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Abstract 

The dopamine transporter (DAT) plays a critical role in the central nervous system and has 

been implicated in numerous psychiatric disorders. The ligand-based approaches are 

instrumental to decipher the structure-activity relationship (SAR) of DAT ligands, especially the 

quantitative SAR (QSAR) modeling. By gathering and analyzing data from literature and 

databases, we systematically assemble a diverse range of ligands binding to DAT, aiming to 

discern the general features of DAT ligands and uncover the chemical space for potential novel 

DAT ligand scaffolds. The aggregation of DAT pharmacological activity data, particularly from 

databases like ChEMBL, provides a foundation for constructing robust QSAR models. The 

compilation and meticulous filtering of these data, establishing high-quality training datasets with 

specific divisions of pharmacological assays and data types, along with the application of QSAR 

modeling, prove to be a promising strategy for navigating the pertinent chemical space. Through 

a systematic comparison of DAT QSAR models using training datasets from various ChEMBL 

releases, we underscore the positive impact of enhanced data set quality and increased data 

set size on the predictive power of DAT QSAR models. 
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The dopamine transporter and its inhibitors 

Neurotransmitter:sodium symporters (NSSs) transport synaptic neurotransmitters through a 

Na+ and Cl---dependent mechanism back to the presynaptic neuron 1, 2. Among NSSs, the 

monoamine transporters include the dopamine, serotonin, and the norepinephrine transporters 

(DAT, SERT, and NET, respectively) 3. The cognate substrates of these transporters play key 

roles in the central nervous system (CNS), responsible for mood, emotion, learning, cognition, 

memory, sleep, and appetite. Inhibition of these transporters leads to reduced clearance of 

these neurotransmitters, resulting in prolonged synaptic signaling with higher intensity 3.  

Specifically, dopamine is an essential in the brain’s reward system 4. DAT is responsible for 

regulating the extracellular dopamine levels in the brain, using the energy stored in the Na+ and 

Cl- gradients to symport dopamine back to the neuron 5, 6. Disrupting the DAT function can lead 

to several psychiatric disorders, including attention-deficit hyperactivity disorder (ADHD) 7, 8, 

bipolar disorder 9, 10, and depression 11. Many psychostimulants, including cocaine and 

amphetamine, primarily target DAT. Upon entering the human brain, psychostimulants elevate 

extracellular dopamine levels and can have a highly addictive effect on the individuals 

consuming the substances, with the possibility of triggering substance use disorders (SUDs). 

SUDs encompass complex health conditions that include significant impairments of 

physiological, mental, and social functions due to consumption of substances at high doses 

and/or frequencies 12. Specifically, cocaine use disorder (CUD) is characterized by the 

compulsive consumption of cocaine despite its adverse medical, psychological, and behavioral 

consequences, was found to affect more than 5 million individuals in 2019 13. Notably, cocaine 

overdose death rates increased nearly 54% from 2019 to 2021 14. While users experience a 

brief sense of intense euphoria when consuming cocaine before the effect wears off, prolonged 

usage is linked to the development of mental disorders (e.g., depression) and cognitive 

impairments 13. Although cocaine acts non-selectively on the three monoamine transporters, 

substantial evidence indicates that DAT plays a key role in the development of CUD 15, 16. 
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Many efforts have been spent in past decades toward developing effective medications for 

CUD; however, there is no approved FDA drugs for CUD. Early efforts in developing therapeutic 

agents for CUD have centered around cocaine analogues, which have been optimized to 

possess both higher affinity and improved selectivity for the DAT but decreased stimulatory 

effects and less abuse liability 3, 17, 18. It was then discovered that the compounds with 

decreased stimulatory effects stabilized the DAT in a distinct conformation as compared to 

cocaine 17, 19. These compounds were classified as “atypical” DAT inhibitors, distinguishing them 

from “typical” DAT inhibitors like cocaine 18-20. Thus, cocaine stabilizes DAT in an outward-facing 

conformation, whereas atypical inhibitors, such as modafinil and JHW007, favor inward-facing 

conformations 21-23. Notable examples of atypical DAT inhibitors include benztropine 17, 24, 

rimcazole 17, GBR12909 25, and modafinil analogues 26, 27 , 28.  

However, translating these compounds to a human CUD treatment has been challenging 29, 

while the potential for discovering additional candidate atypical DAT inhibitors based on the 

well-characterized scaffolds is diminishing. In this work, we provide a comprehensive overview 

from the cheminformatics perspective in identifying novel DAT inhibitor scaffolds. 

 

Ligand-based versus structure-based drug discovery for the NSSs 

Computer-aided drug design (CADD) can be broadly categorized into protein structure-

based drug design (SBDD) and ligand-based drug design (LBDD) 30. SBDD leverages in-depth 

knowledge of the three-dimensional (3D) structures of the protein targets, allowing the design of 

small molecules that can interact optimally with the targets 31. When the high-resolution 

structures of mammalian NSSs were unavailable, SBDD heavily depended on the qualities of 

homolog-modeling based computational models of the targets, emphasizing the importance of 

accurate and reliable molecular modeling approaches 32-36. LBDD, on the other hand, operates 

without the 3D structural information of the targets, but relies on the analysis of the known 

pharmacological information between small molecules (ligands) and their targets. LBDD is 
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particularly useful when the 3D structure of the target is either unknown or challenging to obtain 

37. Thus, while SBDD provides the target structure-guided precision, LBDD offers ligand-based 

adaptability, in the quest for new therapeutic agents.  

In LBDD, several popular techniques have been employed, with notable examples being 

pharmacophore modeling and quantitative structure-activity relationship (QSAR) modeling. In 

pharmacophore modeling, pharmacophore refers to the spatial arrangements of structural and 

chemical features, usually on a chemical scaffold, that can be extracted from the active 

compounds of a target. The resulting model can facilitate molecular recognition to effectively 

identify and characterize new compounds 38-40. QSAR modeling was first established by Corwin 

Hansch for its application in the field of virtual drug screening 41. QSAR modeling focuses on 

establishing a quantitative relationship between the chemical structures of small compounds 

and their specific pharmacological activities, by building models that correlate the structural 

features of compounds with their observed bioactivities. The QSAR method operates on the 

premise that molecules sharing similar structural or physicochemical properties would 

demonstrate comparable biological activities 42. Consequently, the robustness of the QSAR 

models depends on both the quantity and quality of available pharmacological activity and 

compound data, much of which have been systematically accumulated and curated in pertinent 

databases 43. These models not only provide valuable insights into the essential molecular 

features contributing to the desired pharmacological effects, but also aid in the design and 

optimization of novel drug candidates.  

The molecular descriptors that QSAR utilizes come in many different forms, including 

quantitative (molecular shape) and qualitative descriptors (fingerprints) 44, and can range from 

2D to 6D 45. 2D molecular descriptors, which are the most popular, provide information on the 

connectivity of atoms, properties of chemical bonds, and chemical fingerprints 45. Many 

commercial software, such as Mold2 and DRAGON system, can be used to generate 2D 

molecular descriptors 46, 47. 3D descriptors provide physical information, such as surface 
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properties, molecular volume, and molecular interaction fields 48-50. A caveat to 3D descriptors is 

that these additional complexities may not be necessary to improve the predictive power of 

QSAR models at the expense of the significantly more computational cost, as its performance is 

sensitive to the accuracy of predicting ligand conformation.  

The early pioneering work in QSAR modeling of DAT ligands includes those of the Newman 

group, in constructing both 2D and 3D QSAR models, which used 2D and 3D descriptors, 

respectively. Specifically, the 2D QSAR study was carried out with 70 diverse inhibitors of the 

DAT and produced robust QSAR models, resulting in a q2 = 0.85. These DAT models were then 

used to search through the National Cancer Institute database, yielding five candidate 

compounds suitable for testing new DAT scaffolds 51. A follow-up study was conducted using 3D 

QSAR methods for the design of new mazindol analogues and to identify molecular interactions 

for optimal DAT binding. Using comparative molecular field analysis (CoMFA), each 

compound’s steric and electrostatic potential fields were calculated and used as features to 

generate robust 3D QSAR models 52.  

In recent years, there has been extensive applications of machine learning (ML) and deep 

learning (DL) techniques in the construction of QSAR models 53-55. These advanced 

computational techniques offer powerful tools for extracting intricate patterns and relationships 

from complex data sets, beyond the traditional linear regression based QSAR modeling 

approaches (see below). By leveraging ML and DL algorithms, significantly enhanced accuracy 

and predictive capabilities of QSAR models have been achieved 56-60.  

 

Databases containing pharmacological activity information of the DAT 

Constructing QSAR models involves consideration of many factors, and one of the initial 

and pivotal aspects is the collection of available and reliable data from relevant databases. We 

found that the publicly accessible databases containing pharmacological activity information of 

the DAT include ChEMBL 61, DrugBank 62, binding database (BindingDB) 63, 64, therapeutic 
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target database (TTD) 65, psychoactive drug screening program (PDSP) 66, and PubChem 67. 

These databases compile data on biomolecules, protein targets, compound characteristics, 

ADMET properties, binding interactions, functional assays, and more. Typically, these 

databases are maintained by non-profit organizations and undergo regular updates. While most 

databases primarily focus on drug-related information and associated targets, BindingDB also 

offers 3D insights into protein targets and ligands.  

To evaluate the available pharmacological data that can be used to construct QSAR models 

for DAT, we compared pharmacological data of DAT from these databases (data retrieved in 

December, 2023). Note that in this process, it is essential to consider the number of unique 

compounds when comparing across databases by removing redundant information. If such 

information was not found in the database, we employed Morgan fingerprints and Tanimoto 

similarity measurements to calculate the pairwise similarities to identify the distinct compounds 

within each database. In addition to human DAT (UniProt ID Q01959), the rattus norvegicus 

(UniProt ID P23977), bos taurus (UniProt ID P23977), and mus musculus DAT (UniProt ID 

Q61327) are also included. 

- ChEMBL release 33 (May 2023) provides 2,399,743 compounds, 20,334,684 activities, 

1,610,596 assays, 15,398 targets, and 88,630 publications 61. We found 14,102 

pharmacological activity data related to DAT, and among them, we identified 7,496 unique 

compounds, with clear indications of being curated by experts.  

- DrugBank Online (version 5.1.10, released 2023-01-04) contains 15,325 drug entries of FDA-

approved drugs or experimental drugs going through the FDA approval process 62. Upon 

querying for the DAT information in DrugBank, our search revealed 51 drugs specifically 

targeting DAT. Nevertheless, our comparison of data from other databases and literature 

suggests that additional drugs listed by DrugBank may also bind to DAT (see Table S1).  

- BindingDB collects experimental data of protein-small molecule interaction 63, 64. It provides 

both 2D- and 3D-information of proteins and ligands. Since its initial launch in the year 2000, 
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BindingDB has accumulated 2.8 million binding data for more than nine thousand targets and 

over 1.2 million compounds (released 2023-11-30). Regarding DAT, we found 10,650 

pharmacological data points, encompassing 5,724 unique compounds. 

- TTD provides information of known therapeutic protein targets and the corresponding drugs 

65. The latest update (2024) includes 3,730 targets and 39,862 drugs. We found 3,578 

pharmacological data points directed at DAT. Within that data set, some compound 

structures are unavailable, making it a challenge to identify unique compounds directly. 

- PDSP provides data assessing pharmacological and functional effects at CNS receptors, 

channels, and transporters 66. We found 1,234 instances of pharmacological data associated 

with DAT, which are related to 327 unique compounds. 

- PubChem is one of the largest chemical databases of publicly accessible chemicals 67. There 

are hundreds of data sources connected to PubChem, containing over 116M compounds, 

309M substances, 229M bioactivities, 36M publications and 38M patterns. When focusing on 

DAT specifically, we found a total of 9,108 pharmacological activities, related to 6,021 distinct 

compounds. However, the level of expert curation on these DAT activities are not clear. 

Among these six databases, ChEMBL is clearly outstanding, as it amasses the largest 

number of unique compounds and offers an extensive repository of expert-curated bioactivity 

information. Consequently, it was our primary choice for sieving training data for the 

development of a robust DAT QSAR model 68. However, we note that BindingDB is another 

important resource for DAT pharmacological activity data. 

To illustrate the trend of the evolution and the accumulation of DAT pharmacological data 

over the past four decades, we queried ChEMBL 33 and compiled the retrieved DAT 

pharmacological activity data along the years (Fig. 1, see its legend for query criteria). The first 

publication curated by ChEMBL on DAT studied amphetamine analogs and tested their 

inhibition of dopamine uptake in rats 69. Along the years, the number of relevant publications as 

well as the pharmacological activity data have been accumulating substantially (Fig. 1A,B). In 
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particular, the number of publications had a large spike in 2008 (55 publications), possibly 

attributed to the availability of the crystal structure of a bacterial NSS homolog, the leucine 

transporter (LeuT) in 2005 70), which allowed homolog modeling of the DAT and other NSSs 

with a high-resolution experimentally determined structure as the template. Integrated with 

molecular dynamics simulations and uptake experiments, the LeuT-based homology DAT 

models have been used to understand the substrate binding mode and the molecular 

mechanism of inhibitor interactions with DAT 71-74. Importantly, the LeuT-based homology DAT 

models have provided valuable guidance to facilitate the drug discovery 36, 75. However, we did 

not detect that the publication of the drosophila DAT structure in 2013 76 resulted in another 

obvious large accumulation in the relevant publications, although the pharmacological activity 

data and the number of new unique compounds somewhat increased in 2014 as compared to 

those in 2013 (Fig. 1B,C).  

Notably, whereas the number of publications appears to be plateaued in recent years (Fig. 

1A), between 2008-2010 and 2019-2020, there has been an obvious decline of novel DAT 

inhibitors being discovered and the associated pharmacological characterizations (Fig. 1B,C). 

Even though there is a noticeable increase of related publications in 2021, the increase of novel 

DAT ligands was minimal (note that to indicate the delay of ChEMBL data curation, which we 

found could be more than two years, a dashed line was added to separate the data of year 

2021-2023 from early years in Fig. 1). 

 

Some of representative DAT ligands specifically and not specifically developed for DAT 

When targeting a specific protein, such as DAT, for therapeutic purpose, it is critical the 

understand the pharmacology beyond the target. Conversely, some high-affinity DAT ligands 

were not necessarily specifically developed for DAT. To evaluate whether the SAR information 

accumulated by the field focusing on DAT ligand development can be supplemented by other 

efforts, we gathered and analyzed a set of representative DAT ligands from both the well-
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respected review articles on the DAT inhibitors 21, 22, 77 and DrugBank 62, which collects and 

curates the compounds that have progressed significantly along the drug development 

processes. We identified those with relatively high affinities using dopamine as a reference (with 

either pKi, pIC50, pEC50, or pKd > 5.06) to narrow down to a total of 61 ligands (Table S1). 

Among the 61 ligands, 48 ligands can be found in ChEMBL, but only 46 have recorded DAT 

pharmacological activity therein. In addition to ChEMBL, 52 ligands can be found in BindingDB, 

38 ligands can be found in PDSP, emphasizing the necessity to source the data beyond an 

individual database. To collect adequate data for Table S1, we also had to search the literature 

extensively.  

To characterize the chemical features of these 61 representative DAT ligands, we clustered 

them based on their chemical structures (see Fig. 2 legend for the clustering algorithm we 

employed). Cocaine and eight other DAT ligands were clustered together, and share both a 

tropane and a phenyl ring. However, a noticeable difference between cocaine and other 

compounds is the linkage distance between the tropane and phenyl ring. For cocaine, they are 

separated by a carboxyl group, but for others, they are directly connected. Interestingly, cocaine 

has the least binding affinity compared to the other compounds in this cluster. Indeed, 

compared to the affinities at SERT and NET, cocaine is not a DAT selective ligand, while RTI-

55, RTI-82, MFZ 2-24, ioflupane I-123 and WIN 35,428 have been used as radiolabeled probes 

in the binding assays for DAT 78-82. Among them, we could not found activity data at SERT or 

NET for RTI-82, MFZ 2-24 and ioflupane I-123, suggesting that these cocaine analogues may 

have been primary designed for DAT. Altropane is the only DAT selective ligand in this cluster, 

and has been used as an imaging probe to monitor DAT 83. Troparil (WIN 35,065-2) is a 

common inhibitor for the three monoamine transporters, and has exhibited a stronger affinity at 

DAT compared to that of cocaine 19, 84. Tesofensine, another common inhibitor for the three 

transporters, was investigated for its potential applications in obesity-related conditions, 

Parkinson’s disease, and Alzheimer’s disease 85.  
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In the cluster containing methamphetamine, amphetamine, and three other ligands, the 

common feature among them is a propylbenzene scaffold linked to a protonated amine (Fig. 

2B). Note that most ligands in this cluster are DAT substrates except for sydnocarb. 

Amphetamine has been used medically to aid in treating ADHD 86, 87 and in enhancing cognitive 

functions 88. Due to the size and structure of amphetamine analogs, they can cross through the 

blood brain barrier (BBB) 89. However, it has been found that methamphetamine disrupts the 

BBB and affects its structural integrity and permeability 90. Methamphetamine is a recreational 

psychostimulant drug known for its strong neurotoxic and addictive effects 91. Methamphetamine 

use disorder (MUD) exhibits a wide spectrum of adverse outcomes from hallucinatory ideation 

to self-injurious behaviors 92. Notably, MUD has been linked to severe cardiac complications 92. 

Both methamphetamine and amphetamine function as potent releasers that increase the 

extracellular concentrations of key neurotransmitters such as dopamine and serotonin in the 

brain 92, 93. Sydnocarb functions as a noncompetitive inhibitor of DAT and is used for the 

treatment of schizophrenia and depression but has been linked to having psychostimulant 

effects 94, 95.  

Dopamine is an endogenous substrate of DAT. It can be clustered together with several 

benzodioxole compounds, including 3,4-methylenedioxymethamphetamine (MDMA), 3,4-

methylenedioxypyrovalerone (MDPV), 3,4-methylenedioxy-N-ethylamphetamine (MDEA), and 

3,4-methylenedioxyamphetamine (MDA) (Fig. 2C). MDMA, commonly known as “ecstasy”, acts 

on both DAT and SERT, and can have stimulatory effects and alter perception and induces 

hallucinatory experiences 96-98. MDEA, functions as a partial releaser of DAT 99, while MDA has 

been shown to act as a substrate for all three monoamine NSSs 100. MDPV, a synthetic 

cathinone typically seen in “bath salts”, is a psychostimulant drug characterized by its 

heightened selectivity for DAT and increased potency when compared to that of cocaine 101. 

Studies have shown that MDPV is a DAT inhibitor but not a substrate 102, whereas all the other 

members of this cluster showed at least some substrate properties for DAT 100, 103. 
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A few well-recognized atypical inhibitors were clustered together including benztropine, 

JHW-007, vanoxerine, modafinil, GBR-12935, diphenylpyraline, and chlorpheniramine (Fig. 2D). 

In this cluster, diphenylmethane is the common moiety. Among them, modafinil is a therapeutic 

drug involved in treating excessive sleepiness in narcolepsy patients by increasing extracellular 

levels of dopamine 27, 104. Modafinil has two enantiomers (S- and R-modafinil), and it has been 

shown that the R-enantiomer (also known as armodafinil) has ~3-fold higher affinity than S-

enantiomer at DAT 27, while the R-enantiomer is a DAT selective ligand, when comparing the 

affinities at DAT, SERT and NET 105. Vanoxerine (GBR12909), a piperazine derivative and 

another atypical DAT inhibitor, was initially developed as a therapeutic treatment in combatting 

cocaine addiction, but it was later discontinued due to its heart-related side effects 25, 106. 

Diphenylpyraline functions as an antihistamine but has also been shown to inhibit DAT. 

Previous research suggested a potential for it to reduce the effects of cocaine 107. 

Chlorpheniramine is an antihistamine as well and displayed a high affinity for SERT and a 

relatively low affinity to DAT 108. In addition to the diphenylmethane moiety, JHW-007 and 

benztropine also possess a tropane ring. Benztropine, formally used as a drug for Parkinson’s 

disease, share noticeable structural similarities with cocaine. It has been shown to function as 

an atypical DAT inhibitor and utilized as a pharmacological agent for CUD research 17, 25, 109. 

JHW-007 is also an atypical DAT inhibitor and has been demonstrated to possess reduced 

psychostimulant effects compared to cocaine 110. Interestingly, except for diphenylpyraline and 

chlorpheniramine, the other five ligands in cluster D are selective for DAT over SERT and DAT 

based on the data that we could collect (Table S1).  

Some known allosteric inhibitors of DAT were clustered in one group (Fig. 2E). Specifically, 

SRI-31142, is a 4-quinazolinamine derivative that could inhibit the actions of cocaine; however, 

further research is needed to fully explore its therapeutic potential 111. Three other 4-

quinazolinamine analogs, SoRI-9804, SoRI-20040, SoRI-20041, are clustered with SRI-31142, 

and have been found to be partial inhibitors and allosteric modulators for DAT 112, 113. 
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While clusters A to E mentioned above have garnered more attentions for their interactions 

with DAT, the remaining clusters of ligands were mainly developed for use as antidepressants, 

appetite suppressants, and antipsychotics, which, however, have the off-target effects at DAT. 

In particular, two clusters of DAT inhibitors were obviously developed to treat depression. They 

have either tricyclics or bicyclic ring moiety. In the cluster F (Fig. 2F), desipramine, nortriptyline, 

and trimipramine are tricyclic antidepressants (TCAs). Both desipramine and nortriptyline are 

FDA-approved drugs to treat depression, due to their actions at NET and/or SERT 114, and have 

been shown to have an inhibiting effect on DAT as well 108. Trimipramine, has been shown to be 

a DAT inhibitor but is more potent at SERT 108. Nomifensine, sertraline, and dasotraline share a 

bicyclic ring moiety attached to a toluene group (Fig. 2G). Sertraline, a selective serotonin 

reuptake inhibitor (SSRI) that also inhibits DAT, serves as an antidepressant as well 115. 

Dasotraline is a dual DAT and NET inhibitor, which is being studied for its therapeutic potential 

in treating ADHD 116.  

Two other clusters also include antidepressants. One cluster shares phenylpiperazine as the 

common feature (Fig. 2H). In this cluster, aripiprazole is an atypical antipsychotic drug that 

primary target dopamine D2 receptor with a high affinity 117, but can also bind to both DAT and 

SERT, with only slightly higher affinity at SERT 118, 119. Nefazodone is an atypical antidepressant 

and has similar affinities in the three monoamine NSSs 120. Duloxetine, PAL-287, PAL-1045, 

and PAL-1046 share a naphthalene moiety and are clustered together (Fig. 2I). Duloxetine, a 

dual NET and SERT inhibitor, has exhibited the potential to serve as an antidepressant based 

on previous research findings 121, but demonstrated a weaker affinity to DAT 122. In addition to 

duloxetine, the other three compounds in cluster I are all substrates. PAL-287 functions as a 

releaser for DAT, SERT, and NET, and has been shown to suppress the effects of cocaine 123, 

Rothman, 2012 #86 (Table S1). PAL-1045 tends to act as a partial releaser for both DAT and SERT 99, 

124, whereas PAL-1046 functions as a full substrate for DAT 99.  
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Two clusters include appetite suppressants. Phenmetrazine is an anorectic drug used in 

mid-1900s to promote the release of dopamine in the brain 125 and was clustered together with 

methylphenidate and PAL-738. All three ligands in this cluster share a toluene moiety either 

linked to a 3-methylmorpholine moiety or carboxyl group (Fig. 2K). However, the phenylacetic 

acid moiety of methylphenidate, which acts as a typical DAT inhibitor, is common to cocaine, but 

not to the other two members of this cluster. Although methylphenidate serves as a therapeutic 

drug for ADHD, it also exhibits psychostimulant effects 126. PAL-738, on the other hand, serves 

as a partial releaser for DAT 99. The next cluster includes mazindol, which is another appetite 

suppressant, and a triple reuptake inhibitor of DAT, NET, and SERT 127, 128. It can be clustered 

together with rimcazole and KM822, and they share a similar tricyclic ring moiety (Fig. 2J). 

Rimcazole has been observed to inhibit the cocaine binding at DAT 129. KM822 is a 

noncompetitive inhibitor of DAT and has been shown to reduce the affinity of cocaine to DAT 35. 

Ten compounds have distinct scaffolds and are the sole representatives in their own 

respective clusters in this set of 61 ligands (Fig. S1). In particular, bupropion functions as a dual 

DAT and NET inhibitor and is used for the treatment of ADHD, depression, and smoking 

cessation 130. Tamoxifen functions as both a DAT inhibitor with some atypical property without 

psychostimulant effect and a selective estrogen receptor modulator, which is typically 

prescribed for the treatment of estrogen related breast cancer 131. While having a high affinity at 

SERT, ibogaine operates as a competitive inhibitor of DAT as well, and is a psychostimulant 

under investigation for its potential to treat SUDs 132.  

In summary, while the potential for leveraging the “traditional” DAT inhibitor scaffolds is 

diminishing, our analysis indicated that ample chemical space can be explored for developing 

the DAT inhibitors with desired pharmacological profiles. However, the accumulation and 

availability of large quantity of DAT pharmacological data present both challenges and 

opportunities.  
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Curation and filtering the DAT pharmacological data sets 

In order to assemble high-quality training data sets for QSAR modeling, adequate 

understanding and careful curation of the raw data retrieved from the databases are essential. 

One important issue is to differentiate the half maximal inhibitory concentration (IC50) and 

inhibition constant (Ki) in measuring the binding potencies of the ligand at a protein target. 

Whereas Ki can be derived from IC50 based on the Cheng-Prusoff equation, Ki is a more 

accurate representation of binding affinity than IC50, because IC50 can be influenced by the 

methods used for measurement 133. Based on the Cheng-Prusoff equation, Ki values are always 

expected to be smaller than the IC50 values. However, if the same experimental approaches 

are employed, the trends of Ki and IC50 should be similar. Additionally, for transporter proteins, 

we can separate the data according to the assay type, either the radiolabeled inhibitor binding 

assay (referred to as “binding” below) or uptake inhibition (referred to as “uptake” below), as 

they represent inhibitory potencies of related but different biological processes 68.  

Thus, the DAT pharmacological data retrieved from ChEMBL can be divided into four 

distinct sets: uptake IC50, uptake Ki, binding IC50, and binding Ki data sets (Table 1). Notably, 

among the four distinct data sets, there are some compounds appeared in more than one set 

(termed as “overlapping” compounds). By analyzing the trends among these compounds, we 

validate the points described above. First, in both the uptake pKi versus uptake IC50 and the 

binding pKi versus binding IC50 plots, we can observe that pKi values have a trend of being 

larger than IC50s, confirming the deduction from the Cheng-Prusoff equation described above 

(Fig. 3C,D). As expected, there is a strong correlation between uptake and binding pKi values, 

as well as between uptake and binding IC50 values (Fig. 3A,B). However, due to limited 

available data, it is not conclusive whether uptake pKi or pIC50 values tend to be larger than 

those of binding (Fig. 3A,B).  

Hence, it is not advisable to combine either Ki and IC50, or uptake and binding data sets in 

building the QSAR models of DAT and likely other transporter proteins. As there are more Ki 
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data than IC50 data in the binding data sets, we mainly focus on using the binding Ki data for 

DAT QSAR modeling. 

 

 

ML-based QSAR models using DAT binding data set 

Machine learning (ML) and deep learning (DL) have been extensively applied in biological 

and pharmaceutical research, including protein structure prediction 134, 135, absorption, 

distribution, metabolism, excretion, and toxicity (ADMET) profiling 136, 137, QSAR modeling 58, 68, 

de novo drug design 138-140, and the blood–brain barrier (BBB) permeability prediction 141. With 

the accumulation of large amount of pharmacological data in the databases such as ChEMBL 

and the drastic improvement of computation hardware in the recent decade, especially the 

applications of graphics processing units (GPUs) in scientific computing, ML and DL have risen 

to become the primary approaches in QSAR modeling, by handling the big data sets as well as 

the high volume of chemical features that can be generated for each compound. 

Among many ML algorithms, XGBoost and RF have gained increasing popularity for their 

strong prediction performances, relative ease in usage, robustness with adjustable 

hyperparameters, and interpretability 59, 60, 142. A comparison of ML- and DL-based QSAR 

models in the human ether-à-go-go- related gene (hERG) indicates that XGBoost provides the 

best prediction results 143. XGBoost was found to be an excellent choice for both large and small 

data sets for QSAR modeling 144. When utilizing the DAT binding data set, XGBoost-trained 

models exhibited superior performance 68.  

To evaluate impact of the additional data on the quality of the QSAR models, we performed 

a benchmark analysis of the DAT binding Ki data sets retrieved from different ChEMBL 

releases. Across the ChEMBL releases from the past five years, we observed a noticeable 

enhancement in the coefficient of determination (R2) value from 0.72 to 0.77 (Table 2). Similarly, 

mean square error (MSE), Pearson correlation coefficient, and Spearman's rank correlation 
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coefficient followed this positive trend, with the latest ChEMBL release yielding the most 

favorable benchmarks.   

Note that while overall volume of the queried data continued to grow from ChEMBL 25 to 

ChEMBL 33, there was no significant increase in the number of unique compounds within the 

final training data sets (Table 1), which may partially be due to the downward trend of medicinal 

chemistry efforts on DAT (Fig. 1), and potentially on NSSs in general. Notably, there were 

changes of curation criteria between ChEMBL 25 and ChEMBL 27, resulting in a reduction in 

the number of inhibitor’s Ki and IC50 data sets. These changes in ChEMBL led to an 

enhancement in the data set's quality, resulting in a 0.02 increase in the R2 value (Table 2). 

Even though there was only a modest increase of 53 data points in the binding Ki training data 

set from ChEMBL 27 to ChEMBL 33, this change contributed to an overall benchmark 

improvement of 0.03 in R2. Thus, even relatively moderate addition, update, and refinement of 

data may play a role in enhancing the quality of QSAR models.  

While extensive ML/DL efforts have been made on various aspects of the NSSs 43, 145, 146, to 

our knowledge, no DL-based DAT QSAR research has been published. Because proper 

applications of DL may require larger data sets, we speculate that there are still not yet enough 

data points available in the public database to build robust DL-based DAT QSAR models. 

Indeed, ML-based models can use a small training data to still produce robust predictive QSAR 

models 147 and have been seen to outperform DL-based models in various cases 148.  

 

Potential applications and challenge 

Virtual screening provides a rapid and low-cost compounds screening in the early stage of 

drug discovery, by searching potential hits from databases 149, 150. Such techniques have been 

applied in identifying new compounds in SERT 151-153. The application of the DAT QSAR model 

in virtual screening may similarly explore a large compound library and to identify hit compounds 

and novel scaffolds. In addition, in a medicinal chemistry synthesis campaign, the predicted Ki 
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of candidate compounds by robust DAT QSAR models can help to prioritize the candidate 

compounds to be synthesized. The iterative prediction, synthesis, and pharmacological 

measurements are expected to both improve the quality of the QSAR models and improve the 

efficiency of synthesis campaign. 

The screening process can also involve conducting counter- or synergistic-screening with 

other targets. In particular, we have established the protocol to screen the ligands for the DAT 

but against the human ether-a-go-go-related gene (hERG) 68. The increasing concerns 

regarding the risks associated with hERG binding have led to a notable surge in the availability 

of hERG binding affinity data in both public databases and scientific literature. The prediction by 

the QSAR models can be instrumental in enabling the identification of potential medication 

candidates characterized by specific attributes, e.g., to aid in pinpointing high-affinity DAT 

inhibitors with minimal hERG affinity.  

At physiological pH of 7.4, dopamine exists predominantly in its cationic form 154. pH-

induced changes between dopamine and DAT could alter their interactions and conformations. 

Specifically, the protonation of the amine group not only influences the conformation of 

dopamine but also introduces a positive charge, enhancing the interaction between the bound 

dopamine and negatively charged residues in DAT, such as Asp79 in the central binding pocket 

155. In comparison, modafinil is not in a charged form when it is bound in DAT 27. Therefore, 

considering the proper protonation state of the ligands accordingly should improve the quality of 

the training data set, by providing a critical chemical context for the models to consider when 

making bioactivity predictions. However, while different algorithms and software packages are 

available to predict pKa, such as Epik 156 and MolGpka 157, which may generate decent pKa 

predictions in water, it is generally a challenging problem to predict the pKa of the ligands in the 

binding pocket of the target protein.  
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Conclusion 

DAT is a key therapeutic target of SUDs. By collecting and analyzing the representative DAT 

ligands, we reveal that DAT binds to a variety of compounds, while there is still a large chemical 

space to be explored for novel DAT ligand scaffolds. The compilation of extensive DAT 

pharmacological activity data sets, coupled with the power of QSAR modeling, presents a 

promising avenue for exploring such a space. 

 

 

Declarations of Competing Interests 

No potential conflict of interest was reported by the authors. 

 

Acknowledgements  

Support for this research was provided by the National Institute on Drug Abuse–Intramural 

Research Program, Z1A DA000606 (L.S.). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.06.583803doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583803
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Figures and Figure Legends  

Figure 1. Statistics of DAT activity data from ChEMBL33.  

The DAT data set was queried and retrieved from entries in a locally installed instance of 

ChEMBL 33 (May 2023 release). We employed the same query criteria as in our previous study 

to filter the DAT pharmacological data set 68. Number of publications on DAT ligands (A), 

number of related pharmacological activity data (B) and number of unique DAT ligands (C) were 

plotted along the years. If a compound has <0.999 pairwise similarity to all the other compound 

in the data set, we consider it as a unique compound. For panel C, the new unique compound in 

the current year is colored wheat, and the unique compounds found in previous years is in light 

grey. The total number of publications, pharmacological activity data, and unique compounds 

are 773, 7815, and 6689 respectively. The data sets in each panel are separated by dash lines 

between 2020 and 2021, to indicated what we observed that the curation in ChEMBL can be 

delayed for more than 2 years.  
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Figure 2. Clustering of representative DAT ligands. 

For a total of 61 well-known DAT inhibitors collected from literature 21, 22, 77 and DrugBank 62. 

To characterize these DAT ligands, we employed the hierarchical clustering approach 

implemented in the Schrodinger Maestro suite (version 2023-3). We used linear fingerprints, 

Tanimoto similarity, and average linkage method. Note that three pairs of compounds 

(armodafinil and modafinil, methylphenidate and dexmethylphenidate, and amphetamine and 

dextroamphetamine) are enantiomers and we only use modafinil, methylphenidate, and 

amphetamine when carrying out the clustering. Some known scaffolds were also used to adjust 

the final representative clusters. The single-member clusters are shown in Fig. S1.  
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Figure 3. Comparative analysis of DAT pharmacological data sets with correlation 

metrics and linear regressions.  

The DAT pharmacological data can be divided into four sets, uptake pKi, uptake pIC50, 

binding pKi, and binding pIC50. The overlapping compounds between different data sets were 

extracted for comparisons. The correlation of determination (R2) and the Pearson coefficient 

correlation (Rp), as well as the number of the overlapping compounds (referred as 

“overlapping”), are indicated at the top left corner of each panel for the indicated comparisons. 

The red lines are the linear regressions of the indicated data sets; the black dotted lines are the 

linear regressions with the slope restrained to 1. Note that slope-restrained regression results 

were not shown for panels B and D, due to poor goodness-of-fit. 
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Table 1. Queried pharmacological activity data and training data sets of the DAT ligands 

from different ChEMBL releases. 

version Release date queried data 
uptake binding 
Ki IC50 Ki IC50 

ChEMBL33 May 2023 14102 (7496) 366 (366) 646 (646) 1166 (1166) 482 (482) 
ChEMBL31 Aug 2022 14099 (7470) 366 (366) 646 (646) 1166 (1166) 482 (482) 
ChEMBL29 Jul 2021 13915 (7326) 366 (366) 646 (646) 1131 (1131) 482 (482) 
ChEMBL27 May 2020 13456 (7049) 366 (366) 606 (606) 1113 (1113) 482 (482) 
ChEMBL25 Mar 2019 13273 (6935) 350 (350) 593 (593) 1189 (1189) 556 (556) 

The numbers of the unique compounds for each data set are shown in the brackets. Note 

that although some ChEMBL releases have the same numbers for the final training data sets, 

the value of pharmacological activity data may be different due to the measurement of the same 

compounds from new studies collected in new ChEMBL releases. 
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Table 2. Benchmarks of the DAT QSAR models trained with the XGBoost algorithm 

release 
binding Ki 
R2 MSE Rp Rs 

ChEMBL33 0.77 0.03 0.35 0.04 0.88 0.02 0.86 0.02 
ChEMBL31 0.77 0.04 0.37 0.06 0.88 0.02 0.86 0.03 
ChEMBL29 0.75 0.03 0.42 0.07 0.87 0.02 0.85 0.02 
ChEMBL27 0.74 0.03 0.43 0.06 0.86 0.02 0.85 0.02 
ChEMBL25 0.72 0.04 0.43 0.08 0.85 0.03 0.85 0.03 

We construct 10 distinct QSAR models for each indicated ChEMBL release to mitigate any 

stochastic effects. For each reported metric, the first value is the average across the 10 QSAR 

models, which is followed by the standard deviation.  
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Supplemental Materials 

Table S1. The pharmacological activities of some representative DAT ligands 

Namea DrugBank ID DAT 
(activity) 

SERT 
(activity) 

NET 
(activity) 

DAT-SERT 
(Δactivity) 

DAT-NET 
(Δactivity) selectivity cluster 

ID 
Reference 
(DAT) 

vanoxerine# DB03701 10.22 7.62 7.10 2.60 3.12 DAT 
selective D 158 

RTI-55#  9.32 9.42 8.85 -0.10 0.47  A 159 
SRI-31142#  8.72     DAT only E 160 
Dasotraline DB12305 8.70 7.85 8.40 0.85 0.30  G 161 
MDPV#  8.68     DAT only C 162 

GBR-12935#  8.43 6.21 6.20 2.22 2.23 DAT 
selective D 163 

altropane DB04947 8.18 6.74  1.44   A 83 
dextroamphetamine DB01576 8.18 8.32 8.21 -0.14 -0.03  B 164 
nomifensine# DB04821 8.15 6.10 8.42 2.05 -0.27  G 165 

benztropine# DB00245 8.10 5.29 5.86 2.81 2.24 DAT 
selective D 51 

tesofensine DB06156 8.10 7.96 8.49 0.14 -0.39  A 161 

sydnocarb#  8.08 5.00 5.82 3.08 2.26 DAT 
selective B 166 

PAL-1046#  8.00     DAT only I 99 

JHW-007#  7.98 5.76 5.88 2.22 2.10 DAT 
selective D 167 

PAL-287#  7.90 8.47 7.96 -0.57 -0.06  I 168 
RTI-82#  7.85     DAT only A 169 

sertraline DB01104 7.60 10.12 6.80 -2.52 0.80 SERT 
selective G 120 

ioflupane I-123 DB08824 7.54     DAT only A  

MFZ 2-24#  7.48     DAT only A 170 

mazindol# DB00579 7.35 6.61 9.10 0.74 -1.75 NET 
selective J 171 

PAL-1045#  7.34     DAT only I 99 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.06.583803doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583803
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

PAL-738#  7.24     DAT only K 99 
MRS7292#  6.90     DAT only L 172 

dexmethylphenidate DB06701 6.79 8.00 6.69 -1.21 0.10 SERT 
selective K 173 

WIN 35428#  6.77 7.52 5.96 -0.75 0.81  A 174 
methylphenidate# DB00422 6.72 5.01 6.66 1.71 0.06  K 175 
rimcazole#  6.65 6.08 5.67 0.57 0.98  J 176 
duloxetine DB00476 6.62 9.10 8.13 -2.48 -1.51  I 177 
troparil#  6.59 6.64 6.59 -0.05 0.00  A 174 
nefazodone DB01149 6.44 6.86 6.44 -0.42 0.00  H 120 

venlafaxine DB00285 6.44 8.42 6.86 -1.98 -0.42 SERT 
selective L 120 

bupropion# DB01156 6.43 4.33 5.16 2.10 1.27 DAT 
selective L 51 

trodusquemine DB06333 6.40     DAT only L 178 
diphenylpyraline DB01146 6.38     DAT only D 179 
methamphetamine# DB01577 6.34 4.50 6.96 1.84 -0.62  B 180 
sibutramine DB01105 6.30 5.96 5.25 0.34 1.05  L  

SoRI-9804#  6.28     DAT only E 181 
MDEA# DB01566* 6.21     DAT only C 20 
amphetamine# DB00182 6.19 4.41 7.15 1.78 -0.96  B 182 
cocaine# DB00907 6.19 6.85 5.80 -0.66 0.39  A 174 

chlorpheniramine DB01114 6.13 7.89 5.31 -1.76 0.82 SERT 
selective D  

phenmetrazine# DB00830 6.12     DAT only K 183 
MDMA# DB01454 6.05 6.02 6.46 0.03 -0.41  C 164 
nisoxetine# DB09186* 5.94 8.85 8.82 -2.91 -2.88  L 184 
nortriptyline# DB00540* 5.88 8.16 8.50 -2.28 -2.62  F  

tamoxifen# DB00675* 5.83 5.91 5.84 -0.08 -0.01  L  

Phentermine DB00191 5.80 4.86 6.61 0.94 -0.81  B 185 
SoRI-20041#  5.75     DAT only E 113 
pseudoephedrine DB00852 5.68     DAT only B 186 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.06.583803doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583803
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

MDA# DB01509* 5.62 5.64 6.15 -0.02 -0.53  C 164 

desipramine# DB01151* 5.52 7.70 9.22 -2.18 -3.70 NET 
selective F 187 

Aripiprazole DB01238 5.49 7.50  -2.01   H 188 
KM822#  5.44     DAT only J 35 

trimipramine DB00726 5.42 6.83 5.61 -1.41 -0.19 SERT 
selective F 108 

ibogaine#  5.39 6.23  -0.84   L 189 
amoxapine DB00543 5.37 7.24 7.80 -1.87 -2.43  L 108 
SoRI-20040#  5.27     DAT only E 181 
modafinil# DB00745 5.19 <3.3(N.D.) 4.45  0.74  D 190 

armodafinil DB06413 5.18 3.63 3.77 1.55 1.41 DAT 
selective D 105 

escitalopram DB01175 5.09 9.05 4.98 -3.96 0.11 SERT 
selective L 191 

dopamine# DB00988 5.06 3.00 5.28 2.06 -0.22  C 174 

For each DAT ligand, we first attempted to retrieve its pharmacological activity data for DAT, SERT and NET from ChEMBL 33, 

and then supplemented by literature search. When a compound has pKi, pKd and pIC50 data in ChEMBL, we chose to report either 

pKi or pKd; then if more than one pKi, pKd, or pIC50 data points are available, we chose to report the highest one. For the ligand that 

we found having all DAT, SERT, and NET activity data from the same publication in our literature search, we replaced the data 

retrieved from ChEMBL with the ones from the literature search. Additional information for each compound, include other references 

we collected can be found on https://github.com/NIDA-IRP-CCMB/QSAR_DAT-hERG. The Δactivity was then calculated to detect 

the DAT, SERT, and NET selective ligands, with Δactivity >= 1 for one transporter over both the other two transporters. The yellow in 

reference (DAT) indicates that the entry in ChEMBL has activity data, but no publication record. The grey means the best pKi has 

been annotation wrongly in ChEMBL, and the second best pKi was used in the table. #DAT ligands collected from the well-respected 

reviews 21, 22, 77. *DAT ligands that can be found in DrugBank, but not listed as targeting DAT in DrugBank.  
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Figure S1. Single-member clusters 
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