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Skeletal vasculature plays a central role in the maintenance of microenviron-
ments for osteogenesis and haematopoiesis. In addition to supplying oxygen
and nutrients, vasculature provides a number of inductive factors termed as
angiocrine signals. Blood vessels drive recruitment of osteoblast precursors
and bone formation during development. Angiogenesis is indispensable for
bone repair and regeneration. Dysregulation of the angiocrine crosstalk is a
hallmark of ageing and pathobiological conditions in the skeletal system.
The skeletal vascular bed is complex, heterogeneous and characterized by
distinct capillary subtypes (type H and type L), which exhibit differential
expression of angiocrine factors. Furthermore, distinct blood vessel subtypes
with differential angiocrine profiles differentially regulate osteogenesis and
haematopoiesis, and drive disease states in the skeletal system. This review
provides an overview of the role of angiocrine signals in bone during
homeostasis and disease.

1. Introduction

The vascular system serves as a rapid transport network for delivering oxygen
and nutrients. In addition to this traditional role, recent evidence illustrates that
endothelial cells (ECs) and perivascular cells engage in signalling with neighbour-
ing cells, and regulate various tissue and organ developments and functions [1-5].
These interactions between the vasculature and tissue cells involve paracrine
or juxtacrine signalling, also termed as ‘“angiocrine signalling’. The angiocrine sig-
nals involve growth factors, extracellular matrix components, secreted signalling
molecules such as cytokines and chemokines, and gaseous, physical or cell-cell
communication through the cell surface molecules. During such angiocrine cross-
talk with neighbouring cell types, blood vessels often form nurturing niche
microenvironments required for the maintenance of stem and progenitor cells
[6]. In bone, vasculature provides specialized niches for haematopoietic stem
cells (HSCs) and osteoprogenitors and regulates haematopoiesis and osteogenesis
[6]. This review aims to provide a summary of angiocrine factors and the role of
angiogenesis in the skeletal system. It also provides an evaluation of the impact of
angiocrine crosstalk on bone physiology and pathophysiology. The angiocrine
factors in bone are summarized in table 1.

2. Niche functions of blood vessels during bone
formation

The circulatory network in the mammalian skeletal system controls the develop-
ment of bone through angiocrine signalling. Bone formation starts with the
migration and localization of cells to a specific micro-niche followed by conden-
sation of mesenchymal cells [34,35]. This mesenchymal condensate then acts as
a template for further differentiation and development [36]. Even though vascular
invasion and blood vessel growth is a later event in bone development [37], some
blood vessel-derived factors/angiocrine signals from the periphery may play a
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Table 1. Angiocrine factors and their crosstalk with tissue cells in bone.

angiocrine factor source target cell function reference
0PG endothelial cell osteoclasts inhibit osteoclastogenesis [71
SEMA-III endothelial cells osteoclasts bone remodelling [8-11]
IL-33 (D105+ endothelial cells osteoblasts osteogenesis, haematopoiesis [12]
BMP-2 endothelial cells chondrocytes endochondral bone formation, [13,14]
fracture repair
matrix metalloproteinases: type H endothelial cells chondrocytes cartilage resorption, directional [15]
Mmp2, Mmp9, Mmp14 bone elongation
Timp1, Timp2, Timp3, Timp4 type H endothelial cells chondrocytes bone resorption and remodelling [15]
SCF type H, arterial and HSCs HSC maintenance [16]
sinusoidal endothelial
cells
nidogen-1 ‘ sinusoidal and ‘perivascular pro—B cells pro-B cell maintenance [17]
stromal cells
IL-7 endothelial cells and pro-B cells pro-B cell maintenance [18,19]
perivascular stromal cells
XCL12 endothelial cells and HSCs HSC maintenance [20,21]
mesenchymal stem cells
tenascin-C endothelial cells HSCs HSC survival (7
FGF-2 endothelial cells HSPCs HSPC expansion [22,23]
Jag-1 endothelial cells HSCs HSC regeneration, lymphoma cell [24]
proliferation
NOS2 endothelial cells osteoblast negative regulation of osteoblast [25]
differentiation
PDGF endothelial cells osteoprogenitor osteoprogenitor proliferation and [26]
survival
TGF endothelial cells osteoprogenitor osteoprogenitor survival [26]
FGF1 endothelial cells osteoblast and osteoprogenitor survival [26]
osteoprogenitor
Noggin endothelial cells osteoblast and bone growth, mineralization and [27]
osteoprogenitor chondrocyte maturation
BMP-4 endothelial cells HSPC expansion of HSPC [23]
angiopotein-1 endothelial cells HSPC protection of HSPC [22]
VCAM-1 endothelial cells osteoclasts, leucocytes leucocytes trafficking, protection of [28-31]
and fibroblasts DTGs
E-selectin endothelial cells osteoclasts, leucocytes trafficking leucocytes, cancer [28-30,32]
metastasis
von Willebrand factor endothelial cells disseminated tumour protection of DTCs [31]
cells
thrombospondin-1 endothelial cells disseminated tumour quiescence of DTCs [33]
cells
IGFBP2 endothelial cells HSPC expansion of HSPCs [23]
ICAM-1 endothelial cells leucocytes and leucocytes trafficking [28-30]
fibroblasts
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role as early as during mesenchymal condensation. Transform-
ing growth factor beta 1 (TGFp1) upregulates the production of
connective tissue growth factor (CTGF), and CTGF is a down-
stream effector of TGFp1 for surrounding cells, including ECs.

CTGF and TGFp1 are found to be upregulated in mesenchymal
condensations [38]. Precursors of ECs termed as ‘angioblasts’
are present early in organ bud formation before vascular devel-
opment [2]. During limb formation, there is a prominent



expression of vascular endothelial growth factor (VEGF) in the
mesenchymal condensate [39]. VEGF enhances osteogenesis
and helps in the vascular patterning during osteogenesis [40].
After mesenchymal condensation, bone formation occurs by
either of the two processes: (i) intramembranous ossification
or (ii) endochondral ossification. During intramembranous
ossification, mesenchymal cells in the condensate differentiate
into osteoblasts, which then differentiate to osteocytes/bone
cells to generate flat bones such as the skull and facial
bones [41]. Alternatively, in endochondral ossification, long
bones develop through an intermediate stage of chondrocyte
differentiation and avascular cartilage formation [42].

The central player in blood vessel invasion to the bone
tissue after mesenchymal condensation is hypoxia, where
hypoxia-inducible factors (HIFs) signal the oxygen level
[43]. Under normoxic conditions, the HIF1 subunits are tar-
geted for proteasomal degradation by hydroxylation. While
in hypoxia, due to the limiting oxygen levels for hydroxy-
lation, the HIF1-o0. subunits are stabilized and activate
downstream signalling pathways, including VEGF signalling
[6,44]. In line with this, HIF1-o loss of function mice shows a
decline in bone volume and bone vascularity [37]. VEGF sig-
nalling from the avascular regions, which have high levels of
VEGEF receptors, recruits ECs and drives blood vessel growth.
VEGF signalling plays a central role in coupling angiogenesis
and osteogenesis [45], through its effect on ECs and also by
influencing chondrocytes, osteoblasts and osteoclasts [46].

During the postnatal stages, the vasculature of the skeletal
system is known to play essential roles in bone growth and
bone formation; however, bone vasculature remained vaguely
defined as a network of arteries and sinusoidal blood vessels
until recent years. Owing to its complex and calcified nature,
imaging of the bone tissue remained difficult. Recent improve-
ments with bone imaging techniques provided new insights
into the organization of blood vessels and highlighted the
heterogeneity of blood vessels in the skeletal system [47].
Notably, in addition to arteries, veins and sinusoidal vessels,
a structurally, phenotypically and functionally distinct capil-
lary subtype is present in bone. These capillaries localize in
the metaphysis and cortical regions of bones, physically associ-
ate with osteoprogenitors and generate an active niche
microenvironment for cells of the osteoblast lineage. Due to
the high expression of specific markers, they are termed as
type H [26]. The abundance of these type H vessels gradually
declines in adult and ageing mice, which provides a compel-
ling explanation for the age-associated loss of bone mass seen
in rodents and humans. Genetic and pharmacological
approaches revealed that the reactivation of type H endo-
thelium in aged mice resulted in increased osteoprogenitor
numbers and improved bone mass [48]. Particularly, endo-
thelial Hifl-o. maintains these vessels which diminish upon
ageing. Treatment with Hifl stabiliser in aged mice leads to
the expansion of type H ECs, accumulation of surrounding
osteoprogenitors and increase in bone mass and bone quality
[48]. Furthermore, molecular and mechanistic analysis of
angiogenesis and type H ECs indicated that these ECs mediate
developmental and regenerative angiogenesis in the bone
(figure 1).

ECs are known to produce Wntba [49]. Wnt5a is a
secreted glycoprotein that mediates the beta-catenin signalling
pathway, which is a central regulator of osteogenesis [50].
VEGF overexpression conditions lead to the stabilization of
beta-catenin and excessive bone ossification, indicating the

crosstalk between angiogenesis and bone formation via Wnt
signalling [50]. Osteoblast-derived Wnt5a is a key player in
growth plate ossification and an essential mediator of osteo-
blastic differentiation through bone morphogenetic protein 2
(BMP-2) [13]. However, the involvement of endothelium-
derived Wnts in skeletal system development needs
further examination. Another class of extracellular signalling
molecules having a strong implication in bone formation and
remodelling are semaphorins (Sema) [8,9]. For example,
Sema-IlI is an active member of Sema family with a known
role in bone patterning [10,11]. In addition to these factors,
ECs secrete proteases like matrix metalloproteinases (Mmps),
including Mmp2, Mmp9 and Mmpl4 [15]. These Mmps
upregulate type H ECs mediate cartilage resorption and bone
formation with the help of vessel-associated osteoclasts
(VAO), a newly discovered counterpart of bone-associated
osteoclasts (BAO). The loss of Mmps in type H ECs leads to mis-
directed bone growth and abnormal bone elongation [15]. Thus,
endothelium-derived factors play a central role in driving osteo-
genesis and bone growth. The role of angiocrine factors in
osteogenesis is summarized and illustrated in figure 1.

Unlike most other organs in the body, bone possesses a high
regenerative potential. Usually, bone repair and regeneration
following fracture does not form a fibrotic scar, a common
phenomenon occurring during repair of soft tissues. Bone
repair occurs in four stages; first, the site of fracture is encapsu-
lated by a haematoma, establishing a hypoxic environment
with significant upregulation of HIF-1o. and VEGF [51,52]. In
response to chronic hypoxia, ECs upregulate the osteogenic
factor BMP-2 [14]. Noggin, a secreted BMP agonist, regulated
via endothelial Notch signalling reverses both vascular and
bone defects [27]. Since Notch signalling is known to play a
role in fracture repair [53], there could be a possible angiocrine
function via Notch signalling in fracture healing. Second,
the fracture site is invaded by new angiogenic blood vessels,
laying down a template for osteoclast-fibrocartilaginous
callus formation, as blood vessels recruit and guide osteoblast
precursors to the site of fracture [54,55]. Third, the soft callus
calcifies to generate new bone, which requires early and
prolonged exposure to exogenous VEGF to promote vascular-
ization and bone growth. Blocking endogenous VEGF inhibits
vascularization and calcification of the callous [56]. Slit homol-
ogue 3 protein (SLIT3) is an axon guidance molecule, which
has been shown to induce ECs migration via roundabout hom-
ologue (ROBO) signalling [57]. Slit3 mutant mice have reduced
Type H vessels and impaired fracture repair, whereas Slit3
overexpression creates a mature callus and increased haemato-
poiesis during fracture repair [58], suggesting a possible role
for type H endothelium in fracture repair (figure 2). The final
stage involves the reduction of the fracture callus and normal-
ization of the vasculature. Fracture repair requires increased
blood to the site of fracture. In line with this, the aged mice
with reduced blood flow to bone exhibit impaired ability to
regenerate fractures [59].

The vasculature confers a protective niche for HSCs
following chemotherapy, promoting bone and haematopoietic
regeneration. Long-term HSCs are associated with arteries
and with type H blood vessels which are also referred to as
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Figure 1. Angiocrine crosstalk during bone development, haemostasis and ageing. Displayed are multiple angiocrine factors and their cellular sources that mediate
communication between blood vessels, bone cells and haematopoietic cells. Bone development requires blood vessel invasion and osteoprogenitors follow blood
vessels. Later, type H blood vessels secrete osteogenic factors and drive the bone formation and bone growth. Further, the proteolytic activity of type H endothelium
is required cartilage resorption and directional bone growth. Angiocrine factors derived from different cellular sources maintain HSCs and decline of these cellular
sources, particularly, type H and pericytes upon ageing contributes to the declined HSC function. Ageing also leads to enhanced proliferation of DTCs and lowered
fracture healing. VAO, vessel-associated osteoclasts; BAO, bone-associated osteoclasts; SCF, stem cell factor; HSC, haematopoietic stem cells; LT, long-term; Mmps,
matrix metalloproteinases; PDGF, platelet-derived growth factor; FGF, fibroblast-derived growth factor; TGF, transforming growth factor; CXCL12, C-X-C motif
chemokine 12; Lepr+, Leptin receptor; DTC, disseminated tumour cells.

endosteal vessels in some reports [60-62]. The vascular niche is [64,65]. Irradiated mice transplanted with bone marrow EC cul-
essential to regenerate the HSC population after irradiation [63]. ture conditioned media showed increased survival [64],
Transplantation of bone marrow ECs following irradiation indicating that angiocrine factors can enhance survival but not

enhances haematopoiesis and protects radiosensitive tissue compensate for a complete loss of HSCs. Endothelial-specific
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Figure 2. Involvement of angiocrine signalling during bone loss, repair and regeneration. Figure illustrating the role of various angiocrine factors, their cellular
sources and their influence during radiation and chemotherapy, mechanical loading and also on various pathological conditions like rheumatoid arthritis, OA, inflam-
mation and osteoporosis. The importance of different blood vessel types and associated cells are depicted in the context of bone diseases, repair and regeneration.
The angiocrine signalling from the type H ECs plays a crucial role during bone diseases and regeneration. HSC, haematopoietic stem cells; Mmps, matrix metallo-
proteinases; PDGF, platelet-derived growth factor; FGF, fibroblast-derived growth factor; TGF, transforming growth factor; VEGF, vascular endothelial growth factor;
ICAM, intercellular adhesion molecule; VCAM, vascular cell adhesion protein; BMP, bone morphogenetic protein; AML, acute myeloid leukaemia; EC, endothelial cells;
NOS, nitric oxide synthase; NO, nitric oxide; IL, interleukin; NF-xB, nuclear factor kappa-light-chain enhancer of activated B cells; RANKL, receptor activator of nuclear

factor kappa-B ligand; DFM, deferoxamine mesylate.

deletion of the Notch ligand JAG-1 leads to an impairment in
HSC regeneration and increase lethality following irradiation
[24]. In addition to Notch signalling, ECs upregulate Fgf-2,
Bmp4, Igfbp2 and Angiopoetin-1 to expand the haemopoietic
stem progenitor cells (HSPCs) [22,23], indicating these factors
may be useful to protect HSC following irradiation. Aged
bone marrow ECs impair HSCs and promote a myeloid bias,
as demonstrated by transplantation of ECs from the bone
marrow of the aged mice into the young recipients [66]. The
aged bone marrow has a reduction in PDGFR-B expressing peri-
cytes, which correlates with an expansion of disseminated
tumour cells (DTCs). Furthermore, the aged bone marrow secre-
tome promotes proliferation of breast cancer cells in bone. Type
H ECs expand in response to radiation and chemotherapy and
mediate the regenerative angiogenesis in the bone via blood
flow-mediated secretion of PDGF-B, which promotes pericyte
expansion [67].

4. Dysrequlation of angiocrine signalling in
bone loss conditions

Osteoporosis is associated with failure to maintain a balance
between osteoclasts and osteoblasts, resulting in a loss of
bone mass and density. Osteoporosis is predominant in

post-menopausal women and linked to a reduction in the
Parathyroid hormone. Osteoporosis mouse models demon-
strate a decrease in type H blood vessels [68]. Cathepsin K is
a protease expressed by osteoclasts and mediates bone resorp-
tion. The Cathepsin K inhibitor prevents degradation of the
bone matrix by enhancing PDGF-BB in pre-osteoclasts, which
in turn, increases type H blood vessels that promote bone for-
mation through the expansion of osterix-associated cells [68].
Schnurri3 (SHN3) acts cell autonomously to regulate bone for-
mation via osteoblasts while also acting non-cell autonomously
by enhancing Slit3/Robol to increase the type H blood vessels.
The increase in type H blood vessels precedes the increase
in bone mass seen in Shn3~/~ mice [58], demonstrating the
angiocrine crosstalk between type H vessels and osteoblasts.
Importantly, type H blood vessels also serve as a biomarker
for osteoporosis and bone loss in humans [69]. The physical
proximity of type H ECs and osteoblasts supports that notion
that these blood vessels secrete a localized gradient of factors
that works synergistically with osteoblasts to enhance bone for-
mation [26]. Oestrogen-dependent osteoporosis treatment
prevents bone reabsorption, whereas increasing type H blood
vessels increases osteoprogenitors [68]. Therefore, the absence
of type H vessels may serve as a useful biomarker for disease
progression. In addition, the expansion of type H blood vessels
during osteoporosis may provide a strategy to increase bone

yrL06L 6 Joig uadp  qosi/jeuinol/bio buysigndfianosiefos H



formation, thereby improving the bone quality in this con-
dition. However, the impact on oestrogen on type H blood
vessels and the crosstalk of type H blood vessels with tissue
during osteoporosis treatment is undetermined. Clinical
studies indicate a link between reduced blood flow and bone
mineral density in osteoporosis [70]. Further studies in mice
demonstrate that reduced blood flow results in a significant
reduction of osteoprogenitors [71]. These data suggest a
potential therapeutic avenue via increased blood flow and
angiogenesis in osteoporosis treatment.

Reduction in mechanical loading leads to a decrease in
bone mass [72]. Bone mineral density, volume and blood
vessel numbers are unchanged in exercised mice treated with
an angiogenesis inhibitor [73]. Capillary density increases in
swim exercised mice, suggesting that mechanical loading
from muscle is sufficient to promote blood vessel increase
[74]. Decreased mechanical loading induces IL-1p in ECs and
nitric oxide synthase 2 (NOS2) expression, activating the
nitric oxide (NO) and nuclear factor kappa-light-chain
enhancer of activated B cells (NF-«xB) signalling pathways in
osteoblasts, which inhibits osteoblast proliferation. Further,
Lipocalin 2 inhibits osteoblast differentiation and activates
receptor activator of nuclear factor kappa-B ligand (RANKL)
to induce osteoclasts, which combined results in an imbalance
of bone turnover resulting in bone loss [25] (figure 2).

5. Angiocrine signals during inflammation
associated bone loss

Under inflaimmatory milieu, ECs express BMP-2 [75-77]
indicative of their role in bone remodelling. Likewise, ECs
produce a glycoprotein—cytokine osteoprotegerin (OPG)
in response to a higher concentration of glucose, which
inhibits osteoclastogenesis [7]. Production of OPG by ECS
under high glucose concentration may minimize bone resorp-
tion under diabetic conditions. Interleukin 33 (IL-33), a
pro-inflammatory cytokine secreted by Endoglin expressing
ECs, is believed to play an essential role in osteogenesis.
IL-33 induces the differentiation of bone marrow-derived
stromal cells to osteoblasts and increase calcium deposition
[12] (figure 2).

Rheumatoid arthritis (RA) is a chronic inflammatory dis-
ease leading to bone degradation and joint deformities [78].
Rheumatoid arthritis joints display increased angiogenesis
and ECs play a central role in the trafficking of leucocytes
into the joint [79]. Additionally, ECs expresses several cyto-
kines and proteases, which enhance inflammation.
Intercellular adhesion molecule-1 (ICAM-1), vascular cell
adhesion protein 1 (VCAM-1) and E-selectin expressed on
ECs stimulate leucocyte and fibroblast migration onto the
joint [28-30] (figure 2). Osteoarthritis (OA) displays a similar
pathology to RA, with the underlying cause due to mechan-
ical wear and tear. Anterior cruciate ligament transection
causes OA like phenotypes, with abnormal bone formation
and an increase in angiogenesis in the subchondral bone
[80,81]. Increased TGFp initiates a signalling cascade that
recruits mesenchymal stem cells (MSCs) and type H vessels,
while exogenous blocking of TGFp results in a reduction in
MSC recruitment and type H vessels, attenuating the OA
phenotype [80,81] (figure 2).

6. Angiocrine signals in complex and
ageing HSC niches

Blood vessels in the skeletal system play crucial roles in
blood cell formation by providing nurturing nutrient niche
microenvironments for HSCs. Although a common precur-
sor has been suggested for vasculogenesis and primitive
haematopoiesis [82], interest to understand the vascular
microenvironment in definitive haematopoiesis started with
the identification of HSC near blood vessels [61]. Analysing
the distribution of HSCs in the whole bone marrow suggest
their preferential localization near to the vasculature [83,84].
The recent studies using novel markers such as o-catulin
[84] and Hoxb5 [85] also support the existence of blood
vessel microenvironment for HSCs. Several blood vessel
subtypes and perivascular cell subsets have been reported
to interact and regulate HSCs. Interactions of HSCs with
different vascular and perivascular cell types in the bone
marrow microenvironment is reviewed elsewhere [86-88].
Thus, HSCs reside in specialized, complex niches, which
are maintained by a heterogeneous group of cells [20,21,89].
Angiocrine factors secreted by blood vessels regulate HSC
self-renewal and quiescence [17,90,91]. Recent improvements
with bone imaging methods provide insights into the localiz-
ation of HSCs within the bone marrow where they frequently
localize close to blood vessels [16,84,92]. The stem cell factor
(SCF) secreted by type H ECs, sinusoidal ECs and arterial
ECs is one of the critical angiocrine factors in HSC maintenance
[16]. SCF also plays a role during erythropoiesis and lympho-
poiesis [16]. Interleukins (ILs) are a class of cytokines that
regulates HSCs and are produced by a wide variety of cells
including ECs. In mice, IL-33 alters the HSC fate [12]. IL-33 is
known to be secreted during tissue damage; however, its role
in HSC niche modification and tissue regeneration is not well
studied. Interleukin 7 (IL-7) produced from the perivascular
stromal cells maintains a pro-B cell niche associated with
HSC niche in the bone marrow [18,19]. IL-7 is necessary for con-
trolling the commitment of lymphoid progenitors to B cells
[19]. Perivascular stromal cells, the bone marrow ECs, and
osteoblasts produce C-X-C motif chemokine 12 (CXCL12),
which is a potent chemokine required for the long-term
maintenance and quiescence of the HSC niche [20,89]. The
involvement of SCF and CXCLI2 in HSC maintenance is
depicted in figure 1. Angiocrine factors in HSC regulation
and crosstalk between HSCs and endothelium is currently an
intense area of study and extensively reviewed [86].

Recent studies highlight the importance of type H capil-
laries and arteries in maintaining HSCs. The cells forming
these vascular structures are strongly positive for SCF. Endo-
thelial Notch activation, which promotes arteriole formation
and expansion of type H ECs [27], leads to an increase in
platelet-derived growth factor receptor-p (PDGFR-B)/Nestin/
Neuron-glial antigen 2 (NG2)-positive perivascular cells,
HSCs and augmented SCF levels, suggesting an enhancement
of vascular niche function. Remarkably, EC-specific activation
of HIF pathway, which enhanced the number of type H capil-
laries but had no effect on artery formation and perivascular
cells, fails to enhance the number of HSCs. Further detailed
analyses of endothelial Notch and HIF signalling in bone indi-
cate that both pathways mediate type H EC expansion
independently, whereas only Notch signalling enhances the
frequency of HSCs by improving the vascular niche function
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[48]. The number of arterioles, type H capillaries, PDGFR-B/
NG2-positive perivascular cells and hence SCF levels decline
in the ageing bone. This reduced number of arterioles upon
ageing is in line with the reported decrease in blood flow to
the bone in ageing. The decline in arterioles upon ageing not
only provides compelling evidence for the decreased blood cir-
culation in bone but is also likely to induce metabolic changes
in aged bones. The decrease in blood flow to bone reduces
angiogenesis and type H vessels that lead to a reduction in
osteoprogenitor cells and new bone formation [71] (figure 1).
The formation of new blood vessels leads to increased blood
flow, and tissue perfusion and thereby may lead to alteration
in vascular niches, metabolic microenvironments and their
functions. Supporting this notion endothelial activation of
Notch signalling in aged mice not only lead to increased
blood flow to the bone but also improved the vascular niche
function and improved the abundance of HSCs [48]. However,
long-term repopulation analysis of HSCs from niche-activated
aged mice shows that HSC functionality is not improved,
which is a consequence of cell-autonomous aspects of HSC
ageing such as the accumulation of DNA damage. The EC-
derived Notch ligands are able to enhance proliferation and
prevent the depletion of long-term HSCs [93]. The activation
status of ECs can have a profound influence on modulating
the number of long-term HSCs [23]. Taken together, skeletal
and HSC ageing is an outcome of complex multicellular vascu-
lar microenvironments in combination with HSC intrinsic
factors contributing to the age-dependent alterations and loss
of stem cells functionality (figure 1).

7. Angiocrine crosstalk with tissue during
malignancies in bone

Vascular niches in bone hold potential to provide a protective
microenvironment for cancer cells via secretion of angiocrine
factors [94] Technical advances in high-resolution microscopy,
coupled with optimization in processing bone tissue, have
allowed the investigation of spatio-temporal dynamics in leu-
kaemia and cancer metastasis mouse models [95]. Acute
myeloid leukaemia (AML) presents with disorganized bone
marrow vasculature, significant remodelling and reduction of
the type H endothelium and trans-endothelial migration of
HSC [96,97] (figure 2). In addition, ECs support the growth of
AML cells in vitro and AML cells localized near ECs show resist-
ance to chemotherapy [98,99]. Inhibition of EC remodelling in
AML shows an increase in HSC survival [96]. Lymphoma
cells secrete fibroblast growth factor 4 and activate FGFR1 on
ECs, upregulating the Notch ligand Jagl on tumour ECs
[100]. This crosstalk establishes the vascular niche as a suppor-
tive microenvironment, which in turn supports the proliferation
of lymphoma cells in a Notch-dependent manner. ECs in mul-
tiple myeloma show an upregulation of genes encoding factors
involved in extracellular matrix suggesting that pathological
remodelling of the bone marrow microenvironment is depen-
dent on extrinsic factors rather than cell-intrinsic mechanisms
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regulating the proliferation and quiescence of tumour cells in
bones. Specifically, bone EC-derived PDGF-B signalling regu-
lates dormancy and therapy resistance in bone [67]. However,
the cell types and niches promoting the proliferation versus
the microenvironments supporting the dormancy of DTCs in
bones remains elusive. Likewise, the dissection of the mechan-
isms leading to the reactivation of the dormant tumour cells in
the bone marrow needs further investigation.

8. Concluding remarks

It is now becoming increasingly clear that the skeletal vascula-
ture is heterogeneous, and specialized to secrete osteogenesis
and haematopoiesis supporting angiocrine factors. Loss of
these nurturing angiocrine signals leads to the decline in hae-
matopoietic and mesenchymal stem and progenitor cell
function during ageing. Dysregulation of the angiocrine cross-
talk drives bone loss diseases and other pathobiological
conditions in the skeletal system. Thus, in-depth mechanistic
insights into the angiocrine crosstalk within and across hetero-
geneous bone marrow vascular niches would be of high
relevance for designing strategies to manage ageing and patho-
biological processes in the skeletal system. Furthermore, the
identification of new angiocrine factors and dissecting their
role in the bone marrow microenvironment holds the potential
to provide new therapeutic targets. Thus, there is an exciting
opportunity to unravel a plethora of new players and inter-
actions in complex bone marrow niches, with important
implications for basic research and medicine.
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