruginosa adhesion was measured in the presence/absence of 10% Achromobacter spp.
culture supernatant.

4.5. GFP Tagging

P. aeruginosa strains were tagged with a mini-Tn7 construct carrying gentamycin
resistance and GFPmut3b genes under the control of the growth-dependent E. coli ribosomal
promoter rrnB P1 [56]. The construct was introduced in P. aeruginosa by conjugative transfer
as described by Choi and Schweizer [57]. Briefly, recipient P. aeruginosa strains were
mixed with E. coli donor and helper strains (pRK2013 and pNTS2), and a drop of bacterial
suspension was placed in the center of an LB agar plate and incubated at 37 ◦C overnight.
Transconjugants were selected by plating bacteria on LB agar containing gentamycin and
trimethoprim. Mini-Tn7 insertion was checked by colony PCR using PTn7R and PglmSF
primers [57]. To assess the growth-dependent fluorescence emission, P. aeruginosa GFP-
tagged strains were cultured in a 96-well plate for 12 h, with shaking at 37 ◦C, while
fluorescence (excitation 475 nm, emission 520 nm) and OD600 were measured every 20 min
using an automated plate reader.

4.6. Biofilm Formation Assay

A flow chamber system was assembled and sterilized following the protocol from
Tolker-Nielsen and Sternberg [58]. Briefly, 250 µL of bacterial cultures (0.05 OD/mL) was
injected in each flow cell channel. Flow cells were left upside-down for an hour without
flow to let bacteria attach on the cover glass and then were turned and incubated at 30 ◦C for
up to 5 days with flow (A10 minimal medium added with MgCl2, CaCl2 and trace metals).
Biofilm formation was observed by confocal laser scanning microscopy for GFP-tagged
cells and Syto62 staining of total cells. For statistical analysis, at least 7 pictures/channel
were taken, homogeneously distributed along the channel. Pictures were visualized and
elaborated using Imaris 7.4 software. Biomass was calculated using Comstat2 software [59].

4.7. Genomic Analysis

Whole genome sequencing and assembly were performed as previously described [36].
Sequences have been deposited at EMBL under the projects n. PRJEB35058 (Achromobacter
spp. sequences) and PRJEB40978 (P. aeruginosa sequences). Sequence data can be found
with the experiment accession numbers ERX3614542 (strain A1), ERX3614543 (strain A2),
ERX3614548 (strain A3, previously called B1), ERX3614549 (strain A4, previously called B2),
ERS5248144 (strain P1), ERS5248145 (strain P2), ERS5248146 (strain P3) and ERS5248147
(strain P4). Genotypic relatedness among longitudinal isolates was verified by checking
core genome similarities obtained using the Harvest-OSX64-v1.1.2 suite [60]. Variant
analysis was performed as previously described [36]. Briefly, two types of variant analysis
were carried out: the first by aligning sequence reads to the reference genome, and the
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second by aligning them to the de novo assembly of the longitudinal isolate from the
same patient. In the first case, the annotated genomes A. xylosoxidans NH44784-1996 and P.
aeruginosa PAO1 (RefSeq accessions: GCF_000967095.2 and GCF_000006765.1) were used
as reference genomes. Bowtie 2 v2.3.4.1 [61] was used for performing reads alignment, and
the SnpEff v4.3t toolbox [62] was used to annotate variants and predict their functional
effects. Only variants supported by a minimum of 20 reads were retained.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10080978/s1, Figure S1: Growth and fluorescence emission curves of GFP-tagged P.
aeruginosa isolates; Figure S2: Growth curves of Achromobacter spp. isolates, Figure S3: Adhesion of P.
aeruginosa PAO1 strain in absence and presence of the culture supernatants collected from the clinical
Achromobacter spp. isolates.
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