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Abstract

To overcome limitations in perceptual bandwidth, humans condense various features of the
environment into summary statistics. Variance constitutes indices that represent diversity within
categories and also the reliability of the information regarding that diversity. Studies have shown
that humans can efficiently perceive variance for visual stimuli; however, to enhance perception of
environments, information about the external world can be obtained from multisensory modalities
and integrated. Consequently, this study investigates, through two experiments, whether the
precision of variance perception improves when visual information (size) and corresponding
auditory information (pitch) are integrated. In Experiment |, we measured the correspondence
between visual size and auditory pitch for each participant by using adjustment measurements. The
results showed a linear relationship between size and pitch—that is, the higher the pitch, the
smaller the corresponding circle. In Experiment 2, sequences of visual stimuli were presented both
with and without linked auditory tones, and the precision of perceived variance in size was
measured. We consequently found that synchronized presentation of audio and visual stimuli
that have the same variance improves the precision of perceived variance in size when
compared with visual-only presentation. This suggests that audiovisual information may be
automatically integrated in variance perception.
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Introduction

There are many kinds of diversity in the world, such as various types of species, ideas, colors,
shapes, textures, and sounds. Even elements within the same category show variations. For
example, when buying packed fruit, one package may contain items that are all
approximately the same size, while others may contain items that vary in size. In this case,
uniform-sized fruit may represent good quality and, consequently, the buyer may be more
likely to choose the former package. In another example, when a group of people with
different opinions regarding a matter finally arrive at a single conclusion, there may be
considerable variations in the people’s facial expressions (i.e., emotions), ranging from
being very satisfied to very dissatisfied with the conclusion. In such cases, it might be
necessary to pay additional attention to the opinions of each member.

To understand the outside world, information about variations in objects and creatures is
useful and can affect subsequent decision-making and behaviors. Therefore, it is important to
clarify the mechanisms through which humans perceive variations. Quantitative variation
within the same category can be treated as variance. Performing variance and averaging when
encountering a population allows an individual to discern representative values for that
population; in other words, summary statistics are determined, and many researchers have
demonstrated that humans can perceive summary statistics very efficiently (e.g., Haberman,
Lee, & Whitney, 2015; Morgan, Chubb, & Solomon, 2008; Solomon, 2010; Solomon,
Morgan, & Chubb, 2011).

Compared with studies on variance perception, more studies have been performed on
averaging, such as in regard to orientation (e.g., Parkes, Lund, & Angelucci, 2001;
Robitaille & Harris, 2011), size (e.g., Ariely, 2001; Attarha, Moore, & Vecera 2014,
Chong & Treisman, 2003), luminance (e.g., Bauer, 2009), length (Weiss & Anderson,
1969), speed (e.g., Emmanouil & Treisman, 2008; Watamaniuk & Duchon, 1992),
direction of motion (e.g., Watamaniuk, Sekuler, & Williams, 1989), facial expressions
(Haberman, Harp, & Whitney, 2009; Haberman & Whitney, 2009), and gender
(Haberman & Whitney, 2007). Averaging is not limited to the spatial dimension; it can
be applied to stimuli that change in size over time (Albrecht & Scholl, 2010) and can even
be applied in perceptual modalities other than visual. For example, in auditory perception,
it is possible to create an accurate average perception of pitch (Albrecht, Scholl, & Chun,
2012; Piazza, Sweeny, Wessel, Silver, & Whitney, 2013); Albrecht et al. (2012) also reported
that the observer showed little cost in computing the averages of tone and visual size
presented simultaneously. Through averaging, humans can efficiently perceive the gist of
groups that have redundant information; this means that they can effectively reduce the
influence of the intrinsic noise associated with each stimulus and accurately grasp the
content of the whole (Alvarez, 2011).

On the other hand, variance does not describe the central tendency of a stimulus set; it
represents the overall distribution pattern instead. It conveys general information about
population characteristics and the reliability of averages of certain qualities (such as those
described earlier); in some cases, a large variance in a system may also indicate abnormalities
and potential risks (Ueda, Yakushijin, & Ishiguchi, 2015). Thus, determining both variance
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and average is important for efficiently understanding environmental information and
executing appropriate adaptive behavior. Previous studies have shown that variance
perception of visual features, such as orientation (e.g., Morgan et al., 2008) and size (e.g.,
Solomon et al., 2011), is performed efficiently. For instance, Solomon et al. (2011), through
an ideal observer analysis using a computational process model, showed that variance
perception is more accurate and efficient than average perception. They also argued that
late noise, which has been theorized to affect average perception, does not affect variance
perception. Other studies have shown that for higher order stimuli that have social
significance, such as facial expressions, variance can be perceived accurately and efficiently,
even if individual face perception fails at the conscious level (Haberman et al., 2015).
Meanwhile, regarding auditory stimuli, it has been found that humans can discriminate
between variances in rhythm (e.g., empty time intervals marked by auditory tones;
Ashitani, Yakushijin, & Ishiguchi, 2012); in this study (Ashitani et al., 2012), just
noticeable differences for several standard auditory stimuli were fitted to dipper functions
and were determined to be identical to characteristics reported in variance discrimination of
visual stimuli (orientation; Morgan et al., 2008).

Although most research on variance perception has focused on single modalities, the
human brain uses multiple sources of sensory information derived from several different
modalities to reconstruct the external environment. By merging these different sources of
information efficiently, humans can develop a coherent and robust perception from noisy
unisensory perceptual estimates (Ernst & Biilthoff, 2004). Considering this limitation of
previous studies, it is clearly necessary to examine variance perception based on
information from multiple modalities. For example, when encountering elephant herds,
the variance is discerned using both visual and auditory information, because big
elephants make low-frequency vocal sounds and small elephants make high-frequency
vocal sounds. That is, visual information regarding the elephants’ individual sizes and
auditory information regarding their vocal frequencies are correlated with high
probability. By integrating auditory information (pitch) that is linked with visual
information (size), the perceived signal regarding visual size may become more salient,
and an increase in the saliency of an individual stimulus affects perception of the entire
stimulus set. Generally, if salience produced by multimodal presentation reduces the noise
(e.g., Gaussian noise) in the internal representation of the stimulus components, the
reduction effects will be larger on the statistical variance than on the statistical mean of
the stimulus values. Thus, in this study, we investigate the crossmodal effect especially on
variance perception.

Many studies have shown that several nonarbitrary associations appear to exist between
basic physical attributes of stimuli or features of different sensory modalities (e.g., Martino &
Marks, 1999; Melara & O’Brien, 1987; Parise & Spence, 2009; Spence, 2011). Crossmodal
correspondence is partially similar to synesthesia but does not necessarily show personal
inherent ties between sensory modalities and the conscious experience of additional
sensory features. Crossmodal correspondence concerns a consistent combination of
multisensory features, and it has been reported in many people (without synesthesia).
There are links between different features in various levels of processing, such as
perceptual or semantic levels. For example, there are associations between shape and
phonology, as shown by the bouba/kiki effect (Ramachandran & Hubbard, 2001, 2003);
moreover, perception of the motion direction of ambiguous visual-motion displays has
been found to be affected by a crossmodally corresponding sound (rising or falling) when
it is presented simultaneously at the onset of the visual-motion stimulus (Maeda, Kanai, &
Shimojo, 2004).
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On the basis of this dependency between modalities, we infer that effective sampling exists
in crossmodally corresponding presentations. There are two possibilities by which
crossmodal presentation can make sampling effective. First, it is possible that being
presented with a corresponding sound can increase the salience of the visual stimulus.
Even when a signal in the primary modality is not sufficiently salient to be sampled, the
corresponding signal from another modality can strengthen it and make it suitable for
sampling. Through this process, the sample size may be increased or stabilized, thereby
leading to good variance perception. Second, crossmodal correspondence has been
determined to promote efficient information processing (e.g., Evans & Treisman, 2010;
Gallace & Spence, 2006; Marks, 1987; Martino & Marks, 1999; Melara & O’Brien, 1987).
In a speeded classification task in which participants are asked to decide which of two
successively presented stimuli (e.g., circles) are larger, the response time is shorter when a
crossmodally congruent sound (e.g., a high-pitch sound to accompany a small circle) is
presented with the second stimulus than when a crossmodally incongruent sound (e.g., a
high-pitch sound to accompany a large circle) is presented (Evans & Treisman, 2010; Gallace
& Spence, 2006). Such improvement in efficiency has been shown between pitch and visual
stimuli, including height (e.g., Evans & Treisman, 2010; Melara & O’Brien, 1987), brightness
(Marks, 1987), shape and angularity (Marks, 1987), and spatial frequency (Evans &
Treisman, 2010). However, there is room for discussion regarding this issue: at which
stages of processing do these links appear? Nevertheless, it is very likely that crossmodal
correspondence promotes perceptual processing and variance perception.

Based on the aforementioned findings, this study examined whether the simultaneous
presentation of corresponding auditory stimuli facilitates the discrimination of visual
variance. To perform this, combinations of visual sizes and auditory pitches for which
crossmodal correspondence was reported in prior studies (e.g., Evans & Treisman, 2010;
Gallace & Spence, 2006; Parise & Spence, 2009) were used. The following four conditions
were set for the combinations of audio-visual stimuli, and the discrimination thresholds of
size variance were compared between the conditions: (a) crossmodally congruent condition,
(b) crossmodally incongruent condition (the same stimulus set as the congruent condition,
but rearranged to avoid presenting crossmodal congruence), (¢) constant pitch condition, and
(d) no-sound condition. In terms of improving processing accuracy, including the saliency
increment described earlier, we hypothesized that the sensitivity of size-variance
discrimination would improve only in the congruent condition.

We conducted two experiments to examine this hypothesis. In Experiment 1, we measured,
for each participant, their corresponding relationship between visual size and auditory pitch.
This experiment had two aims. One was to confirm, through the use of an adjustment
method, the link between visual size and auditory pitch described earlier; the other was to
determine the corresponding functional equation between the size and pitch for each
participant in order to apply it in Experiment 2. Although crossmodal correspondence is
common in a relatively large number of people, it is possible that there are individual
differences regarding the functional relationship between the two properties (i.e., the pitch
that corresponds to a particular size). To efficiently examine the crossmodal-congruency
effect on variance perception, it was important to use the optimal combination of size and
pitch for each participant; consequently, in Experiment 2, we adjusted the sound stimuli
individually for each participant using the functional equations obtained in Experiment 1.
In Experiment 2, participants observed two successive sequences, each consisting of eight
stimuli (i.e., disks with sounds), and decided which sequence of disks had a larger variance of
size. Previous studies using the speeded classification task have shown that the effects of
crossmodal correspondence between visual size and auditory pitch are not absolute but
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relative (Gallace & Spence, 2006; Melara & O’Brien, 1987); when high- or low-pitch sounds
are presented in the same block, the relative stimuli values create a congruent effect, but this
effect disappears when the high or low sounds are presented in different blocks (Gallace &
Spence, 2006). Nevertheless, in the experiments described in this study, since the sizes of the
disks and the pitches of the sounds were relative for each stimulus range, this procedure could
satisfy the aforementioned condition for generating synesthesia-like effects.

Experiment |
Methods

Participants. Participants were 22 paid volunteers (all females, aged 21-29 years). Of these, 19
were graduate students of Ochanomizu University, while the others were undergraduate
students of Aoyama Gakuin University. All participants provided written informed
consent before the experiment. Twenty-one participants reported having normal or
corrected-to-normal vision and no hearing problems; one participant (Participant 20)
reported suspecting herself to be tone deaf. Twenty participants had at least 3 years of
experience with musical instruments; the remaining two (Participants 4 and 7) had no
specific musical experience but had attended music classes through Japanese compulsory
education.

Apparatus. We generated visual and auditory stimuli using MATLAB with the Psychtoolbox
expansion (Brainard, 1997; Pelli, 1997) on a MacBook Pro computer. Visual stimuli were
displayed on a 17-in. CRT monitor with a resolution of 1,152 x 864 pixels (refresh rate of
75Hz). For each observer, auditory stimuli were presented at the same moderate volume via
headphones (SONY MDR-CD900ST). Participants sat in a dimly lit room and, using a chin
rest, observed the monitor from a distance of approximately 57 cm. For each experimental
trial, they pressed a key on an Apple keyboard to give a response.

Stimuli. Pure tones of five frequencies (200, 400, 800, 1600, and 3200 Hz) were used as
auditory stimuli. In each trial, one of the tone pitches was randomly chosen and presented
for 500 ms. For the visual stimulus, a white disk was presented on a gray background in the
center of the display. There were two initial values for the disk diameter (a visual angle of 1°
or 5°), with one of these randomly chosen and presented in each trial. The disk diameter
could be changed by the participants: Each press of the up arrow key contracted the disk by a
visual angle of 0.1°, and each press of the down arrow key expanded it by 0.1°. The luminance
of the gray background was 1.22 cd/m? (CIE xy chromaticity coordinates, x = 0.266, y =
0.433), and the luminance of the white disk was 91.4 cd/m? (CIE xy chromaticity coordinates,
x = 0.256, y = 0.337).

Procedure. The participants were asked to adjust the disk size using the keys so that it matched
the pitch of the presented sound (i.e., they applied an adjustment method).

In each trial, a fixation point was presented in the center of the screen, and a pure tone was
played through the headphones for 500 ms. The fixation point remained on screen during the
tone presentation. Then, after a blank display without sound for 500 ms, a white disk was
presented and participants proceeded to adjust the disk size by pressing the keys. When the
size adjustment was completed, participants pressed the space key. After this, the original
pure tone was presented again for confirmation. If participants judged the disk size to match
the sound pitch, they pressed the space key once more; otherwise, they could readjust the disk
size before pressing the space key for the second time. The disk size at the time of the second
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pressing of the space key was recorded as the adjusted size for the trial. The next trial began
500 ms after the second press of the space key.

There were 10 conditions in total (five pitch conditions for each of the two initial disk
sizes). Before the experimental session, a trial for each condition was presented in random
order as practice. In the experimental session, five trials for each condition were presented
randomly; that is, the session comprised 50 trials in total. It took approximately 20 min for
each participant to finish this experiment, including the time required to provide experiment
instructions and conduct practice trials.

Results and Discussion

To examine the perceptual relationship between size and pitch, for each participant, the
adjusted disk sizes they reported for each of the five pitch conditions were averaged to
give single values for each condition. We plotted the data on logarithmic axes because
such axes seem to be more appropriate for examining sensory relationships than are linear
axes. The pitch of a sound is proportional to its frequency, and Solomon et al. (2011) showed,
in an experiment concerning size discrimination of circles, that a circle’s effective size is
proportional to the logarithm of its diameter. Although Solomon et al. also acknowledged
other possibilities for this relationship (e.g., suggesting an alternative model of size
discrimination that includes Gaussian decision noise that increases with circle size), in the
present study we assumed that perceived size corresponds to logarithmically transduced circle
diameters. The regression lines on the logarithmic axes for each participant are shown in
Figure 1. The lines seem to fit the data well (the R” for all participants, except Participants 11,
14, and 17, was 0.87 or higher; although the R? of Participant 14 was sufficiently large, their
correlation was negative), which demonstrates the linear relationship between pitch and
size. This finding suggests that the participants did not adjust the size randomly but had
somewhat consistent perceptions of the sizes corresponding to each pitch. In addition, the
regression lines for 20 of the participants were downward and to the right. These results show
that crossmodal correspondence between size and pitch (i.e., large size to low pitch and small
size to high pitch) exists, as was reported in previous studies (Evans & Treisman,
2010; Gallace & Spence, 2006; Parise & Spence, 2008, 2009). Moreover, the differences
in the slopes for each participant suggest the existence of individual differences in how size
is associated with a certain pitch. For Experiment 2, in order to use stimuli
with the strongest possible correspondence between pitch and size, we applied the
parameters of the regression lines obtained for each participant in Experiment 1 to the
stimulus settings.

In Experiment 1, two participants (Participants 11 and 14) showed a reverse relationship
between size and pitch (i.e., large size to high pitch and small size to low pitch). They did not
differ from the other participants in terms of musical experience or hearing. Thus, the reason
for this inverse perception is unclear, but this result suggests that, although the relationship
between size and pitch was consistent in most participants, crossmodal correspondence may
partly depend on individual factors. We did not conduct further investigation in this regard,
but it may be worthwhile to examine whether people who show such an inverse crossmodal
link also differ from others when performing tasks such as those applied in previous related
studies.

As shown in Figure 1, the slopes of the fitted functions for Participants 11 and 14 were
notably smaller than those for the other participants. This suggests that size and pitch
correspondence was not as strong for these two participants as it was for the other
participants. For Experiment 2, as we sought to investigate the effect of crossmodal
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Figure |. Graphs of the relationship between pitch and size for each participant in Experiment I.

correspondence on variance perception, we decided to exclude Participants 11 and 14 in order
to restrict the sample to those who had at least a moderate sense of crossmodal
correspondence (exclusion criterion was set at less than 2 SD from the average value).
Moreover, the participant who self-reported a problem regarding their pitch perception
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(Participant 20) was also excluded, although her data for Experiment 1 did not show any
significant difference when compared with the data of the other participants.

Note that it is possible that the associations between size and pitch observed in Experiment
1 were cognitive and not necessarily perceptual or absolute. Crossmodal correspondence,
however, may occur across various levels, such as perceptual, cognitive, and decision-making
or response-selection. In the study of Gallace and Spence (2006), the link between size and
pitch was considered to be relative and to involve cognitive processing, but the presentation
of matching sounds was found to improve the response time in a size-classification task.
Therefore, we consider that it is possible that a crossmodal link facilitates the information
process, even if the link appears at the cognitive level. In Experiment 2, we investigated
whether the crossmodal correspondence observed in Experiment 1 has an effect on
variance perception.

Experiment 2

In Experiment 2, we investigated whether size-pitch correspondence for each stimulus
element influences the precision of associated variance discrimination. We hypothesized
that the threshold of variance discrimination would decrease (increased sensitivity) when
the corresponding sound is presented synchronously with each visual stimulus
(crossmodal-congruent condition), because saliency and information processing would be
facilitated by the crossmodally corresponding sound. However, we also hypothesized that
when the combination of visual size and auditory pitch was incongruent (crossmodal-
incongruent condition), this effect would not occur meaning that the sensitivity of variance
discrimination would not increase. As mentioned earlier, to produce the stimuli, we
applied individually tailored parameters for each participant; that is, we used different sets
of audio-visual stimuli, not fixed sets, for each participant. We chose this method because the
results of Experiment 1 showed that correspondence between auditory pitch and visual
size depends on participants’ sensitivity to them, and the participants’ reported
correspondence showed consistency. It is conceivable that using each participant’s optimal
combination value is most appropriate for examining the crossmodal-congruency effect in
variance perceptions.

Methods

Participants. Of the 22 participants from Experiment 1, 18 participated in Experiment 2. As
mentioned in the discussion of Experiment 1, three of the participants from Experiment 1
were excluded because, to fulfill the purpose of this experiment, it was necessary to possess
size-pitch correspondence and normal ability regarding pitch perception. In addition, another
participant (Participant 7 in Experiment 1) did not participate in Experiment 2 for private
reasons.

Apparatuses. For Experiment 2, the same apparatuses as those used in Experiment 1 were
applied.

Stimuli. In each trial, eight white disks were presented, one-by-one, in sequence. The disks
were positioned on an outline of an invisible circle that had a radius of 1° which, to reduce the
influence of any eccentricity, was located in the center of a gray background screen. The
diameters of each disk were randomly chosen from the lognormal distribution InN (InD, ¢°),
having a randomly selected baseline diameter D between 1.0° and 1.2°. For each sequence,
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the baseline diameters of the two alternatives (pedestal and comparison stimuli; pedestal
means standard stimuli) were set to differ. For the pedestal variances, two magnitudes
were introduced (o7 = 0.0484 and o> = 0.1156); the pedestal variance was less than that of
the comparison variance. To avoid the possibility of growing tired of the participant due to
the repeated presentation of the similar variance value, we introduced the two pedestal
variance. The SDs of the comparison stimuli were determined for each trial using the
QUEST algorithm (Watson & Pelli, 1983).

A sequence of eight pure tones was played through headphones and synchronized with
each visual disk’s appearance. The frequency of each tone was dependent on the experimental
conditions described later.

Experimental conditions. Four experimental conditions were set for Experiment 2: crossmodal-
congruent, crossmodal-incongruent, constant pitch, and no sound. In the crossmodal-congruent
condition, the frequency of each tone corresponded to cach disk’s size, based on the
participant’s regression equation (obtained in Experiment 1). In the crossmodal-
incongruent condition, the correspondence between the visual (size) and auditory (pitch)
stimuli was reversed, with eight combinations being shown; that is, combinations such as a
high-pitch tone with a large circle and a low-pitch tone with a small circle, the opposite to
that shown in the congruent condition, were introduced. In the constant-pitch condition,
eight tones and eight circles were presented, with the respective pitches of the tones
corresponding to the average sizes of the respective circles. Finally, in the no-sound
condition, only visual stimuli were presented. All conditions were conducted within the
same block in a random order.

Procedure. In each trial, the fixation point was shown on the screen for 750 ms, and then the
first sequence (eight disks) was presented. Each disk was shown for 250 ms, with a 100-ms
blank interval between each. After this, the fixation point was presented again, and then the
second sequence was presented in the same way (Figure 2). When the second sequence was
completed, the word answer was presented on the screen, and participants were required to
judge which of the two successive sequences of visual stimuli had larger variance (i.e., they
applied a temporal two-alternative forced choice method). Participants were instructed to
focus on the size variance of the circles, and they were required to press 1 on the keyboard if
the variance of the first sequence was larger, 3 if the second stimulus was larger, and 2 to
proceed to the next trial. Since the trials in all four conditions were run randomly within the
same block, visual stimuli were presented with accompanying auditory stimuli in some trials
and without auditory stimuli in others. For those involving auditory stimuli, the onset and
offset time of each sound was the same as that of the presentation of the corresponding disk.
Participants were asked to ignore any sounds they heard and to judge the size variance based
only on the visual stimuli. After the experiment trials, participants were asked whether they
had ignored the sound and had avoided using the auditory stimuli to help them judge the size
variance of the circles. There were no participants who reported having responded
consciously based on the auditory stimuli.

A practice session was conducted before the experiment session. Using the QUEST
algorithm (Watson & Pelli, 1983), we estimated 82% accuracy-discrimination thresholds
for the eight conditions (2 pedestals x 4 crossmodal conditions). Forty-five trials were
conducted for each condition, and these trials were randomly mixed in each experimental
block. In total, there were 360 trials (8 Conditions x 45 Trials) and these were divided into
five blocks (the QUEST program was running until the end of all five blocks; the trials were
only paused between the blocks, when a blank monitor screen was shown).
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Fixation:750ms

J’ Duration of visual and auditory stimulus: 250ms

blank: 100ms

Figure 2. Schematic view of the stimuli used in Experiment 2. The duration of each visual and auditory
stimulus was 250 ms, and the interstimulus interval was 100 ms. When auditory stimuli were presented
(crossmodal-congruent, crossmodal-incongruent, and constant pitch conditions), the onset and offset times
of the sounds were the same as those of the disks.

Results and Discussion

Figure 3 shows the average values of the size-variance-discrimination thresholds for each
condition. A two-way repeated measures analysis of variance (Pedestal Variance x the
Crossmodal Condition’s Discrimination Threshold) was conducted. In the repeated
measures analysis, Greenhouse-Geisser correction was used to address violations of the
sphericity assumption (Geisser & Greenhouse, 1958). The main effect of pedestal variance
was significant, F(1, 17) = 62.597, p <.001, but there was no significant main effect of the
crossmodal condition, F(3, 51) = 2.764, p = .079; the interaction between pedestal variance
and crossmodal conditions was significant, F(3, 51) =4.811, p <.001. A post hoc test revealed
that a simple main effect of crossmodal condition was significant only for the large pedestal
variance (o” = 0.1156). For the large pedestal variance, the discrimination thresholds in the
crossmodal-congruent condition (multiple comparison with Bonferroni’s method: p = .021
after Bonferroni correction) and in the crossmodal-incongruent condition (p = .033 after
Bonferroni correction) were lower than those in the no-sound condition. None of the
differences between the other conditions were significant.

Analysis of variance showed that there was no effect of crossmodal correspondence on
small pedestal variance. This might be because the small pedestal variance was not sufficiently
large for the participants to neglect the intrinsic noise. The value for the small pedestal
variance that we used in this experiment was larger than that of the largest pedestal used
in Solomon et al. (2011). However, in Solomon et al.’s study, all disks were presented
concurrently, whereas in our study, the audio-visual stimuli were presented sequentially;
thus, it is possible that noise related to memory was also added, which might have affected
the variance discrimination when the external variance was not large enough. In the following
discussion, we thus focus on the results for the large pedestal variance instead of the small
pedestal variance.
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Figure 3. This graph shows the thresholds regarding size-variance discrimination for each condition. Light
gray bars indicate small pedestal variance (o> = 0.0484), and dark gray bars indicate large pedestal variance
(6* = 0.1156). The error bars represent the standard error (SE). The asterisks indicate the significant
difference between the discrimination thresholds (p <.05 after Bonferroni correction).

We predicted that the discrimination threshold of the visual size variance would decrease
when the audio and visual stimuli were synchronized congruently (because the
correspondence of audio-visual stimuli would improve processing accuracy), but not when
the audio and visual stimuli were synchronized incongruently. The results matched only a
part of this prediction. The discrimination threshold in the crossmodal-congruent condition
indeed decreased compared with the no-sound condition; however, contrary to the
prediction, the discrimination threshold also decreased in the crossmodal-incongruent
condition compared with the no-sound condition. If this increased sensitivity regarding
variance discrimination had been created as a result of improved processing accuracy for
the visual stimuli that were synchronized with their corresponding audio stimuli, the
discrimination threshold would have been lower in the crossmodal-congruent condition
than in any other condition. The result, however, differed. We will discuss possible reasons
for these results in the General Discussion section.

In addition, it is notable that there was no significant difference between the constant-pitch
condition and the no-sound condition. Thus, although the thresholds in both the crossmodal-
congruent and crossmodal-incongruent conditions were not significantly lower than those in
the constant-pitch condition, this does not mean that audio-visual co-occurrence is sufficient
to explain the threshold decrements in the two crossmodal conditions. Previous studies have
reported that sound has a facilitating effect on visual processing. For example, synchronous
sound has been determined to facilitate the detection of flashes of light (e.g., Bolognini,
Frassinetti, Serino, & Ladavas, 2005) and visual events (Noesselt, Bergmann, Hake,
Heinze, & Fendrich, 2008; Vroomen & de Gelder, 2000). Furthermore, repetition
blindness, which is a failure to perceive the second occurrence of a repeated item in a
rapid serial visual presentation stream, has been found to decrease when sounds are
synchronously presented with repeated items (Chen & Yeh, 2009). Based on the findings
of the earlier studies, it could be inferred that there would be no difference between the
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constant-sound condition and the two crossmodal conditions (congruent and incongruent)
because the presentation of constant sounds somewhat facilitates the perception of visual
stimuli. Our result here, however, shows that this effect is not sufficiently large to produce a
significant difference between the constant-sound and no-sound conditions. Furthermore, it
means that the decrements of the thresholds in the crossmodal-congruent and crossmodal-
incongruent conditions must have been caused by a mechanism related to the variance of the
auditory input, not merely the existence of sound synchrony.

General Discussion

Variance is very important information that represents the diversity of objects and groups,
the reliability of information regarding these groups and, in some cases, abnormal conditions
in the external world. Consequently, it may affect our decision-making and behaviors. In
previous studies on statistical summary representation (or ensemble perception), it has
been demonstrated that a human observer can perceive variance as efficiently as he or she
can determine averages. Thus far, however, such findings have been limited to the domain of
visual processing. As a result, we believe that the present study is the first to report on
variance perception in response to multisensory information. Previous studies (e.g., Evans
& Treisman, 2010; Gallace & Spence, 2006) have reported that an automatic link between
different sensory modalities (e.g., high-pitch tone and small visual size, or low-pitch tone and
large visual size) exists in nonsynesthetic people, and that processing of visual stimuli is
facilitated when corresponding sounds are presented synchronously, even though the
sound stimuli may be irrelevant to the task. Based on these results, in this study, we
investigated whether such crossmodal correspondence regarding audio-visual stimuli also
has a facilitating effect on variance perception. Specifically, we conducted an experiment
examining whether variance-discrimination precision improves when irrelevant sounds,
with pitches that correspond to the sizes of the visual stimuli, are presented synchronously.

In Experiment 1, participants were asked to resize virtual disks until they matched a
corresponding sound; this was performed for five different frequencies and the results were
used to determine each participant’s crossmodal-correspondence relationship. As a result,
almost all participants returned a linear relationship between size and pitch; that is, the higher
the pitch, the smaller the circle judged to match the sound. Further, although the values of
the slopes of the regression lines differed for each participant, for most participants, the
relationship between size and pitch was consistent. These results showed that the existence
of consistent crossmodal correspondence between pitch and size is supported by subjective
judgment, building on previous findings that observed this relationship through speeded
classification tasks (Evans & Treisman, 2010; Gallace & Spence, 2006) and temporal-order
judgment tasks (Parise & Spence, 2008, 2009).

In Experiment 2, using each participant’s individual crossmodal-correspondence
parameters discerned in Experiment 1, the effect of crossmodal correspondence on variance
perception was examined. We set four conditions: (a) a crossmodal-correspondence condition;
(b) a crossmodal-incongruent condition, in which the combinations of the visual and auditory
stimuli in the crossmodal-correspondence condition were reversed; (c) a constant-sound
condition; and (d) a no-sound condition. The participants’ variance-discrimination precision
in regard to circle sizes was compared between the conditions.

The results of Experiment 2 suggested that the presentation of a sound with a pitch that
corresponds to the size of the circle shown does not affect variance-discrimination precision
regarding the circles’ sizes; further, congruency between each visual and auditory stimulus
was not necessary to improve variance discrimination. Instead, in the large-pedestal-variance
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condition, variance-discrimination precision improved in both the crossmodal-congruent and
crossmodal-incongruent conditions compared with the no-sound condition. Why did this
happen? One possibility is that, for both the congruent and incongruent conditions, the
simultaneous presentation of visual and auditory stimuli with the same variance increased
the size of the sample the participants could accommodate. Previous studies have shown that
the number of samples that humans can accommodate in ensemble perception is limited
(Ariely, 2001; Chong & Treisman, 2005; Haberman et al., 2009; Myczek & Simons, 2008;
Piazza et al., 2013), so it is fully conceivable that all eight elements were not necessarily
sampled in Experiment 2. In this case, if some sets from the audio-visual elements were
sampled as pairs based on their occupying the same points in a stimuli sequence, and if
the element values of multiple modalities are represented on a common scale with regard
to variance perception, the size of the sample would have increased (up to double) in
comparison to a single-modality case. Thus, in the congruent and incongruent conditions,
there is the possibility that the above conditions were satisfied, consequently improving the
variance-discrimination precision. (Because the scale of visual and auditory stimuli is
different, there is room for discussion about whether the magnitudes of variance might be
equal. However, at least the magnitude of the variances of two successive sequences of stimuli
has the same degree of correlation between visual and auditory modalities.)

It is conceivable that the improvement in processing accuracy (including saliency) for each
stimulus facilitated the overall variance perception. In this study, we hypothesized that the
processing accuracy of individual stimuli would improve when audio-visual stimuli with a
crossmodal link were presented concurrently, but this effect was not observed in our results.
In contrast, Gallace and Spence (2006) found, in a speeded discrimination task, that
presenting an irrelevant sound that corresponded to the size of visual stimuli improved
reaction time. The reason for the difference between the results of our study and those of
Gallace and Spence (2006) could be that while crossmodal correspondence is effective in
regard to facilitating perceptual processing and accelerating decisions, it may not change
the internal quality of the perceptual stimuli. In fact, Gallace and Spence (2006) also
reported, after analysis of the point of subjective equality for the size-discrimination task,
that the presentation of the sound had no effect on the perceived size of the disks, despite its
significant effect on response latencies.

However, we consider that our hypothesis regarding improvement in processing accuracy
was not completely rejected. It is possible that there were other causes of the apparent
identical threshold decrement between the crossmodal-congruent and crossmodal-
incongruent conditions. Processing accuracy might have been improved in the crossmodal-
congruent condition, but the sample size increment in this condition might not have been as
large as that in the crossmodal-incongruent condition; therefore, the total variance-
discrimination promotion effect in the two conditions might have been equivalent.
A previous study using a crossmodal temporal order judgment task demonstrated that the
stronger the synesthetic coupling between the pitch and the size, the more difficult it is to
perceive the spatiotemporal deviation (asynchrony) between them (Parise & Spence, 2008,
2009). This suggests that multisensory integration is facilitated by crossmodal
correspondence between modalities. Thus, it is conceivable that in the crossmodal-
congruent condition, the fusion of audio-visual stimuli was promoted, and the separability
of each modality decreased. For this reason, the sample size in the variance discrimination
possibly did not increase. The above possibility is mere speculation, of course, and further
investigation is necessary.

The effect of multisensory input on variance perception may differ depending on the
situation. In this experiment, the auditory stimuli were presented as irrelevant to the task.
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If auditory stimuli are recognized as information generated from the same source (e.g., a
human face and a human voice), the variance-perception precision may improve. Further,
when the noise of the individual stimulus is larger (e.g., short presentation time), or when
there are stronger links between the visual and auditory stimuli, the multisensory information
might be more effective. The promotion effect of corresponding audio-visual stimuli has been
shown in a wide range of tasks, such as visual learning of motion (Kim, Seitz, & Shames,
2008) and emotional response (e.g., de Gelder & Vroomen, 2000; Kreifelts, Ethofer, Grodd,
Erb, & Wildgruber, 2007). It follows that it is necessary to investigate whether the crossmodal
link between stimuli can help individuals use various stimuli to understand the meaning of the
summary statistics they acquire and apply this to the entire set of stimuli. This approach
could reveal the characteristics of perceptions of multisensory variance.

To date, no research has been conducted on variance perception regarding information
derived from multiple modalities. However, variance-perception processing does not occur
independently within a single modality; there is a possibility that some common processing
exists between the visual and auditory modalities. In the experiments described in this study,
although participants were instructed to ignore the auditory stimuli, the variation of the
pitches of the tones might have been automatically sampled and pooled with the sizes of
the visual stimuli, which may have influenced the perceived size variance. Variance is a unique
statistical index that differs from averaging, in that the magnitude of variance can be
compared, to some extent, among different stimulus attributes and sensory modalities.
Therefore, it is conceivable that there are common mechanisms underlying the perception
of the variance of different attributes and sensory modalities. Further investigation of this
issue through the use of different experimental methods, such as learning transition and after-
effects among different sensory stimuli, are needed.
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