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ABSTRACT

Drug combination therapy has the potential to en-
hance efficacy, reduce dose-dependent toxicity and
prevent the emergence of drug resistance. However,
discovery of synergistic and effective drug combina-
tions has been a laborious and often serendipitous
process. In recent years, identification of combina-
tion therapies has been accelerated due to the ad-
vances in high-throughput drug screening, but infor-
matics approaches for systems-level data manage-
ment and analysis are needed. To contribute toward
this goal, we created an open-access data portal
called DrugComb (https://drugcomb.fimm.fi) where
the results of drug combination screening stud-
ies are accumulated, standardized and harmonized.
Through the data portal, we provided a web server to
analyze and visualize users’ own drug combination
screening data. The users can also effectively par-
ticipate a crowdsourcing data curation effect by de-
positing their data at DrugComb. To initiate the data
repository, we collected 437 932 drug combinations
tested on a variety of cancer cell lines. We showed
that linear regression approaches, when considering
chemical fingerprints as predictors, have the poten-
tial to achieve high accuracy of predicting the sensi-
tivity of drug combinations. All the data and informat-
ics tools are freely available in DrugComb to enable a
more efficient utilization of data resources for future
drug combination discovery.

INTRODUCTION

The current cancer treatment is still largely based on a ‘one
size fits all’ approach, resulting in limited efficacy due to
the heterogeneity between the patients. Molecular diagnos-

tics, histopathology and imaging techniques help stratify
and monitor patients, but they provide limited support to
guide treatment selection, especially for patients with recur-
rent cancers. NGS (Next Generation Sequencing) technolo-
gies and other omics profiling have revealed the intrinsic
heterogeneity in cancer, partly explaining why patients re-
spond differently to the same therapy (1). Even when there
is an initial treatment response, cancer cells can easily de-
velop drug resistance by the emerging activation of compen-
sating or bypassing pathways (2). To reach effective and sus-
tained clinical responses, many cancer patients who become
resistant to standard treatments urgently need new multi-
targeted drug combinations, which can effectively inhibit
the cancer cells and block the emergence of drug resistance,
while selectively incurring minimal effects on healthy cells
(3). Although many new drugs are being developed, there is
little information to guide the selection of effective combi-
nations, as well as the identification of patients that would
benefit from such combinatorial therapies. Recently, high-
throughput drug combination screening techniques have
been successfully applied for the functional testing of cancer
cell lines or patient-derived samples, with several important
hits being made (4). However, the exponentially increasing
number of possible drug combinations makes a pure exper-
imental approach quickly unfeasible, even with automated
drug screening instruments (5). Therefore, data integration
approaches to predict and annotate the drug combination
effects at the systems level becomes a necessary route (6).
Recent efforts included the use of network-based modeling
to predict drug combinations (7). However, the size of drug
combination data utilized for training such complex mod-
els has been often limited. To guide the patient stratifica-
tion, biomarker discovery and treatment selection, a num-
ber of data collection, standardization and harmonization
challenges need to be solved before the promise of person-
alized drug combinations is ultimately met (8,9).

To help achieve these goals, we present DrugComb
(https://drugcomb.fimm.fi/), a web-based data portal that
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aims to harmonize and standardize drug combination
screen data for cancer cell lines. In particular, we focused
on the common experimental designs where drug pairs were
crossed at different doses, forming a dose–response ma-
trix. We provided computational tools via a web server that
allow users to visualize, analyze and annotate such drug
combination dose–response data. These tools can be used
for the determination of drug combination sensitivity and
synergy, such that the most promising drug combinations
can be efficiently prioritized for the downstream experimen-
tation. Furthermore, to facilitate a crowdsourcing effort,
we provided data submission tools to encourage users to
share and redistribute their data in a standardized man-
ner. Through the web server, we established a data curation
pipeline to collect datasets from several major drug combi-
nation studies, covering 437 923 drug combination experi-
ments with 7 423 800 data points across 93 human cancer
cell lines. We provided the sensitivity and synergy scores for
these drug combinations, and showed that these scores can
be predicted by linear regression models using the structural
information of the compounds. The mechanisms of action
of drug combinations can be further illustrated from drug–
target interaction profiles provided by major pharmacol-
ogy databases including STITCH (10), PubChem (11) and
ChEMBL (12). The harmonized DrugComb data can be
readily linked with genomic, transcriptomic and proteomic
profiles of the cancer cells, which are available in major can-
cer cell line databases such as CCLE (13), GDSC (14), COS-
MIC (15), CTRP (16) and MCLP (17).

DrugComb is designed to be a major source of infor-
mation that can be findable, assessable, interoperable and
reusable (FAIR) for drug combination research, as there is
currently lack of open-access services and repositories con-
taining harmonized results of drug combinations studies.
Furthermore, the analysis of drug combinations, especially
in terms of their efficacy and synergy, as well as their mech-
anisms of action, were largely missing. With the help of data
curation and analysis tools provided by DrugComb, we ex-
pect that the users may benefit from such efforts and be will-
ing to form a community with a critical mass, so that more
datasets can be collectively curated and centrally deposited.
Ultimately, such a drug combination community shall lead
to a consensus on the essential information that is needed
to conform to the FAIR principle of research data (18).
Furthermore, we expect that DrugComb will make an ideal
testbed for more advanced machine learning algorithms to
predict and prioritize the most effective drug combinations,
which may ultimately lead to a cost-effective treatment de-
cision support tool for the rational design of personalized
drug combinations. DrugComb prioritizes the collection
and dissemination of high-throughput screen data related to
drug combinations to enable a better understanding, valida-
tion, and prediction of synergistic drug combinations for in-
dividual cancer cell lines. This one-stop workflow proposed
by DrugComb makes it a unique tool in cancer drug dis-
covery research.

In this manuscript, we described major components of
DrugComb, including a web server with a variety of data
analysis tools, as well as a database repository that shall fa-
cilitate the curation and standardization of the major drug
combination studies. Such a data integration pipeline can

be further developed into a protocol that may be adopted
by a wider drug combination screen community. Further-
more, we reported the initial results of the drug combina-
tion prediction as a case study, and highlighted the poten-
tial of machine learning techniques to improve the efficiency
of drug combination discovery. To facilitate the use of web
server and the interpretation of the data analysis results, a
step-by-step user guide was provided in the web site. Future
aspects of DrugComb development were also discussed in
Conclusions.

DATA PORTAL COMPONENTS

The DrugComb data portal includes two major compo-
nents, the web server and the database (Figure 1). The
web server, mainly available at the Analysis page (https://
drugcomb.fimm.fi/analysis/), consists of a pipeline that gen-
erates the numeric and graphical results of drug combina-
tion sensitivity and synergy analyses for users’ own experi-
mental data. Furthermore, a registered user may also sub-
mit the proprietary data via the Contribution page (https:
//drugcomb.fimm.fi/contribute/), which will be evaluated by
the administrator for its appropriateness to be deposited in
the database. The experimental protocols that have been im-
plemented to produce the data are compulsory for a valid
data deposit, as such information is critical to evaluate and
adjust the potential batch effect (19). The database, retriev-
able at the Home page, harbors the curated drug combina-
tion screen datasets as well as their associated data analysis
results. To facilitate the annotation of these drug combina-
tions, we utilized third party APIs to access (i) chemical–
protein association networks in the STITCH database, (ii)
molecular structural information in the PubChem database
and (iii) ligand-based target predictions in the ChEMBL
database. All the data visualization functionalities are built
using Javascript. Computational backend employs Mari-
aDB for the database, while R, Python and PHP routines
are used for the drug combination sensitivity and synergy
analyses.

Computational tools

We designed, developed and integrated a set of tools that fa-
cilitate the data processing and analysis tasks in drug com-
bination screening research. A user needs to upload an in-
put file that should contain information about the com-
pounds and the cell lines, including names, concentrations
and drug effects in the unit of percentage of inhibition (%
inhibition) of cancer cells. Furthermore, a unique identi-
fier, termed block id, is needed to differentiate the same
drug combination––cell line pair that has been repeated in
multiple experiments. The output of the web server con-
sists of sensitivity and synergy scores that are summarized
in a table which can be further linked to more detailed
graphical results. For example, the drug combination sen-
sitivity score (CSS) is determined as the average area un-
der curve (AUC) for the combinations’ dose–response with
one compound fixed at the IC50 concentration (In press, doi:
10.1371/journal.pcbi.1006752). CSS summarizes the dose–
responses of a drug combination using a metric of % inhibi-
tion, which could then be readily compared to its monother-
apy drug responses. The difference between CSS and the
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Figure 1. Overview of DrugComb portal and the workflow. Drug combination screen data can be uploaded by users or from the literature. Data cura-
tion includes standardization of compound and cell line names, harmonization of drug effects as percentage inhibitions compared to the DMSO negative
control, and a simplified file format to facilitate data storage in the database. The web server aims to analyze the curated data to determine and visual-
ize the sensitivity and synergy of drug combinations. External tools are provided for a network-centric representation of mechanisms of action of drug
combinations, skeletal view of drug molecules, as well as predicted drug–target interactions.

sum of AUCs of the monotherapy dose–response curves,
termed as S score, is used to evaluate the synergy of a drug
combination at their IC50 concentrations. To assess the de-
gree of drug-drug interactions over the full dose–response
matrix, we provided reference models to determine the ex-
pected effect of non-interaction. Currently four commonly-
used reference models were utilized, including Bliss inde-
pendence (BLISS), Highest single agent (HSA), Loewe ad-
ditivity (LOEWE), and Zero interaction potency (ZIP) (20–
22). Depending on whether the drug combination response
is greater, identical or less than what is predicted by a ref-
erence model, we may classify the drug combination at a
specific dose level as synergistic, additive or antagonistic re-
spectively (23). As these four reference models are based
on a distinctive set of empirical or biological assumptions,
which might lead to different quantification of the degree of
interaction, we therefore provided the results of all of them
for users’ discretion (24). However, we recommend that only
if a drug combination that achieves a higher synergy score
in all the models (i.e. S, BLISS, HSA, LOEWE, ZIP) as well
as a higher sensitivity score (CSS) should be prioritized for
deeper validations.

Web server implementation

To start the DrugComb data analysis pipeline, a comma-
separated values (csv) file compliant with a specific format
needs to be uploaded. The input file must contain informa-
tion about cell line names, drug names, concentrations and
drug combination responses measured in the unit of % in-
hibition. A template file is provided in the Analysis page
to facilitate the preparation of input data. The web server
will produce the data analysis results in two panels: Table
and Graph (Figure 2A and B). The Table panel is the de-
fault display which provides summary information about
the sensitivity and synergy scores for the drug combination-
cell line pairs. The graphical results are displayed under the
Graph panel, which can be activated after selecting a drug
combination in the Table panel. This Graph panel contains
two tabs including Sensitivity and Synergy. The Sensitivity
tab provides the results on drug combination sensitivity, in-
cluding the CSS-S box plots, dose–response matrix in the

unit of % inhibition, as well as monotherapy dose–response
curves. The Synergy tab contains drug combination synergy
landscapes over the dose matrix, determined by the four ref-
erence models explained earlier. The computational engine
of the web server is extended from the R package syner-
gyfinder (25), while the details on the analytical methods
can be found in online documentation.

Database content

DrugComb aims at a free access to standardized drug com-
bination screening results. Utilizing the computational tools
that are available in the web server, we managed to collect
and curate high-throughput drug combination screen data
involving 2276 drugs tested in 437 932 combinations for 93
cancer cell lines from 10 different tissues. The sources of
the data include: i) The NCI ALMANAC dataset (26), ii)
The ONEIL dataset (27), iii) The FORCINA dataset (28)
and iv) The CLOUD dataset (29) (Table 1). To make the
datasets comparable, we standardized the % viability val-
ues, determined as the ratio between the counts for cells
treated with drugs and cells treated with DMSO as nega-
tive control, measured at the end time point. The drug ef-
fects were then represented as % inhibition, defined as 100
– % viability. The data curation aims to determine a full
dose–response matrix where the monotherapy and combi-
nation doses were matched. More specifically, in the AL-
MANAC dataset screenings have been performed in two
stages. In the first stage drugs were screened in single doses
on the full NCI60 cell panel to efficiently capture com-
pounds with anti-proliferative activity. Compounds with
above-threshold effects were subsequently screened in the
drug combination stage, for which two different screening
protocols were utilized, resulted in full dose–response ma-
trices of 6 × 4 and 4 × 4 sizes. For the ONEIL dataset
the cell viability was measured as the ratio of the exponen-
tial growth rate for cells treated with a drug versus DMSO.
The experiment was designed so that the monotherapy and
the drug combinations were tested separately. However, the
concentrations that were tested in the monotherapy screen
were not identical to those in the combination screen. We
thus utilized the four-parameter log-logistic model, avail-



W46 Nucleic Acids Research, 2019, Vol. 47, Web Server issue

Figure 2. Examples of the DrugComb analysis results. (A) The Table view summarizes the web server results for a selected set of drug combinations,
including the 5-FU (fluorouracil) and ABT-888 (veliparib) combination in the A2058 cell line (melanoma). (B) The Graph view shows sensitivity (left
panel) and synergy (right panel) of the selected drug combination-cell line pair. Sensitivity panel includes CSS-S boxplots as well as the combination dose–
response matrix and monotherapy dose–response curves. Synergy panel shows drug synergy landscapes determined using the ZIP, BLISS, LOEWE and
HSA reference models. (C) Histograms of drug combination sensitivity scores (CSS) of 5-FU and ABT-888 combination across all the cell lines (left) and
across all drug combinations for the A2058 line (right). (D) Annotation for 5-FU and ABT-888 about their chemical structures, drug–target profiles and
protein–protein interaction networks obtained from PubChem, ChEMBL and STITCH databases.

able in the R drc package (30), to estimate the monotherapy
responses at the concentrations tested in the combination
screen. For the Forcina dataset, the % viability values were
determined using the cell counts at the time of 96 h, even
though the data for other intermediate time points were also
available. For the CLOUD dataset, we fitted a 4-parameter
log-logistic model similar for the ONEIL dataset to esti-
mate the % inhibition values for those drug combinations
for which the single drug effects were not reported.

For the curated drug combinations, DrugComb reported
the analysis results provided by the computational tools as
described earlier, and also the distributions of CSS scores
for a given drug combination and a given cell line (Fig-
ure 2C). In addition, multiple views on their annotations
from third-party databases were also made directly avail-
able under the Annotation panel (Figure 2D). For example,
STITCH can provide a network-centric view on the drug–
target interactions for a drug combination, while ChEMBL

and PubChem can provide the most up-to-date informa-
tion on their potential mechanisms of actions and signal-
ing pathways. Information shown in the Annotation panel
should allow for further exploration of the mechanisms of
action for a selected drug combination, which can be further
validated using experimental techniques, such as CRISPR-
Cas9 or RNAi genetic screens (31,32).

We provided flexible query options to navigate the repos-
itory of harmonized drug combination data and their anal-
ysis results, which may encourage users to contribute their
own screening results, thus promoting a community-driven
ecosystem for data sharing and redistribution. A data con-
tribution module (https://drugcomb.fimm.fi/contribute/) is
therefore provided to allow users to upload their curated
datasets for which the reporting of sufficient information
on the experimental procedures is mandatory.

DrugComb is built using PHP 7.2.11 for server-side data
processing, Javascript ECMAScript 2015 for the frontend

https://drugcomb.fimm.fi/contribute/
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Table 1. The data statistics of the studies curated in DrugComb

Study Number of drugs
Number of drug
combinations Number of cell lines Number of tissues

Size of the full
dose–response matrix

ALMANAC 103 303 737 60 10 4 × 4 or 6 × 4
ONEIL 38 92 208 39 6 5 × 5
FORCINA 1818 1818 1 1 2 × 2
CLOUD 283 40 160 1 1 2 × 2

The number of drug combinations was counted as one experiment where a drug combination has been tested for a particular cell line. For the ONEIL study,
there are 583 unique drug combinations, where all of them have been tested in each of 39 cell lines, and therefore 583 × 39 = 22 737 drug combinations. All
the drug combinations have been repeated multiple times including 22 422 drug combinations repeated four times while 315 drug combinations repeated
eight times. Therefore, the total number of drug combination experiments sum up to 22 422 × 4 + 315 × 8 = 92 208 drug combinations. All the other
studies have not provided the drug combinations that have been replicated on the exactly same concentrations.

and Plotly library 1.40.0 for the generation of the interac-
tive visualizations. Data is stored in MariaDB 10.1.37 with
RMariaDB 1.0.6.9000 as the driver for interfacing with R.
Software development tools including Python 3.6.7, numpy
1.14.1, pandas 0.23.4, scikit-learn 0.20.2, RDkit 2018.03.4,
R version 3.5.1, synergyfinder 1.8.0 and tidyverse 1.2.1 are
used in the analytical pipelines. Linux distribution CentOS-
7 with the kernel 3.10.0 64-bit running on four processor
cores and 64 Gb of RAM is used for hosting the web service
on the in-house computational cluster. API-based access to
PubChem is performed according to https://pubchemdocs.
ncbi.nlm.nih.gov/pug-rest, to STITCH using https://www.
stitchdata.com/docs/stitch-connect/api, and ChEMBL us-
ing https://www.ebi.ac.uk/chembl/api/data/docs.

CASE STUDIES

Here we present three case studies that have been performed
on the curated data in DrugComb. The first case study in-
volved a descriptive analysis of the dataset, where drugs and
cell lines were clustered according to their mechanisms of
action and tissue of origin. The second case study aimed
to analyze the reproducibility of drug combination screen
data. This was done via the comparison of the CSS val-
ues of replicates found across and within the study sources.
The third case study employed linear regression to pre-
dict the CSS values using chemical descriptors of the drug
molecules, demonstrating the potential of machine learning
methods.

Annotations of drugs and cell lines

To retrieve the mechanisms of actions of the 2276 drugs
in DrugComb, their chemical identifiers were queried
from major databases including STITCH, PubCHEM,
ChEMBL, DrugBank (33) and KEGG (34). These identi-
fiers were then used for retrieving the pharmacological ac-
tion information that is available in these databases. We
followed the compound classification used in ChEMBL
to manually determine the mechanism type, yielding
the following categories with their proportions: inhibitor
(28.09%), receptor (18.34%), blocker (2.98%), antagonist
(2.54%), modulator (0.83%), agonist (0.79%) and activator
(0.22%) (Figure 3A). In addition, 12.21% of drugs have been
labeled as ‘other’ as their mechanisms of action are not com-
mon enough to be placed in new categories. Notably, the
remaining 33.22% of drugs do not have well-documented

mechanisms of action and hence have been labeled as ‘un-
known’. To understand the mechanisms of action of these
drug combinations, it becomes imperative to obtain more
information on their unannotated constituent compounds.
For example, MK-4541 was tested in 5,772 combinations
across six cancer tissues, while its pharmacology informa-
tion remains unknown in those major databases. We did
a literature survey and found that MK-4541 has been re-
ported to selectively modulate androgen receptor (AR), act-
ing as an AR agonist (35). Therefore, we expected that more
compounds may be annotated similarly by searching the
literature which has yet been curated. A more systematic
annotation may be achieved via the DrugTargetCommons
platform (https://drugtargetcommons.fimm.fi/), where the
crowdsourcing efforts are utilized for extracting quantita-
tive bioactivity values of drug–target interactions from the
literature (36). For the 93 cancer cell lines, their annotations
have been obtained from the Cellosaurus database (37) to
determine their tissues of origin. All together 10 distinct tis-
sues were present with lung cancer (16.13%), ovary cancer
(15.05%) and skin cancer (15.05%) being the most common
ones (Figure 3B). It can be seen that all the major cancer tis-
sue types except for liver and stomach cancers are well rep-
resented in DrugComb, and thus demonstrating the general
relevance of the existing data.

Reproducibility of drug combination screens

Experimental reproducibility, in particular levels of inter-
laboratory concordance in the drug response phenotypes
has been reported to be an issue in cancer drug screen-
ing (38). Since DrugComb aims to provide standardized
results of drug combination screens, assessment of inter-
and intra-study data reproducibility is of high importance.
The reproducibility was evaluated using standard deviation
(sd) of CSS values, which is determined for each unique
drug pair and cell line combination. We chose to evalu-
ate the CSS reproducibility as CSS indicates the average
% inhibition of a drug combination and therefore makes
the replicates comparable even though they were done in
different concentrations. For example, Temozolomide and
Adm hydrochloride combination has been tested twice in
the MALME-3M cell line within the ALMANAC study
(denoted as block id 402838 and 426170 in DrugComb),
but their concentrations were different (for 402838, temo-
zolomide has been tested using 1, 10 and 100 �M while in
426170 temozolomide has been tested using 0.2, 2 and 20
�M; Adm hydrochloride has been tested using 0.001, 0.01,

https://pubchemdocs.ncbi.nlm.nih.gov/pug-rest
https://www.stitchdata.com/docs/stitch-connect/api
https://www.ebi.ac.uk/chembl/api/data/docs
https://drugtargetcommons.fimm.fi/
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Figure 3. Classification of drugs and cell lines and their proportions in DrugComb. Drugs were classified according to the mechanism types, with 33.3%
of which (n = 756) do not have well-documented mechanisms of action from major databases. Cell lines were classified according to the tissue of origin.
hem lymph: hematopoietic and lymphoid tissue; large intest: large intestine.

0.1, 1 and 10 �M in 402 838 while using 0.005, 0.05 and
0.5 �M in 426170). These two experiments were still con-
sidered as replicates when evaluating the variation of CSS
scores. Altogether 34 936 drug-pair-cell-line combinations
were replicated, while the majority of them were found ei-
ther from only within the ONEIL study (n = 22 133) or from
only within the ALMANAC study (n = 11 915). In con-
trast, the number of replicated drug combinations across
the ONEIL and the ALMANAC studies is relatively few
(n = 604). On the other hand, the drug combinations that
were tested in the FORCINA and the CLOUD studies were
not replicated, as FORCINA and CLOUD involve single
cell lines of T98G and KBM-7 separately, that were not
tested elsewhere. The average sd for within-study replicates
is 4.25 and 12.02 for ONEIL and ALMANAC respectively,
both of which are smaller than that (average sd 15.44) for
their between-study replicates (P < 10−30, Wilcoxon rank-
sum test, Figure 4). The higher reproducibility of ONEIL
compared to ALMANAC is expected, as the ONEIL study
consisted of a standardized experiment design that involves
only technical replicates while the ALMANAC study col-
lected data from multiple labs that differed in their experi-
mental designs, and therefore may be confounded by multi-
ple factors or batch effects (Table 1). On the other hand, for
each of the n = 604 drug-pair-cell-line combinations that
were replicated between ONEIL and ALMANAC, we fixed
the drug-pair and picked up randomly one cell line from
ONEIL and one cell line from ALMANAC, and consid-
ered the sd of the CSS values as the negative control for the
between-study reproducibility. The average sd for such ‘neg-
ative control’ replicates is 17.5 which is significantly higher
(P < 10−4, Wilcoxon signed-rank paired test), suggesting a
satisfactory reproducibility of the between-study replicates
(Figure 4).

Prediction accuracy of drug combination sensitivity

In this case study we aimed to evaluate the prediction ac-
curacy of machine learning algorithms on the drug com-
bination sensitivity (CSS) data. We considered the finger-
print information of the drug combinations as the predic-
tors and utilized the root mean squared error (RMSE) to
evaluate the prediction accuracy. To generate the finger-
print vectors for a drug combination, canonical SMILES
for the constituent drugs were obtained from PubChem and
then were converted to 2048 fingerprint bits using Rdkit
python module (version 2018.03.4), where each bit corre-
sponds to the presence or absence of a particular structural
feature. The drug combination fingerprints were generated
using the bitwise averaging of the single drug fingerprints
(39). More specifically, the presence of a structural feature
in both drugs yields 2 in the combination fingerprint, while
presence only in one yields 1 and lack in both yields 0.
These 3-bit arrays were then used as features in the machine
learning algorithms. For each cell line, we fit a linear regres-
sion model on the 80% of drug combinations using a nested
cross-validation and then test its prediction accuracy on the
remaining 20% data. As a control, we utilized an additive
model to predict CSS, which is the sum of average %inhibi-
tion from the two single drugs. The use of such an additive
model was to reflect the baseline prediction assuming that
the average %inhibition of a drug combination is simply the
sum of their individual drug effects.

As shown in Figure 5, we found that the prediction ac-
curacy is higher for the linear regression model than the
additive model across all the tissue types, suggesting that
the drug combination fingerprints carry predictive features
for explaining the sensitivity. However, all the tissues ex-
hibited multi-modality in the distribution of RMSE, sug-
gesting that the prediction accuracies varied across different
cell lines and drug combinations. As a future step more ad-
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Figure 4. Replicability of drug combinations between and within studies represented as the distribution of the standard deviations of the Drug combination
sensitivity scores (CSS). Mean standard deviations for each of the kernel density plots are shown under their corresponding dotted lines.

Figure 5. Performance of predicting CSS using linear regression as compared to the additive model. The RMSE for each cell line was grouped as according
to its tissue type. Dashed lines within each density plot indicate interquartile range.

vanced non-linear machine learning methods such as deep
learning may be tested (40). Furthermore, molecular infor-
mation of the cell lines may worth exploring for the discov-
ery of predictive biomarkers for drug combinations.

COMPARISON TO EXISTING DATA PORTALS

To the best of our knowledge, the existing data por-
tals that cover partially drug combination screen
data analysis and collection included DeepSyn-
ergy (http://shiny.bioinf.jku.at/DeepSynergy/), Drug-
Combdb (http://drugcombdb.denglab.org) (unpublished,
https://www.biorxiv.org/content/10.1101/477547v2) and
SynergyFinder (https://synergyfinder.fimm.fi/) (41). Deep-
Synergy provides a deep learning machine learning model
that was trained on the ONEIL data and has been shown
to predict new drug combinations with superior accuracy
compared to conventional machine learning approaches.
However, DeepSynergy did not provide the web service for
the sensitivity and synergy analyses of the drug combina-
tion screen data. Furthermore, the deep learning model
was trained only with the ONEIL dataset, and thus may
become suboptimal when predicting a drug combination
in an untested cell line. DrugCombdb is a database that
harbors the concurrent screening data for 105k drug com-

binations. While the dataset has been collected via deep
curation, it has not been analyzed with the drug combina-
tion sensitivity and synergy tools either. Therefore, both
DeepSynergy and DrugCombdb provided limited web-
server functionality to analyze drug combination screen
data. In contrast, DrugComb provided the web-server that
builds on our recent informatics approaches to assess both
the sensitivity and synergy level of drug combinations, and
therefore may potentially help the interpretations of the
DrugCombdb data as well as contributing to the training
data that is needed for DeepSyerngy and other advanced
machine learning models. SynergyFinder is our recent
web application for the drug combination screen data
analysis. However, the focus of SynergyFinder is to analyze
the degree of interactions in a drug combination screen,
while the functionality of analyzing the sensitivity of drug
combinations is missing. Furthermore, SynergyFinder does
not provide the data curation and annotation functionality.
In contrast, DrugComb provides the functionality of both
a web-server and a database that have become integral
components for establishing a major portal for drug
combination data standardization and harmonization.
On the other hand, there exist web servers to predict the
side effects of drug-drug interactions including DDI-CPI

http://shiny.bioinf.jku.at/DeepSynergy/
http://drugcombdb.denglab.org
https://www.biorxiv.org/content/10.1101/477547v2
https://synergyfinder.fimm.fi/
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(42). Therefore, linking DrugComb with DDI-CPI may
provide a more comprehensive view about the efficacy and
side effects of a given drug combination. Taken together,
DrugComb is well positioned to provide complementary
resources that can be connected with these existing tools for
a more systematic and more community-driven effort for
future drug combination prediction and network modelling
development (43).

CONCLUSIONS

How to make cancer treatment more personalized and more
effective remains one of the grand challenges in the health-
care system. Drug combinations may provide enhanced effi-
cacy to combat the cancer drug resistance and therefore may
provide more sustainable treatment options for the patients.
To accelerate the discovery of personalized multi-targeted
drug combinations, knowledge-bases to curate, annotate
and interpret the drug combination screen data are needed.
The DrugComb portal provides free-access web server to
analyze high-throughput drug combination screen data and
thus makes it possible to develop a community-driven data
repository that allows for the testing of machine learning
algorithms. Future efforts include the collection of molec-
ular profiles for cancer cell lines from the LINCS program
(www.lincsproject.org), such that more predictive features
may be extracted from the cellular genetic or epigenetic con-
text. This may lead to the identification of biomarkers which
can be used to stratify the patients for a rational selection
of drug combinations. On the other hand, the curated drug
combination screen data may also help define more accurate
cancer cell dependency models that are being developed at
Cell Model Passports (44) and DepMap (https://depmap.
org). Furthermore, efficient statistical methods need to be
developed for evaluating the significance of drug combina-
tion experimental data, which shall demonstrate that the
drug combination predictions can be reliably translated into
treatment suggestions. With the data analysis and data con-
tribution tools that are made freely available in DrugComb,
we encourage more cancer researchers to participate the
crowdsourcing efforts of drug combination data generation
and harmonization. In the long run, we envisage Drug-
Comb to be a major portal to provide widely applicable in-
formatics tools to predict, test and understand drug combi-
nations, not only for cancer cell lines but also for patient-
derived samples, so that it may lead to novel, more effective
and safe treatments compared to the current cytotoxic and
single-targeted therapies.
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