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Abstract: This review deals with various microbiological activities of ionic liquids, which constitute
the first anti-infective defense against multi-drug-resistant bacteria—with a particular emphasis
placed on medicine and pharmacology. The quoted data on the biological activity of ionic liquids
including their antimicrobial properties (depending on the type of a cation or an anion) and are
discussed in view of possible applications in nosocomial infections. Dedicated attention is given
to finding infections with the Klebsiella pneumoniae New Delhi strain, Acinetobacter baumannii, and
Enterococcus species, which are responsible for the induction of antibiotic resistance in intensive care
units. Diagnosis and treatment using current antibiotics is a significant problem in hospital care, and
the relevant burden on the health systems of the European Union member states induces the search for
new, effective methods of treatment. Ionic liquids, due to their antibacterial effect, can be considered
topical and general medications and may provide the basis for treatment to eliminate the antibiotic
resistance phenomenon in the future. At present, the number of infections with resistant pathogens
in hospitals and outpatient clinics in the European Union is growing. In 2015–2017, a significant
incidence of respiratory and bloodstream infections with bacteria resistant to antibiotics from the
3rd generation group of cephalosporins, glycopeptides, and carbapenems were observed. The paper
presents examples of synthesized bifunctional salts with at least one pharmaceutically active ion in
obtaining a controlled release, controlled delivery, and biological impact on the pathogenic bacteria,
viruses and fungi. The ionic liquids obtained in the presented way may find applications in the
treatment of wounds and infections.
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1. Introduction

The name ionic liquids (ILs) appeared for the first time in the 1970s, and in the literature, the term
began to be used only in the mid-1990’s [1]. Previously, the term “molten salts” was used. ILs form
metastable structures (supercooled liquids and vitreous states) and melt below 100 ◦C—the boiling
point of water. Most salts, however, melt at high temperatures (e.g., sodium chloride at 800 ◦C) [2].
There are also salts that melt at temperatures below room temperature (below 20 ◦C), which are referred
to as RTIL (room temperature ionic liquids) [3]. ILs are defined as liquid chemical substances consisting
solely of ions: An organic cation and an organic or inorganic anion [4]. Examples of organic anions are
acetates, lactates, salicylates, benzoates, saccharinates, and thiazolanes [5]. ILs with a thiazolate anion
are classified as energetic ionic liquids. The anions of inorganic origin with simple structures include
Cl−, Br−, I−, NO2

−, NO3
−, and SO4

− with a complex structure, and depending on the number of
central atoms, one-core anions are included, such as BF4

−, PF6
−, ZnCl3−, CuCl2−, SnCl3−, and AlCl4−,

as well as multicore anions like A12C17
−, Al3Cl10

−, and Fe2Cl7− [6,7]. The universal ability to modify
the chemical structure of ILs allows the selection of the right chemical compound that can be used as
a targeted agent for bacterial infections and microbiology, medicine, pharmacy, and industry, which
in combination with occurrence in the liquid state of aggregation over a wide range of temperatures,
determines their technological usability (Figure 1).
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Conducting a reaction in an ionic liquid is often easier and faster than in a conventional
reaction environment, and besides, the application of green solvents does not require any special
methodology [10]. The ILs may constitute a new alternative to antibiotics, therefore, attention
should be paid to their specific physical and chemical properties like: Volatility [2], viscosity [13–16],
nonflammability and negligible vapor pressure for measuring thermodynamic properties [17], melting
temperature [12], solubility and stability at high temperatures, and surface activity [18]. An important
characteristic of ILs is that the ionic liquid applied can be easily separated from the reactive
environment by rinsing with water and subsequently by vaporizing the solvent under a vacuum [19].
An additional asset of ILs resulting from their thermodynamic properties is their ability to form
multiphase systems, which has been used for the liquid-liquid erythromycin antibiotic extraction [20].
An important feature of ILs is their melting temperature and the ease of mixing them with water or
organic solvents (solubility) [12]. These properties can be controlled by changing the length of the
chains in cations and the type of anion [2]. For this reason, ILs are often referred to as designer solvents,
and they are adapted to the processes in which they are used. These properties also depend on the
structure of the ions, and with small structural changes, they can be freely changed [2].

The melting temperature of ILs depends also on the length and method of branching of the
alkyl substituent at the quaternary nitrogen atom [12]. The first region for the methyl and ethyl
substituents, the second for the alkyl of three-to-nine carbon atoms [13] and the third for above
10 carbon atoms. Melting temperatures below 0 ◦C are observed for liquids containing an alkyl
substituent of three-to-nine carbon atoms [13]. These compounds are liquids at room temperature.
Ionic liquids with low melting temperatures usually consist of a large and unsymmetrical cation (e.g.,
1-alkyl-3-methylimidazolium, 1-alkylpyridinium, N-methyl-N-alkylpyrrolidinium) and one of the
wide range of anion [21,22].

The solubility of ILs are completely different from those of other chemical compounds known to
date (including traditional salts) [14]. Ionic liquids, although created by combining cations and anions,
cannot be converted into molten salts [14]. The liquid state is not caused by the presence of a solvent, e.g.,
water [14]. Therefore, they have become an attractive subject for research in so-called green chemistry
(nontoxic to the environment or living organisms) [3,23]. The most important use of Ils is to use them as
green solvents, which can be used in the separation processes, synthesis, catalysis, and electrochemistry
in extraction and micro-extraction processes, successfully replacing toxic and flammable classic organic
solvents [18,23–26]. The above-mentioned physicochemical properties of ionic liquids can be used in
many areas of our lives, as shown in Figure 1 [8,9,11]. The model of interaction of cations and anions in
ionic liquids on microbial cells was also made to investigate their unique aggregation into membrane
components [27]. It has been found that with long side chains of cation groups they can aggregate together
to form a spatial heterogeneous region. In contrast, the leading (main) groups of cations and anions
diverge evenly [27,28]. This is due to specific interactions between electrostatic interactions of charged
cations and anions of the main and side groups, respectively [28]. The observed aggregation may be
helpful in explaining many observed physical phenomena in ionic liquids occurring on the surfaces of
the analyzed cells [28]. The bioengineering simulation studies of ionic liquid-biomembrane interactions
demonstrate the spontaneous insertion of cations or anion into the lipid bilayer and can change the
structural and dynamic properties of the bilayer lead to their permeability [16]. Similar processes were
observed in fungal conidia of Aspergillus nidulans [29]. In A. nidulans, ILs damage the filaments and cell
wall of both fungal conidia [30].

In other studies, they were tested in various in vitro and in vivo conditions the antimicrobial
activities for three alkyl [(1R,2S,5R)-(−)-menthoxymethyl] dimethylammonium chlorides for a set of
bacteria and for the wild type C. albicans SC5314 [31]. Obtained results suggested a strong effect of the
alkyl substituent chain length on the biological activity [31]. Based upon the cited studies biological
activities of ionic liquids, useful in medicine, and conditioned by the following:

• Application of long alkyl substituents in a cation [11,16,32],
• Application of an alcohol molecule as a cation (antifungal activity) [33],
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• Application as an anion of a drug molecule, such as acetylsalicylic acid or a cytostatic drug [34,35],
• Application of acyclic nucleoside analogs (antivirus activity) [36],
• Blending with graphene powder [37].

At present, the interest is growing in the application of ILs as agents demonstrating also antiviral,
anticancer, and antifungal activity [35,36]. The application of acyclic nucleoside analogs as antiviral
drugs was used for the synthesis of 3-aminoimidazo[1,2-α]pyridine in the environment of reactions
1-Butyl-3-methylimidazolium bromide [bmim][Br] [35,36]. The compound is characterized by a high
antiviral activity and the reaction of obtaining takes place with a high 70%–90% efficiency at room
temperature. Ionic liquids are also applied as components of anticancer drugs [35]. The presently
applied boron neutron capture therapy uses L-4-boronophenylalanine, which is obtained by using the
following solvents: [bmim] [BF4] or [PF6]. Chemotherapy is characterized by a selective accumulation
of 10B isotope in rapidly dividing cancer cells [35]. Studies have shown that microscopic images of
analyzed tissues stored in ILs are 10 times more pronounced than in the case of traditional solvents,
e.g., formaldehyde [5,21]. This feature may be useful in the future for faster and more precise diagnosis
of various inflammatory conditions or pre-motor changes. The antifungal activity of ionic liquids
has not been thoroughly studied yet [38]. Based on experiments conducted with the use of menthol
molecule in an ionic liquid, it has been demonstrated so far that the following mechanisms toxic for
Candida albicans fungi takes place: Dissolution of fungus cell wall (consisting of chitosan), surfactant
activity of a cation molecule, which intercalates into the phospholipid membrane, and a blockade of
efflux pomp ATP-binding cassettes [16,33].

1.2. Divisions of ILs

The interest in ionic liquids for medicine and science has caused the group to expand rapidly with
new compounds [39,40]. Therefore, it was necessary to introduce a classification dividing ionic liquids
based on the type of cation and anion, and the differences in the physical properties related to their
physical state [40]. The occurrence of ILs in the liquid state at relatively low temperatures is due to the
presence of structures that inhibit crystallization in their molecules [39]. Among them, hydrogen bonds
between the cation and anion can be distinguished, as well as significant size and strong asymmetry
of the organic cation [39]. There are described ILs containing a cation in which the positive charge is
located on the nitrogen, phosphorus, sulfur, or oxygen atom [40]. On this basis, ammonium (known as
tetraalkylammonium), phosphonium, sulphonium, and oxonium ionic liquids were divided based on
the presence of an aromatic ring in their structure, including pyridine, imidazolium, piperidinium,
and morpholinium (Figure 2) [40].
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In current research, ionic liquids with ammonium, imidazolium, pyridinium, and phosphonium
cations are the most popular and best described, while the least-known ones remain oxonium ionic
liquids, many of which are metastable [40]. In contrast, sulfonium ILs, due to the unpleasant odor of the
original thiols, are not current objects of research. The essence of the general division of ILs is based on
the type of atom that possesses a positive charge [18,40]. The cation may contain one or more positive
atoms. Examples of multicore ammonium ionic liquids incorporate cations in which there are three
positive nitrogen atoms, referred to as trigeminal tricationic ionic liquids [18]. There are a huge number of
possible combinations of cations and anions (it is estimated that their number may even be 1018), [18]
and because interest in ionic liquids is constantly growing, it is difficult to divide them including all
of their aspects (Figure 3) [18]. Ammonium ILs are characterized by sp3 hybridization and imine sp2

hybridization. For ILs, we include, among others, imidazolium and pyridine with a particular type
of substituent of the groups R1–R6 [41]. The R1–R6 groups can be a proton or an alkyl group or other
groups, e.g., alkoxymethyl or alkylthiomethyl groups. An interesting example is imidazolium ionic
liquids [41]. Due to the flat structure of the imidazole ring, they easily retain symmetry in the molecule
when the R1 and R2 groups are identical. However, the difference in structure between the alkyls R1 and
R2 determines the asymmetry of the cation [42]. The classification of the cation is also determined by
differences in the structure. A positively charged atom may have distinct and non-interconnected alkyl
substituents, which determines a large variety of conformations of such a cation and directly affects its
physicochemical properties [43]. Such cations are referred to as aliphatic. The opposite of these cations
are heterocyclic cations, in which the charged atom is one of the elements of a cyclic or polycyclic group
with condensed rings [43]. Among heterocyclic ammonium cations, two subtypes of structures can be
distinguished depending on the hybridization of the charged nitrogen atom [43]. On the basis of this
criterion, heterocyclic cations can be divided into cations containing a heteroatom of sp2 hybridization
(aromatic heterocyclic cations, e.g., imine) or of sp3 hybridization (non-aromatic heterocyclic cations,
e.g., ammonium) [44]. Regardless of the type of element on which the positive charge is located in the
cation structure, the next criterion of division is distinguished [44]. If the atom with a positive charge is
chemically bound to at least one hydrogen atom, salts containing a cation of this structure are referred
to as protic ionic liquids (PrILs) [44]. The presence of a hydrogen atom as the central atom of the cation
leads to the formation of a network of strong supramolecular hydrogen bonds, the presence of which is a
characteristic of PrILs [44]. If a positively charged atom is not connected to any hydrogen atom, i.e., it
has a maximum order, then such an ionic liquid is called an aprotic ionic liquid (AIL) [23,44,45]. Initially,
research on this group of compounds focused on their use as electrolytes in thermal batteries, but their
use in electrochemistry is not limited to this purpose [23].
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Classification of ILs may be carried out taking into account their structure, properties or
application. Division due to the construction of the anion is conducted mainly due to the nature of the
anion, which can be organic and inorganic [18]. In the case of organic anions, it is also possible to extract
anions in which the negative charge is located on the oxygen atom of the carboxyl group (acetates,
formates, citrates, and lactates) or sulfonate (methylsulphates (VI), benzenesylsulfonates, cyclamines)
or on the nitrogen (azolanes, acesulfams). Inorganic anions include nitrates (V), tetrafluoroborates,
hexafluorophosphates, chloroborates, or chloroaluminates, among other bisulphates (VI) [48].

A much more important classification of ILs is the division proposed in 2007, dividing ILs into
three generations that distinguish their properties and applications, as described by Yadav et al. [26].

Biological activity may be based on both cations and anions, and it is possible to synthesize
multifunctional ILs of the third generation [49]. The ions often used in pharmaceuticals are a source of
both cations and ILs anions for the 3rd generation, operating as analgesic or anti-inflammatory agents,
among other uses [49]. This generation also includes plant protection products, including proton
triazoles with fungicidal activity and herbicidal ionic liquids (HILs), e.g., phenoxy-acid derivatives
showing selective herbicidal activity against dicotyledonous plants [49].

The local application of ILs is an excellent alternative to organic solvents due to the effect exerted
on fungal cells, bacteria, and protozoa, while not having a toxic effect on mammalian cells at the
therapeutic concentration [50–52]. At present, the third generation of ILs has been developed, which
are referred to as active pharmaceutical ingredients (APIs) [11]. Restrictions on the use of agents as
standards for decontamination also result from inactivity against viruses, especially those transmitted
in surgical wards [51]. Difficulties in combating viruses were associated with massive hepatitis B and
C virus infection outbreaks (HBV, HCV) in the 1980′s and 1990′s of the 20th century [53]. In neonatal
wards, the main problems are contact viruses, such as influenza virus, rotavirus, and norovirus [51,53].
ILs also show antiviral activity in addition to antibacterial activity [52,53]. The antiviral activity in
the experimental model, based on the MS2 and p100 viruses, consists of cation activity in the ILs
structure, which is responsible for the toxic effect [51,53]. Increasing the cationic side-chain length
leads to increased antiviral activity of [DODMA][Cl] and [TMC8A][Cl], of course, until the so-called
“cut-off effect” is obtained, after which no further degradation of virions is obtained [50]. At present,
the accepted consensus is that the side chain length is the main indicator of the biological activity of
ILs, which results from increased lipophilicity [54].

1.3. Synthesis of ILs

Interest in proton ILs based on the presence of an “acidic” proton in the cation contributed to the
preparation of new methods to produce ionic salts [22]. ILs can be obtained in a one-step or two-step
reaction. The one-step synthesis consists of the reaction of an amine with a quaternary agent, such as
methyl trifluoromethylsulfonate or dialkyl sulfate [55]. The synthesis of 1-ethyl-3-methylimidazolium
trifluoromethyl sulfonate is a classic example of a one-step reaction, and the reaction product is an
aprotic ionic liquid [22,55]. The reaction proceeds with a high yield and is characterized by the absence
of a by-product. In one-step synthesis methods, proton ILs can also be obtained by reacting a tertiary
amine with an acid [22,55]. Currently, the universal method of obtaining ionic liquids is a two-stage
synthesis. In the first stage, the amine reacts with a quaternary agent, which results in a quaternary
ammonium chloride or bromide [26,39]. The resulting halide is often treated as a precursor of the ionic
liquid. In the second stage, there is a reaction consisting of exchanging the halide with another anion
in solution or in an ion exchanger, also in reaction with a Lewis or Brönsted acid [49]. An important
element in the process of obtaining ILs is their purification method [49]. Due to the ionic structure,
distillation cannot be treated as an effective purification method, although it is possible [26,49]. The
ion exchange reaction, often called the metathesis reaction, takes place with a high yield, which is
influenced by the type of solvent used and the temperature.
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1.4. Pollution of ILs

The main contaminants of ILs are inorganic salts, resulting from the anion exchange reaction. The
most popular method the cleaning of hydrophobic ILs is multiple rinsing of halides with distilled
water until the disappearance of halide ions, monitored using silver nitrate [3]. This method works
best with tetrafluoroborates, hexafluorophosphates and bis(trifluoromethylsulfonyl)imides. Finally, an
anhydrous liquid is obtained by simple phase separation, washing with water, and finally, drying the
product under a vacuum. The method of purification of hydrophilic ILs is more difficult. These include
liquids containing the anions CF3COO−, CF3SO3

−, and N(CN)2
−. Purification involves dissolving

a hydrophilic liquid in anhydrous acetone, acetonitrile, chloroform, or methanol [3,56]. In this case,
the salt by-product does not dissolve in the anhydrous organic solvent; therefore, it is separated by
filtration. After distilling the solvent, the resulting liquid is dried under reduced pressure at 60–80 ◦C
for at least eight hours [21]. The second contaminant after inorganic salt is water. It has been assumed
that in dried ILs, depending on their structure, the water content should vary between 200–400 ppm or
even over 1000 ppm and several thousand ppm [57,58]. Interest in proton ILs based on the presence of
an “acidic” proton in the cation contributed to the preparation new methods to produce ionic salts [57].
ILs can be obtained in a one-step or two-step reaction. The one-step synthesis consists of the reaction of
an amine with a quaternary agent, such as methyl trifluoromethylsulfonate or dialkyl sulfate [57,58].

1.5. Toxicology

Quaternary ammonium halides, precursors of ILs, are known for their antimicrobial properties.
They show relatively low toxicity in relation to warm-blooded organisms and have been used for years
in sterilization, disinfection, bactericidal, and fungicidal preparations [22,59]. They are most often used
as antiseptics, as in benzalkonium chloride and bromide, chloride didecyldimethylammonium, and
hexadecylpyridinium chloride [59–62]. Quaternary ammonium chlorides and bromides have some
drawbacks, including that they are bitter in taste. Exchanging the chloride anion for acesulfamate or
saccharinate causes the salt to become sweet [59–62]. Acesulfamates and saccharates could therefore
successfully replace chlorides wherever contact occurs in oral preparations and antibacterial mouth
rinses. It has been shown that alkoxymethyl (2-hydroxyethyl) dimethylammonium acesulfamates, and
alkoxymethyl (2-ethanoyloxyethyl) are water-soluble and have strong biological effects [59,60].

2. Antimicrobial Properties of a Quaternary Ammonium Halide

ILs, due to their properties, dissolve many different chemical compounds, and are soluble also
in many solvents (as deep eutectic solvents) [63]. It has been shown that many organic reactions can
be carried out in ionic liquid, with reactions that can also be carried out in chemical and separation
processes simultaneously. The ionic liquid can be a good reaction medium for nucleophilic substitution,
electrophilic addition, as well as electrophilic substitution in antimicrobial properties and mechanisms
of action on bacterial cells [58,59]. There are four basic mechanisms of action of chemical compounds
on bacterial cells: Denaturation of proteins and disruption of nucleoprotein complexes, damage to the
cell membrane, oxidation of sulfidryl groups, and reactions with amino groups [39,48]. Chemicals used
as active substances in disinfectants have a much wider range of activity than do antibiotics [39,48].
They are usually used in higher concentrations and are less selective and often attack multiple targets
in microbial cells. An example of this is quaternary ammonium halides, responsible mainly for the
disorganization of the cytoplasmic membrane of bacteria and the plasma membrane of fungi. The
mechanism of action is multistage. In the first stage, the cation interacts with the negative structural
proteins of the outer membrane of bacteria [48]. The cations adsorbed on the surface of the cell
penetrate through the cell wall, connecting to the cytoplasmic membrane, damaging its semipermeable
structure in a selective manner and then penetrating into the interior of the cell. As a result of these
processes, cell outflows of potassium, sodium, phosphate and purine, pyrimidine and pentose ions
occur [64]. The activity of respiratory enzymes, including succinate dehydrogenase and cytochrome
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oxidase, is inhibited, and oxygen consumption in the cell decreases [65]. Disruption of glycolysis
and the synthesis of nucleic acids and proteins occurs, as well. Cell lysis may also occur as a result
of activation of autolytic enzymes [65]. All presented changes occur when the concentration of
quaternary ammonium halides is high. They are irreversible transformations and lead to cell death.
Low concentrations of these compounds cause reversible disturbances of cell division, enzymatic
processes, and glycolysis [65]. Effects on the processes inside the cell may vary depending on the type
of quaternary ammonium halide and the type of microorganism [39,48].

The bactericidal and fungicidal activities of the compounds depend primarily on the structure
of the cation, and in particular, on the length of the alkyl or alkoxymethyl substituents [56]. The
antimicrobial activity starts when the alkyl chain contains eight and more carbon atoms [66–68].

Extending the chain with subsequent carbon atoms results in an increase in the activity between
12–18 carbon atoms, where the maximum activity is observed, and usually falling with an increase
to 16 carbon atoms [66–68]. The change of anions for the same cations usually does not affect the
biological activity. The biocidal properties of ILs allow their use as disinfectants, antibacterials, and
fungicides [33].

Interaction Quaternary Ammonium Halides with Different Pathogenic Bacterial Strains Often Occurring in
Nosocomial Infections

Bactericidal activity occurs only against the vegetative forms of both types of bacteria, among
which Gram (+) bacteria are more sensitive than Gram (−) bacteria. The highest activity of ionic liquids
is seen in relation to Gram (+) cocci (e.g., from the genus Staphylococcus, Streptococcus) and other Gram
(+) bacteria, including Lactobacillus and vegetative forms of Bacillus subtilis. The antimicrobial activity
is significantly dependent on the length and number of alkyl chains in the molecule [39,48,69,70]. The
activity is the highest for compounds that contain from 10 to 16 carbon atoms in the alkyl chain or
from eight to 14 carbon atoms in the alkoxymethyl group. There are no differences in the action of
halogens containing quaternary nitrogen sp3 or sp2. Therefore, the activity of quaternary ammonium
halides is comparable to that of pyridine or imidazolium halides in terms of the length of the alkyl
substituent in 3-alkoxymethyl-1-imidazolium chlorides on the effect towards the ESKAPE group
bacteria [71]. High biological activity is observed for up to 12 carbon atoms in both substituents.
An increase in the number of carbon atoms above 12 causes a marked decrease in the activity and
an increase in the hydrophobicity of the chloride being tested [71]. Among fungi, yeasts (including
Candida albicans) and filamentous fungi (e.g., Aspergillus niger, Chaetomium globosum, Myrothecium
verrucaria, Trichoderma viridae, Coniophora puteana, and Trametes versicolor) were susceptible to quaternary
ammonium halides [71].

Klebsiella pneumoniae deserves special attention. Bacteria from the Klebsiella genus are Gram
(−) enterobacteria of the family Enterobacteriaceae. This bacterium may be a component of the
physiological bacterial flora of the digestive tract but also of the skin and mouth, especially among
medical personnel [72]. In people with immunodeficiency, this species can cause severe infections,
including urinary tract infections, liver, sepsis, soft tissue infections, and peritonitis. It was also
described as the cause of pneumonia for the first time. K. pneumoniae is the most frequently isolated
species of the Klebsiella genus in Poland (about 95% of isolates) [72]. Bacteria of this species may
also be present in the environment, including in water, sewage, soil, and plants. As described in
the first part of this article, the most dangerous from the medicinal point of view is K. pneumoniae
New Delhi metallo-β-lactamase-1 (NDM-1) strain infection. New Delhi metallo-β-lactamase type 1 is
an enzyme from the group of metal-β-lactamases that makes the bacteria resistant to the β-lactam
antibiotics spectrum. The enzymes have the ability to inactivate penicillins, cephalosporins, and
carbapenems. Usually, sensitivity to monobactams remains [73]. Strains exhibiting such a resistance
mechanism, named KPC (K. pneumoniae carbapenemase), were characterized recently in Poland, Italy,
and other EU countries [73]. To date, 16 different genes encoding carbapenemase have been identified
in K. pneumoniae [74]. The object of the widest research is currently KPC-2 and KPC-3, coded by the
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blaKPC-2 and blaKPC-3 genes [75]. K. pneumoniae bacteria are usually resistant to penicillins because
the production of β-lactamases is encoded by genes found on the plasmids present in the cell. The gene
encoding the NDM-1 enzyme has been also detected on a plasmid that easily translocates to E. coli
strains [76]. Genes coding the proteins for resistance to most of the available antibiotics have also been
detected on the same plasmid [76]. Bacteria of this species are commonly found in the environment, in
addition to as physiological intestinal flora [77]. In addition, E. coli bacteria demonstrates extraordinary
ease in taking drug resistance genes from other species, which may lead to the assembly of other
resistance genes in their cells in the near future. NDM-1 was identified in K. pneumoniae and E. coli,
and was isolated in 2008 in a hospital patient in New Delhi (India) from a patient diagnosed with a
urinary tract infection [77]. The reasons leading to creation of a reservoir of NDM-1 strains on the
Indian subcontinent are a favorable climate, overgrowth, and the tendency to abuse antibiotics, for
which purchase in India since 1 March, 2014 only requires a medical prescription [78]. Later, NDM-1
appeared in several countries such as Pakistan and Bangladesh, from where NDM-1 was imported to
Great Britain, the United States, Canada, Japan, and Brazil. In 2009, it was found in a patient in Sweden
who returned from a trip to New Delhi [77]. Bacteria isolated also from urine were resistant to almost
all available antibiotics, with the exceptions of colistine, and tigecycline. Since August 2010, bacteria
that produce the NDM-1 enzyme have been rapidly spreading in many countries on all continents,
causing lethal infections. The first death occurred in Belgium in June 2010 in an ICU patient [79].

ILs may constitute the first line of defense against K. pneumoniae NDM-1 infections [80,81]. The
first work on the impact of the organic anion showed that ILs are effective in combating bacterial
biofilms in the respiratory and urinary tract [82,83]. It has been demonstrated that the cation in ILs
mainly determines the biodegradability and toxicity to aquatic organisms [82,84]. ILs with short
substituents of one-to-five carbon atoms that are relatively less toxic than liquids with substituents
of seven and more carbon atoms [84]. This dependence also applies to biodegradability. ILs with
short alkyl substituents are more biodegradable. The acesulfam didecyldimethylammonium and
didecyldimethylammonium saccharin used for the studies, even at higher doses, were found to be
nontoxic [61]. Ammonium ILs exhibit antielectrostatic properties and can be successfully used as both
external and internal antielectrostatic agents [61].

3. The Use of Ionic Liquids in Microbiology and Medicine

The antibiotic resistance phenomenon in microbiology and medicine is associated with the use of
drugs that have a bactericidal or bacteriostatic effect. Due to acquiring increasing tolerance to the drug
in microorganisms, strains resistant to treatment are developed, requiring further, long-term antibiotic
therapy and the simultaneous use of antibiotics from different groups [24]. Therefore, the treatment of
resistant bacteria is associated with hepatic and renal toxicity, long-term hospitalization of patients
and significant costs incurred by the European Union’s health care system [85]. The cost associated
with hospitalization and treatment of a patient infected with antibiotic-resistant bacteria is higher
than 10.000 to 30.000 USD, compared to lesser costs incurred for patients treated for infection caused
by β-lactams-sensitive bacteria [86]. This emerging problem is recognized by the North American
and EU disease control agencies. Moreover, ECDC reports state that nosocomial infections caused by
Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa are responsible for 110.000 deaths per
year in all EU countries (see Table 1) [85,87].
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Table 1. Morbidity, number of hospitalizations and mortality due to selected bacterial infections with priority pathogens causing blood stream infections in people in
the European Union countries in 2012–2017.

Pathogen Strain
Characteristics

Number Of
Detected Cases

Confirmed Cases Of
ICU* Acquired

Infections

Percentage Of Selected
Strains Detected Is

Surgical Site Infections
Drug Resistance Comorbidity

Index Mortality Reference

Acinetobacter baumanii
Nosocomial

712 541 4.1%
3rd eneration

cephalosporins
2.8 18% [85,87]

MDR+ 3.9 26% [88]

Klebsiella pneumoaniae New Delhi
blaNDM-1 1367 561 4.7%

3rd generation
Cephalosporins,

Meropenem,
Vancomycin

6.4 72% BIOCONTAM
Unit

Pseudomonas aeruginosa PAPI+ 2 269 516 7.1%

Aminoglycosides,
Gyrase inhibitors,

Penicillin with
β-lactamase

inhibitor

4.8 38% [75,80,89]
EARS-Net

Staphylococcus aureus MRSA 1996 631 38.1%
β-lactams,

Lincosamides,
Fluoroquinolones

4.5 30% [90]

Enterococcus species VRE 492 340 20.4% Vancomycin,
Teicoplanin 2.7 43.1% [85] ECDC

other Enterobacteriaceae ESBL+ 1367 479 3.3%

β-lactams, 3rd
generation

Cephalosporins,
Trimethoprim/

Sulfomethaxazole

1.8 18.2% BIOHAZ team,
EARS-Net

Antibiotic resistance was developed on the basis of data from hospital intensive care units and swabs taken from nonhealing wounds from surgical sites. Data were compiled on the basis
of surveillance reports, annual epidemiological reports, antimicrobial resistance, and healthcare-associated infections. ECDC, EARS-Net, EFSA, BIOHAZ team and BIOCONTAM Unit:
Antimicrobial resistance annual report (Stockholm, April 2015; doi: 10, 2900/6928) [75,80,85,87,89,90].
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Therefore, new, rational methods of treatment are sought to ensure a reduction in development of
drug resistance phenomenon. The World Health Organization states that antimicrobial resistance is a
global problem due to the increasing incidence of infections with priority pathogens and persisting
mortality, despite the introduction of new antibiotics [91]. We include the following bacteria in
the above group of microorganisms constituting a danger for social health: Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa,
collectively referred to by the acronym ESKAPE [88,92,93]. Infections with bacteria belonging to the
Enterobacteriaceae family are the main cause of morbidity and death in the USA and EU countries [88].
According to the recommendations of the Center for Disease Control and Prevention (CDC, the USA),
infection with Escherichia coli (E. coli) and Klebsiella pneumoniae strains resistant to treatment with third
generation cephalosporins are treated as a threat to public health [94].

The antibacterial activity of ILs results from the electrostatic affinity in relation to the membranes
surrounding the bacterial cell wall. All prokaryotic organisms, both Gram (+) and (−), have a
negatively charged surface [39]. In the case of Gram (+) bacteria, the glycolic polymer sheath
based on teichonic acid is responsible, and in the case of Gram (−) rods, this sheath consists of
a lipopolysaccharide endotoxin bound to a phospholipid bilayer membrane in which zwitterionic
compounds are anchored [39,48]. The antibacterial activity of ILs is due to the interaction of the alkyl
chain with the lipid membranes of cells, leading to the formation of ion channels, and as a result, to
the disturbance of the intracellular potential and bacteria death [47,94,95].

The structure and bactericidal properties of ILs can be modified by the addition of an appropriate
antibiotic molecule, e.g., ampicillin, to the anion part of ILs [39,48]. Application of ILs eliminates the
issue of drug resistance [95]. However, most of the molecules that interact coulombically are initially
susceptible to their activity, over the time bacteria may change membrane charge or phospholipid
density. The resulting antibiotic-ILs combination is characterized by a much lower minimum inhibitory
concentration MIC and minimum bactericidal concentration MBC compared to the antibiotic itself [51].
The combination of ILs with the drug molecule, apart from the resulting antimicrobial synergistic
effect, has an impact on the drug pharmacokinetics, including parenteral absorption and tissue
distribution [49,96]. The use of ILs does not induce drug resistance, which is why the possibility of
effective treatment of life-threatening infections and nonhealing wounds is postulated [50,96]. The
biological activity of ILs results from the modification of a cationic chain fragment and connection
with the ring structure of β-lactam antibiotics. The elongation of alkyl chains in N-alkylimidazolium
and N-alkylpyridinium allowed achievement of a biological effect through the alkyl chain of the
ionic liquid and DNA intercalation [97]. Adducts of bacterial DNA with ionic liquids, arisen in this
way, lead to inhibition of transcription, translation, and cell division processes, resulting in bacterial
death [98]. Combination of ILs with the structure of commonly used antibiotics is the basic direction of
development for new therapeutic substances [11,51,94,95]. The synthesized antibiotic-IL complexes are
characterized by an increased spectrum of antibacterial activity, as well as better absorption and tissue
penetration, which until now has not been achieved (parenteral administration of the liposomal form of
amphotericin B leads to penetration through the blood-brain barrier) and much less toxicity due to the
therapeutic efficacy of smaller doses of antibiotics [89]. The minimum inhibitory concentration (MIC) of
the 2,3-dimethylimidaziolium molecule is reduced by more than half, from 23 mmol/L to 7.9 mmol/L,
thus obtaining a value that is also the minimum bactericidal concentration (MBC). The complex
compounding of ILs with precious metal ions such as silver and gold is also worth mentioning [99].
The obtained metal-IL complexes are characterized by significant antibacterial activity and a long
duration of action of the drug [80]. Therefore, IL complexes with silver and gold ions are used for
local application in wounds and infected surgical sites and in endodontic treatment. The described
complexes are characterized by particular activity against vancomycin-resistant [VRE] Enterococcus
strains, which are VRE alert strains [98].

Staphylococcus aureus is currently regarded as the most dangerous bacterium in social health. A
staphylococcal carrier state is found in about 30% of hospital staff, and patients are colonized by
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touch [100]. Staphylococcus causes chronic osteoarthritis, infective endocarditis, and bacteremia and
colonizes artificial materials implanted in the human body, such as hip joint prostheses, artificial
heart valves and vascular stent grafts [100]. Despite the introduction of new antibiotics for treatment,
including vancomycin and meropenem, the mortality rate from staphylococcal infections has not
changed over the last five years [90]. The main mechanism of staphylococcal antibiotic resistance does
not consist of the production of enzymes called β-lactamases, which decompose antibiotics, as in the
case of Enterobacteriaceae, but of the synthesis of a new protein called PBP (Penicillin Binding Protein)
and efflux pumps that route the antibiotic outside of the bacterial cell [90]. The described mechanisms
lead to antibiotic resistance to penicillins, cephalosporins, monobactams, and carbapenems, and there
is an additional phenomenon of cross-resistance to macrolides and fluoroquinolones. ILs used in the
treatment of general and local infections are not susceptible to either a antibiotic-resistant mechanism,
which was proven in the studies on the SA1199 A and B staphylococcal strains (see Table 2) [86,91–93].
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Table 2. Listing of bacterial priority strains including S. aureus, Enterococcus species, K. pneumoniae, Enterobacteriaceae and P. aeruginosa, antibiotic resistance mechanisms
and ionic liquids showing the best effect in the treatment of infections.

Bacterial Strain Strain
Specification

Antibiotic Resistance
Chracteristics Ionic Liquid Principal Mechanism of Action MIC [Mmol L−1] MBC [Mmol L−1] References

Staphylococcus
aureus

HA-MRSA MGEs+ [C8mim][Cl]
Collapse of liposomes, localized

perforations in
dioleoylphosphatidylcholine bilayers

116 170

[51,86,89,91–
95,97,98,101]

MZ100
SCCmec+IV-V

[C4C1Im]
Perforation of

dipalmitoylophosphatidylcholine
with phospholipid bilayers [Tf2N],
isotopic substitution of hydrogen

188 250
tsst-1

BORSA pvl+ [Chol][Cl] 125 188

USA300 icaD+ Di-But C6

Leakage of cellular liposomes,
alternation of apolar regions by

protic ionic liquids

1000

CA-MRSA hlα-γ+ Di-Hex C6 8 4

ATCC25923

NorA efflux pump

BTFLA 23 43

MDRSA

1,3-dialkiloimidazolinum

Docking complex formation with
tubulin FtsZ PC190723,

Increased affinity to the membrane of
cancerous cells—interaction with

phosphatydilserine

2.12 6.14

[C1C1
4 pi][BF4 ]2 5.6 19.3

[Phpi][BF4] 1.2 4.8

[(C2)2(C1)2(C1)2
3gu][C2OSO3] >100 342

ATCC6538
C16M1Im][Br] 23 NA

[C16M1Im][Amp]* 7.9 7.9 **

Enterococcus species

COM12-15
E1071

E4452-E4453
AUS0004

VRE

[C12Py]
De-stabilising effect on lipid structure

8.1 8.1 **

[38,66,69,80,
99]

[C18Py] 8.5 8.5 **

[EMIm+Tf2N-] Mismatch between ionic liquid
cations and lipids in the layer 16.8 34.6

[C12Im]
Long-tail cation mediated

cytotoxicity, electrostatic signature
interacting with peptidoglycan

7.1 7.1 **

[C18Im] 8.1 8.1 **

[BMIm+Cl-] 7.5 7.5 **

Ag+C3H5N2-p 5.7 × 10−10 5.7 × 10−10 **



Int. J. Mol. Sci. 2018, 19, 2779 14 of 24

Table 2. Cont.

Bacterial Strain Strain
Specification

Antibiotic Resistance
Chracteristics Ionic Liquid Principal Mechanism of Action MIC [Mmol L−1] MBC [Mmol L−1] References

Klebsiella
pneumoniae ATCC4352 Metallo-β-lactamse-1

[C2mim][Cl] Inhibition of acetylcholineesetrase 178 263

[51,96]

[CBP] Interaction with phosphatidic acid,
apoptosis triggering 13 NA

[CPB][AMP] * Antibiotic donor 4.7 9 **

[C16M2Im][Br] Interaction with cytoskeleton protein
subunits 15 NA

[C16M2Im][AMP] * Antibiotic donor 7.8 7.8 **

Enterobacteriaceae
genus W3110

OXA-48
carbapenemase

[Chol]+ Thre Interaction with biomembranes
surrounding cellular organelles

31.3 62.5

[94,95,102]

[Chol]+ Pro 46.9 62

β-lactamase encoding
genes

K1-2 capsular
serotypes

Di-But C10

Decreased flexural rigidity and
reduced interfacial tension between
the bilayer and ionic liquid, lysis of

bacterial outer membrane

40 40 **

Di-Hex C10 8 8 **

PTLFS 91 470

[(C2)2
2(C1)2(C1)2

3gu][C2OSO3]
12.5 39.5

[C2pi][BF4] 2.38 11.8

[C2C1C1
4pi][I] >50 185

Pseudomonas
aeruginosa

PA14 OM-proteins Di-Hex C10 Coagulation of cytoplasm 9 20

[50,103]
ATCC 27853 MDEP

1,3 dialkiloimidazolinum

Asymetric absorbtion of ionic liquid
cation by leaflets of phospholipid

bilayer

18.4 45.8

BMP-NTf2 24 65.6

HMIM-Cl 12.4 61.5

[P(C14H29)(C6H13)3]+ 8.4 20

(ZnCl2)2 - BZBN 12.3 31

The mechanism of action of ILs and the minimum inhibitory concentration, and the minimum bactericidal concentration are given. * ILs, which belong to APIs, were identified. ** The
inhibitory concentration is equivalent to the bactericidal concentration [38,50,51,66,69,80,86,89,91–101,103].
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ILs exhibiting antistaphylococcal activity are divided into two groups: Phosphonium ionic liquids
and nitrogen ionic liquids, which include alkylammonium and/or imidazolium salts [97,98,101].

So far, the most effective agents for staphylococci have been the recently synthesized phosphonium
ionic liquids (PILs) obtained from triphenylamine (TPA) [94,95]. Phosphonate compounds are
characterized by lower MIC and MBC values, compared to ILs based on nitrogen compounds, which
are less toxic to the human body and have a different mechanism of antibacterial activity [101].
The PILs complexed with TPA derivatives spontaneously form layered polymeric multicomposites
that have the ability to penetrate the outer membrane and act within the bacterial cell [101]. This
is a clinically significant feature because, due to their easy penetration, PILs-TPA compounds are
characterized by MIC values that are unachievable even for the most effective antibiotics (0.25 µg mL−1

vs. 2–3 µg mL−1 in blood serum for vancomycin), [102,104]. Mono, di, and tri-formylation of TPA
is obtained in the Vilsmeier-Hack reaction. The key stage of Williamson etherification is carried out
using NaH in a solution of ethanol and chloroform. The sodium salt, thus obtained, comes into
reaction with Br-(CH2)n-OTBDMS [102,104]. The group blocking the compound is then removed using
tetra-n-butylammonium fluoride (TBAF) to give the appropriate alkyl chain length. The process of
obtaining the alkyl chain in the TPA molecule is extremely important, as the MIC decreases for all
Gram (+) cocci as the chain length increases. The MIC of TPA 22 for S. aureus is eight mg/L and
16 mg/L for E. faecium, while the MIC for TPA with a chain length of 24–27 is two mg/L for S. aureus
and ranges from two up to eight mg/L for Enterococcus [66,80,99]. The presence of a counter ion in
the molecule does not affect the antimicrobial activity. The bactericidal activity of ILs against cocci
results from the rapid penetration of ILs through the glycopolymer sheath, which in Gram (+) bacteria,
consists mainly of teichoic acid. ILs based on phosphonate with alkyl chains have bactericidal effects
against A. baumannii as well as other Gram (−) bacteria [74]. This effect is, however, much weaker
than that for cocci due to the presence of the lipophilic outer membrane on the outside of the cell
wall of Gram (−) bacteria [74]. The MIC of TPA for A. baumannii is from 16 to 64 mg/L, which is
four times weaker than the effect of ILs obtained against rods. This is due to the stronger bi-layer
intercalation of the outer membrane, followed by the creation of a cationic channel leading to a change
in the transmembrane potential, and eventually, cell death [74].

K. pneumoniae New Delhi has been a widespread pathogen in Asia since its discovery in 2008 in
India [105]. A troubling problem is infections with pathogens such as the Klebsiella pneumoniae New
Delhi strain, which produces metallo-β-lactamase-1 (NDM), and until now, was considered exotic in
Europe [106]. K. pneumoniae NDM causes pneumonia, sepsis and soft tissue inflammation in humans
and in transplant recipients due to hospitalization and immunosuppressive treatment [107]. The New
Delhi K. pneumoniae strain is resistant to treatment with meropenem and other carbapenems due to
the extended spectrum of β-lactamase produced by this strain, containing a zinc ion in the active
centers [107]. The phenomenon of drug resistance to carbapenems and β-lactams is related to gene
cassettes carried on class 1 integrons [108]. The NDM strain encoding the blaNDM-1 gene is extremely
easily transmitted by transfection genetic elements, as well as in the air; hence, it is responsible for rapid
bacteria propagation [109]. The current drug regimen presupposes the use of colistin, aminoglycosides
and trimethoprim together with sulfamethoxazole. Colistin is characterized by high nephrotoxicity,
and the use of aminoglycosides is associated with an irreversible cytotoxic effect, while trimethoprim
is characterized by a dose-dependent effect [108,109]. Hence, the drug concentrations used in humans
have only bacteriostatic action against K. pneumoniae NDM. ILs have a bactericidal effect against
the K. pneumoniae NDM strain [107]. The most effective method against this strain turned out to be
the use of biopolymer forms of ILs. Based on nitrogen-compound ILs, which are room temperature
ionic liquids (RTIL), with a melting point of 25 ◦C-including 1-ethyl-3-methylimidazolium chloride
[C2mim][Cl] and 1-octyl-3-methyl imidazolium chloride [C8mim][Cl]), are the most effective against
NDM-1 [70]. In addition, these compounds are assigned to the so-called “green solvents” group due to
their low volatility, nonflammability, chemical structure stability at high temperatures, and low toxicity
to eukaryotic cells [38,70]. ILs interactions in the course of the stationary phases of reverse-phase
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chromatography is complex due to participation of both the cation and anion [38,70]. Moreover, a
nanocomposite filler, laponite, allowed a stronger bactericidal effect against K. pneumoniae NDM, which
was observed according to the bacterial inhibition zone (BIZ) on agar plates [51]. The growth inhibition
zone (BIZ) was 7 mm for [C2mim][Cl], while for [C8mim][Cl] in combination with the nanocomposite
BIZ, the zone was nine mm [38]. The biological effects obtained by adding hydrogels to the tested
imidazoline compounds enable the topical use of the compounds in medicine as dressings for wounds
infected with K. pneumoniae NDM. In addition, the matrix may form a scaffolding for the growth of
granulation tissue and promote repair processes in cases of tissue loss [38,70].

4. Polymorphism of Ionic Liquids as New Solvents in the Synthesis of Pharmacologically Active
Compounds

ILs are often referred to as designer solvents, due to the possibility of modification of their
polymorphic internal structure (specific cation or anion) and unique physicochemical properties.
Polymorphism is the ability of a substance to occur in two or more crystalline forms that are
characterized by a different arrangement or conformation of molecules in the crystal lattice. It is
estimated that more than half of drugs have polymorphism. It is believed that 70% of barbiturates, 60%
of sulfonamides, and 23% of steroids may exist in various polymorphic forms [110]. The existence of
different polymorphic forms can have a significant effect on the drug’s effectiveness, because each form
can have different physicochemical properties. For example, one of the existing polymorphisms may
be more bioavailable, more stable (e.g., longer shelf life), or easier to use in a formulation than another
polymorphic form. The use of polymorphic forms of ionic liquids has become an alternative solution
in the synthesis of non-steroidal anti-inflammatory drugs (NSAIDs) [111]. Prawadolin (pravadoline), a
drug classified into the NSAID group, is obtained by ionic liquid synthesis, based on a nucleophilic
reaction substitution and Friedel-Crafts reaction [112].

Examples commonly used analgesic and anti-inflammatory drugs is known under the trade
name Ibuprom® (ibuprofen), which is commercially available mainly in the form of a racemic
mixture. Literature data indicate that the enantiomer in vitro (S)—ibuprofen has about 150 times
more anti-inflammatory activity than its (R) enantiomer—therefore, many biosynthetics, among others,
are currently developed with the use of ILs to obtain higher enantioselectivity than with the application
of conventional solvents [111].

The exact polymorphic form of the compound also affects its physical properties, such as
dissolution rate, bioavailability, physical properties of the crystal, and mechanical strength [22].
Delivery of the exact dose of the compound to the body often depends on which of the several possible
polymorphic forms is present in the formulation. The discrepancies of properties between different
polymorphic forms usually means that one crystalline form is desired more than others [22].

However, obtaining a specific form may be difficult, and the search for salts with a specific crystal
structure (usually to control the dissolution rate and solubility) may require many experiments. In
this way, for each drug, the slightest change in the crystallization process, e.g., the crystallization
solvent used, can lead to the formation of a polymorphic form which must be fully re-examined
and characterized in terms of physicochemical properties [60]. The unintended production of an
undesired polymorphic form may lead to a polymorphic form, which is a less-effective or even toxic
form of the drug that will not be authorized without full clinical trials. Thus, the occurrence and
control of polymorphism may be one of the most important challenges for obtaining a product of
constant quality [17,113]. Using an ionic liquid instead of a conventional solvent, harmful to the
water environment, gives new possibilities of obtaining therapeutic compounds, and also enables the
significant elimination of toxic pollution [17,113]. Solvents are currently used in the synthesis of drugs
exclusively on a laboratory scale, however, scientific research aimed at introducing this new one class
of compounds, on an industrial scale, are carried out intensively.
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5. Summary and Future Outlook

In contemporary society the consciousness and knowledge concerning the effects of human
activities on the natural environment is growing. In this respect, the interest in green chemistry is
increasing, meaning by the “green chemistry” substances which are considered to be beneficial for
the natural environment. Ionic liquids based on imidazole compounds can be recognized as green
solvents. This is important since the water environment is the key space for interactions of drugs of
general application or local application. The combination of cation and anion allows the synthesis of
ILs with specific pharmacodynamic properties directed against bacteria, viruses, and fungi. At present,
there is a possibility of combining β-lactam antibiotics with dimethylimidazolium for a synergistic
antimicrobial effect.

The toxicity of ILs (antimicrobial activity) in analyzed Gram (−) and Gram (+) bacterial strains
and fungi depends on the length of alkyl chain and type of cation. ILs containing alkyl chains with
eight to 18 carbon atoms affect the bacterial membranes’ components and fungal cell walls and change
their surface charge. Eventually they activate specific pathways of gene expression, resulting in
metabolic disorders and cell death. The observed effect is particularly evident in the example of
described quaternary alkylammonium salts. ILs are effective in removing bacterial biofilms, though
the discovery of mechanisms of their specific action requires further studies. Our article is of special
significance for researchers seeking the alternative, new drugs, other than antibiotics.
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Abbreviations

A. baumannii Acinetobacter baumannii
Ag+C3H5N2 – np imidazolium-based silver nanoparticles
AIL aprotic ionic liquid
APIs active pharmacological ingredients
BF4 tetrafluoroborate
A. baumannii Acinetobacter baumannii
Ag+C3H5N2 - np imidazolium-based silver nanoparticles
AIL aprotic ionic liquid
APIs active pharmacological ingredients
BF4 tetrafluoroborate
BIOCONTAM EFSA unit on biological hazards and contaminants
BIOHAZ the panel on biological hazards EFSA
BIZ growth inhibitory zone
blaNDM-1 plasmid containing the metallo-β-lactamase type 1 gene sequence
BMP-NTf2 1-butyl-1-methylpyrrolidinumbistriflimide
BORSA mecA-positive oxacillin resistant Staphylococcus aureus
BTFLA bis trifluoromethylsulfonyl amide [(CF3SO2)2N]−

CA-MRSA community-associated methicillin-resistant Staphylococcus aureus
Di-But C10 phosphonium, 1,1′-(1,10-decanediyl)bis[1,1,1-tributyl]
Di-But C6 phosphonium, 1,1′-(1,6-hexanediyl)bis[1,1,1-tributyl]
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Di-Hex C10 phosphonium, 1,1′-(1,10-decanediyl)bis[1,1,1-trihexyl]
Di-Hex C6 phosphonium, 1,1′-(1,6-hexanediyl)bis[1,1,1-trihexyl]
E. coli Escherichia coli
E. faecium Enterococcus faecium
EARS-Net European Antimicrobial Resistance Surveillance Network
ECDC European Centre for Disease Prevention and Control
EFSA European Food Safety Authority
ESBL+ extended spectrum β-lactamases

ESKAPE
acronym from Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii and Pseudomonas aeruginosa infections

EU European Union
FtsZ prokaryotic homologue to the eukaryotic protein tubulin
HA-MRSA hospital-associated methicillin-resistant Staphylococcus aureus
HILs herbicidal ionic liquids
hlα-γ+ α-γ haemolysins encoding genes
HMIM-Cl 1-hexyl-3-methylimidazolium chloride
icaD+- gene relevant to bio-film formation
ICU intensive care unit
ILs ionic liquids
K. pneumoniae Klebsiella pneumoniae
KPC Klebsiella pneumoniae carbapenemase
MBC minimal bactericidal concentration
MDEP mucoid exopolysaccharide strain of Pseudomonas aeruginosa
MDR+ multi-drug-resistant Acinetobacter baumannii
MDRSA multi-drug-resistant and methicillin-resistant Staphylococcus aureus
MGEs+ mobile genetic elements encoding methicillin resistance
MIC minimal inhibitory concentration
MS 2 virus Enterobacteriophage type 2
NorA Norfloxacin efflux pump gene
NSAIDs non-steroidal anti-inflammatory drugs
OTBDMS O-tert-butyldimethylsilyl
p100 virus Listeria phage 100
PAPI+ Pseudomonas aeruginosa pathogenicity islands of strain 14
PBP penicillin binding protein
PF6 Hexafluorophosphate
PILs phosphonium ionic liquids
ppm parts per million
PrILs protic ionic liquids
PTLFS p-toluenesulfonate [4MePhSO3]-
pvl+ Panton-Valentine gene encoding leucocidin
RTIL room-temperature ionic liquids
S. aureus Staphylococcus aureus
SCCmec+IV-V staphylococcal mec chromosome cassette type IV and V
TBAF tetra-n-butylammonium fluoride
TGA thermal gravimetric analysis
TPA triphenylamine
tsst-1 toxic shock syndrome toxin 1 gene
USA United States of America
USD United States dollar
VRE vancomycin-resistant enterococci
[(C2)2(C1)2(C1)23gu][C2OSO3] 2-ethyl-1,1,3,3-tetramethylguanidinium ethyl sulfate
[(C2)22(C1)2(C1)23gu][C2OSO3] 2,2-diethyl-1,1,3,3-tetramethylguanidinium ethyl sulfate
[BMIm+Cl-] butylmethylimmidazolium chloride
[C12Im] C12 alkyl imidazolium
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[C12Py] C12 alkyl pyridinium
[C16M1Im][Br] 1-hexadecyl-3-methylimidazolium bromide
[C16M2Im][Br] 1-hexadecyl-2,3-dimethylimidazolium bromide
[C18Im] C18 alkyl imidazolium
[C18Py] C18 alkyl pyridinium
[C1C14pi][BF4]2 1,4-dimethylpiperazinum bis(tetrafluoroborate)
[C2C1C14pi][I] 1-ethyl-1,4-dimethylpiperazinium iodide
[C2mim][Cl] 1-ethyl-3-methyl imidazolium chloride
[C2pi][BF4] 1-ethylpiperazinium tetrafluoroborate
[C8mim][Cl] 1-octyl-3-methyl imidazolinum chloride
[Chol][Cl] choline chloride
[CPB] cetylpyridinum bromide
[DODMA][Cl] 1,2-dioleyloxy-3-dimethylaminopropane chloride
[EMIm+Tf2N-] ethylmethylimmidazolium bis(trifluoromethylsulfonyl)imide
[P(C14H29)(C6H13)3]+ tetralkylophosphonium oleate
[Phpi][BF4] 1-phenylpiperazinum tetrafluoroborate
[TMC8A][Cl] trimethyloctylammonium
(ZnCl2)2 BZBN benzethonium chloride
* ampicillin-based ILs
** The MIC value was equal to the MBC of ampicillin-based ILs.
*[C16M1Im][Amp] 1-hexadecyl-3-methylimidazolium ampicillin
*[C16M2Im][AMP] 1-hexadecyl-2,3-dimethylimidazolium ampicillin
*[CPB][AMP] ampicillin-based ILs cetylpyridinum
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