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Uncovering representations of 
sleep-associated hippocampal 
ensemble spike activity
Zhe Chen1, Andres D. Grosmark2,3, Hector Penagos4 & Matthew A. Wilson4

Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and 
they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness 
or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble 
spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence 
of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. 
To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like 
hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed 
investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, 
and the other not), we systematically investigated their representation power and detection reliability. 
Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal 
ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or 
ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number 
of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as 
for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness.

Sleep is critical to hippocampus-dependent memory consolidation1–3. Analyzing hippocampal ensemble spike 
data during both slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep has been an important yet chal-
lenging research topic4–10. During awake active exploration, hippocampal pyramidal cells exhibit localized spatial 
tuning11. During sleep, in the absence of external sensory input or cues, the network is switched into a different 
state that engages in internally-driven computation. An important hallmark of sleep, the hippocampal sharp wave 
(SPW)-ripples, lasting between 50 to 400 milliseconds, is typically accompanied with an increased hippocam-
pal network burst and population synchrony of pyramidal cells1. A central hypothesis is that the hippocampus 
and neocortex interact with each other during SPW-ripples12, and that hippocampal neurons fire such that the 
information transferred to the hippocampus during previous awake run behavior is reactivated at a fast times-
cale during SPW-ripple bursts, encoding information of spatial topology of familiar or novel environments, and 
goal-directed behavioral paths10,13–19. During run behavior, hippocampal place cells fire in sequences that span a 
few seconds as animals run through location-dependent receptive fields. During sleep, the same place cells fire 
in an orderly manner at a faster timescale within SPW-ripple events. While some sequences have been shown to 
reflect temporally-compressed spatial sequences corresponding to previous experiences by the rat8–10,18,19, the 
spatial content of a large fraction of SPW-ripple events remains unknown. Therefore, uncovering the neural 
representation of hippocampal ensemble spike activity or spatiotemporal firing patterns during sleep becomes 
critical for improving our understanding of the mechanism of memory consolidation and, in general, informa-
tion processing during sleep.

To date, several statistical methods have been developed to analyze sleep-associated hippocampal ensemble 
spike activity, including pairwise correlation4,5, template matching15, sequence ranking8,9,20, and Bayesian popu-
lation decoding21–24. A few observations of sleep data analysis are noteworthy. First, the SPW-bursts during sleep 
are sparse (low occurrence) and individual events are statistically independent. Second, the magnitude of neu-
ronal population synchrony, measured as the spiking fraction of all recorded neurons during each network burst, 
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follows a lognormal distribution: strongly synchronized events are interspersed irregularly among many medium 
and small-sized events25. Third, different brain states or experiences may induce changes in firing rate and firing 
timescale15,26,27. Fourth, there is no ground truth or behavioral measure. The pairwise correlation method ignores 
the spiking information at fine timescales and population synchrony; the template matching and sequence rank-
ing is more sensitive to exact spike timing order and the number of active neurons. In contrast, Bayesian popu-
lation decoding methods are more suited to tackle these issues in the presence of large neural ensembles16–18,23. 
However, to our knowledge, there is no precedent for a systematic investigation of these issues using any of these 
methods.

In this work, we investigate these important statistical issues in greater detail by applying two neural pop-
ulation decoding methods to rat hippocampal ensemble spike data recorded in different states. One decoding 
method is based on topographic or receptive field representations21,22, while the other is based on topological 
representation without a priori measure of place receptive fields28–30. We first create “synthetic” sleep data by 
binning and resampling spike trains obtained during active locomotion to simulate important factors that char-
acterize SPW-ripple events, and then compare the resulting decoded spatial representations to the animal’s actual 
run trajectory. This allows us to test two important questions of hippocampal population codes related to sleep 
and memory replay: representation power (“how reliably is the spatial environment represented?”) and detection 
power (“how can one detect significant spatial or behavioral state sequences?”). We use rat hippocampal ensemble 
recordings in two- and one-dimensional spaces to investigate these questions separately, and we further compare 
the performance of topographic vs. topological representation-based decoding methods to SPW-ripple associated 
spike data.

Results
Data. We analyzed five datasets (Table 1) derived from experimental hippocampal ensemble spike data, 
recorded from multiple Long-Evans rats under different environments, behaviors and brain states. The animals’ 
behavioral trajectories from Datasets 1 to 4a are shown in Supplementary Fig. 1. To analyze rat hippocampal 
ensemble spike data, we considered two model-based Bayesian decoding methods based on different statisti-
cal assumptions (Methods, Supplementary Fig. 2). One decoding method is based on topographic or receptive 
field representations (termed DecodewRF—population decoding method using neuronal receptive fields, see 
Supplementary Fig. 3). The other is based on topological representation that aims to discover latent structures of 
sequential or spatiotemporal pattern of activity of cells without the assumption of behavioral measures (termed 
DecodewoRF—population decoding method without using neuronal receptive fields). The first method is super-
vised in that it requires training data for constructing place receptive fields in the encoding phase. The second 
method is purely unsupervised, which is developed based on an m-state hidden Markov model (HMM), with an 
inherent m ×  m state-transition matrix P.

Sleep-associated hippocampal ensemble spike data are characterized by several important features: (1) shorter 
epochs (separated by periods of non- or low-spike activity); (2) small active cell ratio within each epoch; (3) dif-
ferent timescales from behavior. One fundamental assumption is that many sleep-associated hippocampal ensem-
ble spikes preserve the order of temporal firing sequences experienced in behavior. In the following analyses, 
we first created “synthetic” sleep-like hippocampal ensemble spike data (derived from awake run behavior) and 
systematically investigated the issues of the length of data epochs, the number of participated neurons, temporal 
bin size and spike rate. The use of synthetic data allowed us to quantitatively assess the representation power (or 
decoding accuracy) in hippocampal ensemble representations. We then extended the analyses to experimental 
sleep data in complete absence of behavior measure and assessed the question of detection power. All reported 
statistics are shown in mean ±  SEM.

We used two established criteria for quantitative assessment: one is the decoding error with respect to the 
animal’s position, and the other is the weighted correlation17,18 and the associated Z-score or equivalent Monte 
Carlo P-value of detected significant replay events (Methods). The first criterion, which assesses the representa-
tion power (i.e., how does the population spike activity reliably represents the environment, ref. 29), was tested 
on two-dimensional environments (Datasets 1 and 2, see an illustration in Supplementary Fig. 4). The second 
criterion assesses the detectability issue (Datasets 3, 4a and 4b, ref. 31).

Impact of random splitting. Unlike awake behavior, hippocampal neuronal populations fire in a sporadic 
manner during sleep, either within or outside the period of SPW-ripples. During awake run behavior, rat hip-
pocampal ensemble spike data were binned with a temporal bin size of Δ  =  250 ms into T discrete bins (i.e., TΔ  
corresponds to total recording time). We applied a speed filter of 15 cm s−1 to exclude immobile periods. As a first 

Dataset # Place cells
Rate (Hz) 

(mean ± SEM)
Recording, 

run time (min)
Recording 

environment

1 49 1.48 ±  0.45 24.3, 9.8 open field

2 37 1.32 ±  0.13 22.9, 12.3 open field

3 50 0.64 ±  0.07 28.9, 10.2 circular track

4a 77 1.11 ±  0.08 44.6, 25.4 circular track

4b 77 0.66 ±  0.05 480, N/A rest/sleep box

Table 1. Summary statistics of ensemble recordings in the rat hippocampus. Note that the mean firing rates 
of the same set of neurons reduce by nearly 50% from wake (4a) to sleep (4b).
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step to create sleep-like data structure (Supplementary Fig. 5A), we evenly split the run-associated ensemble spike 
into  epochs. Each epoch was comprised of = T T /0  bins per epoch (bpe) and provided an independent meas-
urement for further statistical analysis. Within each epoch, the temporal order of spiking sequences within cell 
assembly was preserved or reversed (with equal probability 0.5). The special case when = 1 and T0 =  T bpe cor-
responds to the run-associated spike data; when T0 =  1 bpe, all spike bins are independent. Generally, the greater 
the T0 value, the more temporal information is available within each epoch (which are used to infer the 
state-transition matrix P in DecodewoRF). In analogy to sleep, T0 =  10 bpe roughly reflects the typical number of 
temporal bins of 200-ms hippocampal ripple-associated spike data with 20 ms bin size.

Using all available neuronal ensemble spike activities from Datasets 1 and 2, we systematically varied T0 and 
computed the median decoding error (mean ±  SEM). At each T0 configuration, analyses were repeated n =  50 
independent Monte Carlo runs, with each run encountering different realization of simulated data. Assuming no 
temporal prior, the decoding performance of DecodewRF remained unchanged for varying T0 (horizontal dashed 
line, Fig. 1A,B). This is because the receptive filled is computed based upon the average spike activity over the 
entire or part of the behavioral episode. Once the receptive field is identified and the likelihood model is fixed, the 
temporal information becomes irrelevant for estimating the position at each temporal bin. In contrast, the pop-
ulation representation capacity and decoding accuracy of DecodewoRF changed as a function of T0. Our analysis 
suggested that the mean decoding error (green curves, Fig. 1A,B) was relatively stable with varying T0 <  T, but 
the result variability within the same T0 configuration was relatively high (except for T0 =  T bpe). The source of 
variability was contributed by at least two factors: First, because of random data splitting, breaking the temporal 
relationship in a spike train also destroy the spatial-temporal relationship (i.e., spike patterns with respect to ani-
mal’s run behavior during those periods). For instance, a given position is associated with different spike patterns 
that depend on the actual trajectory leading to it, such as animal’s heading, speed, and previous location. Second, 
the intrinsic Monte Carlo optimization nature of DecodewoRF induces additional variance (e.g., slow convergence 
of Markov chains)30.

The inferred number of states m derived from DecodewoRF was relatively stable (m ∈  [33, 37] for Dataset 1; 
m ∈  [46, 53] for Dataset 2). As a qualitative assessment, we transformed and depicted the matrix P (Fig. 1C) via 

Figure 1. Illustration and decoding performance of population decoding methods. (A,B) Box plots 
of median decoding error from DecodewoRF with varying values of T0 (bins per epoch), for Datasets 1 and 
2, respectively. The green curves are the averaged median decoding error. The median decoding error of 
DecodewRF was independent of T0 (horizontal dashed line; 7.02 for Dataset 1, 7.73 for Dataset 2). Representative 
examples of inferred state-transition matrix (C) from DecodewoRF and the derived topology graph (D) from 
Dataset 2 (dark color represents high connectivity strength). The percentage of nonzero entries in (C) is 14.8%. 
(E) Histogram of nonzero connectivity strengths (Pij +  Pji, i ≠  j) for panel (C) (mean: 0.23; SD: 0.32).



www.nature.com/scientificreports/

4Scientific RepoRts | 6:32193 | DOI: 10.1038/srep32193

a topology graph (Fig. 1D), which describes the connectivity between the state (“spatial location”) and the topo-
logical representation of the environment28,29. The topology graph is in arbitrary unit (a.u.): each note represents 
a state or virtual location, and the strength between two nodes indicates the pairwise connectivity (Pij +  Pji, with 
dark color representing high strength). We also assessed the distribution of connectivity strengths and associated 
statistics (Fig. 1E). A detailed examination of the inferred 49 ×  49 matrix P showed that the majority of nodes had 
more than one pair of significant nonzero connectivity. For instance, if we used a conservative high connectivity 
strength threshold 0.2–60% percentile of the empirical distribution, then 44/49 nodes had at least two connected 
nodes, whereas nearly half (24/49) of nodes had between 3 and 5 connected nodes. Combining the quantitative 
assessment and qualitative visualization, we reached the interpretation that the topology graph in Fig. 1D resem-
bles a two-dimensional grid; its shape was invariant to the permutation of states in P. Although the exact values 
of P might be quantitatively different in random Monte Carlo simulations, the derived two-dimensional topology 
graphs were qualitatively similar with respect to with varying T0 configurations (data not shown) and varying 
subsets of neurons29.

Impact of the number of cells. Compared to awake experiences, firing rates of hippocampal neurons dur-
ing post-run sleep episodes were reduced but highly correlated15,25. However, the participation of the active hip-
pocampal cells during sleep can be highly variable. More importantly, only a small subset of pyramidal neurons 
are active during individual SPW-ripple events15. To simulate such conditions, we used a fixed value of T0 =  10 bpe 
and randomly sampled a subset of cells from the neuronal population (ρ =  30–100%, with a minimum of 10 cells 
being active); only those selected neurons were used in subsequent decoding analyses.

We found that the decoding error monotonically decreased as the increasing fraction of active neurons 
(Fig. 2A,B; see also the evolution of error distribution in Supplementary Fig. 6). When the number of cells fell 
below a certain percentage (~50%), DecodewoRF outperformed DecodewRF, yet the exact statistics varied between 
the two tested datasets. The slope of error curve in DecodewoRF was flatter, consistent with our previous finding 

Figure 2. Comparison of median decoding error between DecodewRF and DecodewoRF. (A,B) Decoding error 
decreased with increasing numbers of cells in neuronal population. (C) Decoding error changed with respect to 
varying fractions of active neurons (under thinning) and (D) changed with respect to varying temporal bin size. 
Error bar denotes SEM (n =  50 Monte Carlo runs).
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that the topology-based coding may be more robust for spatial representation29. This is possibly because the 
DecodewoRF does not require a precise receptive field representation; in contrast, DecodewRF method is more 
dependent on the neurons that have a well-described place receptive field representation; when the receptive field 
characterization is less accurate due to the finite sampling issue, it may produce a large error.

To test specific relationship between population representation and the cell physiological properties, we evenly 
split the neurons of Dataset 1 into two groups (upper vs. lower 50% percentile) according to their normalized 
spatial-information rates (Methods, Fig. 3A). Under the same configuration (T0 =  10, ρ =  50%), we compared the 
decoding accuracy of two population methods based on Monte Carlo simulations. The result (Fig. 3B) indicated 
that the information-rich neuron subpopulation had a greater influence on representation or decoding accuracy 
(P <  0.001, Wilcoxon signed rank test).

In experimental sleep recordings, different subsets of neurons often fire at individual, isolated sleep episodes. 
To simulate this situation, we introduced additional level of randomness by assuming that distinct neuronal sub-
populations (but with identical ratio ρ) are randomly active at individual epochs—this was in direct contrast to 
the previous assumption that the same subpopulations were engaged in all episodes. As a demonstration, we fixed 
T0 =  100 and applied DecodewoRF to Dataset 1. As expected, the decoding accuracy further degraded: for ρ =  0.8, 
0.7, 0.6, 0.5, 0.4, 0.3, the median errors were 9.07 ±  0.18, 10.02 ±  0.14, 10.25 ±  0.13, 11.51 ±  0.12, 11.99 ±  0.12, 
12.53 ±  0.16 cm (n =  50 Monte Carlo runs), respectively. The error was not only greater than the error in the case 
of ρ =  1 (8.51 ±  0.18 cm, Fig. 1B), but also greater than the error with fixed subpopulations (T0 =  100 vs. T0 =  100* 
bpe, Table 2).

Figure 3. Specificity of hippocampal neurons in cell population on the decoding error. (A) Cumulative 
distribution of normalized spatial information rate (bits/spike) of 49 hippocampal neurons (Dataset 1).  
(B) Comparison of median decoding error by using spatial-information high vs. low subpopulations (T0 =  10 bpe,  
ρ =  0.5; error bar denotes SEM, n =  50 Monte Carlo runs).

T0 (bpe)

DecodewRF DecodewoRF

ρ = 0.3 ρ = 0.5 ρ = 0.8 ρ = 0.3 ρ = 0.5 ρ = 0.8

10 13.97 ±  0.07 10.49 ±  0.06 7.78 ±  0.02 12.56 ±  0.07 11.37 ±  0.06 10.61 ±  0.05

20 15.35 ±  0.12 11.03 ±  0.04 7.80 ±  0.01 12.39 ±  0.05 10.65 ±  0.04 9.71 ±  0.04

50 14.40 ±  0.08 10.87 ±  0.06 7.88 ±  0.02 11.15 ±  0.05 9.78 ±  0.05 8.51 ±  0.03

100 14.50 ±  0.09 10.78 ±  0.05 7.93 ±  0.02 11.49 ±  0.05 10.04 ±  0.04 8.84 ±  0.04

100* 15.97 ±  0.18 10.78 ±  0.09 7.93 ±  0.04 12.53 ±  0.16 11.51 ±  0.12 9.07 ±  0.18

Δ  =  50 ms Δ  =  150 ms Δ  =  250 ms Δ  =  50 ms Δ  =  150 ms Δ  =  250 ms

10 14.53 ±  0 8.58 ±  0 7.01 ±  0 16.21 ±  1.23 11.12 ±  0.32 10.52 ±  0.16

20 14.53 ±  0 8.58 ±  0 7.01 ±  0 16.35 ±  1.68 12.10 ±  0.31 10.02 ±  0.15

50 14.53 ±  0 8.58 ±  0 7.01 ±  0 16.68 ±  1.20 12.47 ±  0.32 10.17 ±  0.19

100 14.53 ±  0 8.58 ±  0 7.01 ±  0 15.40 ±  1.19 10.90 ±  0.34 8.38 ±  0.19

Table 2. Comparison of median decoding error (mean ± SEM, n = 50 Monte Carlo runs) between 
DecodewRF and DecodewoRF for Dataset 1. When varying ρ, we fixed Δ  =  250 ms; when varying Δ , we fixed 
ρ =  1. Except for T0 =  100* bpe, the same active cells were used in each epoch.
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Impact of bin size, spike rate and conjunctive factors. During different sleep stages, hippocampal 
neurons fire at different timescales15,23. To examine the influence of temporal bin size, we fixed ρ =  1 and T0 =  10 
bpe, and varied bin size Δ  (20, 50, 100, 150, 200, 250 ms) to repeat the decoding analysis. Note that a decreasing Δ  
would increase the number of discrete bins T. For DecodewRF, the decoding accuracy reduced with a decreasing Δ .  
This might be due to violation of Poisson assumption while using a small bin size or due to the presence of theta 
sequences (i.e., the decoded position may be systematically ahead of actual animal’s position). In contrast, the 
decoding performance of DecodewoRF (blue curve, Fig. 2D) was relatively stable for various Δ , possibly because its 
Bayesian inference procedure is less sensitive to the Poisson firing assumption30.

Next, we thinned the spike train data by downsampling such that there was no more than one spike per time 
bin, which was aimed to simulate the sparse spiking in a finer timescale during sleep. As a result, the instanta-
neous firing rate reduced to 25–50% of the original rate. We found that the spike thinning procedure further 
degraded the decoding performance, and the decoding accuracy also dropped with decreasing number of neu-
rons (Fig. 2C vs. Fig. 2A).

Lastly, we jointly varied two parameters (such as T0 and ρ, or T0 and Δ ), and repeated the decoding analysis. 
As shown in Table 2, we obtained consistent findings as in Fig. 2 (see also Supplementary Fig. 7): (1) For fixed 
Δ  and ρ, there was a decreasing trend in decoding error with increasing T0, but the performance was relatively 
stable; (2) Regardless of T0, decoding error decreased with increasing ρ; (3) For fixed T0, there was a decreasing 
trend in decoding error with increasing Δ .

Impact of non-place cells. Next, we investigated if and how the presence of non-place cells would affect 
the decoding accuracy. A non-place cell implies that the putative pyramidal cell is not significantly modulated 
by spatial location, or its spatial tuning curve is flat. A high ratio of non-place cells implies a low signal-to-noise 
ratio (SNR) for fixed number of cell population. To simulate such a condition, we randomly selected a small 
subset of place cells (Dataset 1, many of which have overlapping place fields, see Supplementary Fig. 3) and 
evenly distributed spikes in time proportional to animal’s space occupancy (such that their average firing rates 
remained unchanged). Under the same configuration (T0 =  100 bpe), we found the decoding error of two meth-
ods increased with growing number of non-place cells (Supplementary Fig. 8). At first, DecodewoRF was slightly 
worse than DecodewRF, but the gap gradually reduced with decreasing SNR (Supplementary Fig. 8A, red vs. blue 
solid lines); and DecodewoRF outperformed DecodewRF significantly (P =  6 ×  10−5, Wilcoxon signed rank test) in 
the worst scenario. This result confirmed the robustness of DecodewoRF under a low SNR.

Significance testing via randomly shuffled data. We tested our population decoding methods by com-
paring their estimate statistics derived from experimental data with those derived from randomly shuffled data 
(Supplementary Fig. 5B). Specifically, we used the hippocampal ensemble spike activity collected during animal’s 
run behavior (speed > 15 cm s−1) in a circular track environment (Dataset 3). Upon completion of unsuper-
vised learning (DecodewoRF), we recovered the state trajectory, which correlated with the animal’s run trajectory 
(Pearson’s correlation ∈  [0.73, 0.79] derived from 10 Monte Carlo runs, P =  1.5 ×  10−15, Supplementary Fig. 9A). 
In addition, we obtained the state transition matrix and state field matrix, which were both qualitatively similar 
to the behavior-derived ground truth (Supplementary Fig. 9B,C). The average maximum a posteriori (MAP) 
probability score derived from DecodewoRF was 0.8814, and the weighted correlation was 0.8848. These statistics 
were also similar to those from DecodewRF, except that DecodewRF required receptive fields or behavioral measure 
a priori.

We further constructed 1000 shuffled datasets. Each randomly shuffled dataset was subject to both temporal 
bin and cell identity shuffles (Methods). The Monte Carlo weighted correlation R and average MAP probability 
scores derived from the shuffled data than those derived from the raw data were significantly lower (Monte Carlo 
P <  10−7, Supplementary Fig. 10). These results demonstrated that, in the absence of behavioral measures (there-
fore no decoding error can be computed), theses metrics can be used as quantitative measures to assess the quality 
of reconstructed event for detection purpose. In the remaining analyses, we used R and its associated Z-score (or 
equivalent Monte Carlo P-value) for assessment.

To compare the detection reliability and specificity between DecodewRF and DecodewoRF, we selected a random 
segment of run trajectory (T0 =  20 bpe, Fig. 4A), and systematically manipulated the ensemble spike activity dur-
ing that time interval as follows: (1) We randomly removed 20–80% of cells from the population (i.e., ρ =  0.2–0.8). 
(2) Using all active cells (ρ =  1), we randomly removed spikes in selected temporal bins from each cell, with the 
number of bins ranging from 2 to 10 (i.e., 10–50% of T0)—which would sparsify and remove certain temporal 
structures in the ensemble spikes. We simulated each condition with 100 Monte Carlo runs, and each run pro-
duced an independent test set. We applied DecodewRF and DecodewoRF to those test sets and computed their R and 
Z-scores. The result comparison is shown in Fig. 4 (see also Supplementary Fig. 11 for scatterplot comparison). 
As the number of active cells dropped, the detection power of both methods decreased accordingly (Fig. 4B). In 
this specific example, the |R| value was below 0.5 when ρ =  0.2 (i.e., 10 cells). In terms of the Z-score, majority of 
simulated events were non-significant when ρ <  0.8. Removing spikes also degraded the detection power (Fig. 3C; 
see also Supplementary Fig. 12). Together, these results suggest that the detection power of DecodewoRF was more 
favorable in those tested conditions.

Analysis of ripple-associated spike data in quiet wakefulness. We also tested our methods on 
ripple-associated hippocampal ensemble spike data during quiet wakefulness (QW)—the awake brain state 
involved in memory replay similar to SWS16–19,23,32,33. In a long recording (Datasets 4a and 4b), hippocampal 
ensemble spikes were collected in the 4-hr pre-run and 4-hr post-run periods (inside a rest box in a familiar 
environment), separated by 40-min run period on a circular track in a novel setting (see Supplementary Fig. 13 
for brain state classification). From Dataset 4b, we identified off-the-track candidate events based on hippocampal 
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local field potential (LFP) and multi-unit activity (Methods), and further excluded the epochs with low fraction of 
active cells (< 10%). See Table 3 for the summary statistics of candidate events in different states.

The ratio of active cells across all selected epochs was ρ =  0.181 ±  0.002 (maximum 0.68, median 0.16). 
We binned each epoch with Δ  =  20 ms, resulting in T0 =  11.5 ±  0.2 bpe (maximum 39, median 10). We then 
reconstructed the spatial (or state) trajectory based on the place field (or state field) λc(S) (where the state field 
was inferred by DecodewoRF from the run-associated ensemble spikes alone). For each epoch, we computed the 
weighted correlation R and its associated Z-score, and compared them with those obtained from randomly shuf-
fled data. Figure 5 shows some examples of detected significant replays during post-QW epochs. Qualitative and 
quantitative assessment of those replay events indicated diverse (forward vs. reverse) spatiotemporal structures.

Analysis of SWS-associated spike data. At last, we applied our population decoding methods to exper-
imental SWS-associated hippocampal ensemble spike activity (Dataset 4b). The candidate events with > 10% 
active cells were selected for analysis (Table 3), and each event was treated as an independent epoch.

Specifically, there was no difference in ρ between pre- and post-SWS (P =  0.31, rank-sum test; pre-SWS: 
ρ =  0.175 ±  0.003, maximum 0.45, median 0.16; post-SWS: ρ =  0.178 ±  0.003, maximum 0.53, median 0.16). 
With Δ  =  20 ms, the number of bins per epoch was slightly longer in pre-SWS than in post-SWS epochs for 
Dataset 4b (P =  0.006, rank-sum test; pre-SWS: T0 =  12.7 ±  0.3 bpe; post-SWS: T0 =  11.9 ±  0.2 bpe). Hippocampal 
neurons’ mean firing rate remained stable between pre-SWS and wake as well as between post-SWS and wake 
(Supplementary Fig. 14), although the mean firing rate in wake was significantly higher (Wilcoxon signed rank 
test, P <  1.3 ×  10−5). To examine significant pre- and post-SWS reactivation events, we used the inferred λc(S) 

Figure 4. Comparison of detection reliability between DecodewRF and DecodewoRF. (A) Segment of a spike 
count matrix with 20 temporal bins. (B,C) Weighted correlation (Left) and Z-score (Right) for varying active cell 
ratio ρ (B) and for removing spikes across different number of bins (C). Error bar denotes SEM (n =  50 Monte 
Carlo runs).
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during RUN to estimate the state trajectory and posterior probability scores of candidate events during respective 
pre- and post-SWS periods. Some detected reactivation examples are shown in Fig. 6A,B, respectively. In com-
parison, the quality of detected post-SWS replay events was qualitatively better in terms of trajectory continuity 
than that of detected pre-SWS events. We identified statistically significant events based on their computed R 
and Z-score statistics (Table 3). The absolute number and the ratio of significant events increased from pre-SWS 
to post-SWS. In addition, the Z-score among the significant events was greater in post-SWS (P <  0.01, rank-sum 
test). These results suggested that the neuronal ensemble patterns shared more similar structures between 
post-SWS and RUN than between pre-SWS and RUN—a finding consistent with the pairwise correlation method 
(ref. 4, see Supplementary Fig. 15) and another independent investigation31.

We further examined the nonstationarity of sleep epochs by comparing the results derived from the first and 
second-half of post-SWS candidate events (i.e., SWS(1) and SWS(2) have the same epoch number that had no less 
than 10% active cells, defined by 1 in Table 3). For DecodewoRF, we found that the T0, ρ and R statistics were sim-
ilar between SWS(1) and SWS(2), but the numbers that aim to assess the significance of detected events ( ,2 3 
and 4 in Table 3) all decreased in SWS(2). This could be due to the fact that memory reactivation was more fre-
quent in SWS(1) than in SWS(2), or the representation power decreased in SWS(2). To test the predictive power 
of SWS(1) to SWS(2), we applied DecodewoRF to SWS(1) and inferred the SWS-state field λSWS (which was distinct 
from λ{ }c

RUN  estimated from spikes alone in run behavior). We then used λ{ }c
SWS  to assess the R statistic for 

SWS(2), and compared that with the R statistic obtained from λ{ }c
RUN . A scatterplot comparison (Fig. 6C,D) 

showed a decrease trend in |R| (P =  10−15) and Z-score (P =  1.1 ×  10−4, both Wilcoxon signed rank test) from 
using λ{ }c

RUN  to using λ{ }c
SWS , suggesting a reduction of predictive power in SWS(1) →  SWS(2).

Discussion
Interrogating the temporal structure and content of sleep-associated hippocampal ensemble spikes can reveal 
important mechanisms of hippocampal sequence generation34–36 or diverse contributing roles of hippocampal 
neurons in plasticity31. However, analysis of such spike data has posed a great challenge. In this study, we applied 
two population decoding methods (DecodewRF and DecodewoRF) to rat hippocampal ensemble spikes recorded in 
different brain states, aiming to infer the animal’s actual or virtual spatial location based on their spatiotemporal 
firing patterns. In terms of representation and detection power, population decoding methods are more powerful 
than the conventional correlation or sequence methods for discovering inherent structures of the ensemble spike 
data. Moreover, since the latent state corresponds to an abstract or virtual behavioral correlate in DecodewoRF, 
detecting statistical significance of temporal sequences is not restricted by the line fitting procedure23, which may 
become an issue for DecodewRF in the presence of cursive trajectories (e.g., in a two-dimensional environment) 
or in the presence of discontinuity in spatial trajectory (see an example in Supplementary Fig. 16). Moreover, our 
Bayesian inference procedure automatically identifies the model order in DecodewoRF to allow optimal choice of 
spatial resolution given observed ensemble spikes. From the analyses of both synthetic and experimental data, we 
found that the representation and detection power of both population decoding methods were strongly depend-
ent on the number of active place cells. Since place cells did not contributed evenly in representation (Fig. 3 and 
Supplementary Fig. 6), fast-firing neurons did not always contain the most spatial information (bits/spike). In 
fact, recent findings suggested that slow-firing neurons may contribute more to neuronal sequences from pre 
to post-sleep31. Considering the low fraction of active hippocampal cells in sleep and the lognormal distributed 
phenomenon25, a large number of recorded place cells are necessary to secure the statistical power for sleep data 
analysis.

Population decoding methods have been proven useful in studying information transmission and sensory 
coding of neural systems37,38. Here, our model-based decoding approach offers a statistical framework to assess 
the content of sleep-associated hippocampal ensemble spikes, which may reveal important mechanism insights 
on hippocampal neurons in memory consolidation. Similar to other reports18,31, we found that the reactivated 
spatial trajectories or sequences in hippocampal ensemble representations were better correlated and more 
sharply defined in post-SWS than in pre-SWS. Nevertheless, several statistical questions still remain unanswered. 
One puzzle is how can we extract significant non-spatial information encoded in sleep? Another pressing issue is 

State 
1 2 3 4 |R| Z

pre-QW 338 165 87 15 15 0.56 1.83

46 15 15 0.54 1.86

pre-SWS 984 471 256 33 31 0.60 1.93

186 58 58 0.55 1.93

post-QW 1755 1015 627 100 100 0.62 2.05

468 223 218 0.58 2.06

post-SWS 1519 764 440 62 60 0.59 2.02

343 142 139 0.56 2.10

Table 3. Summary statistics of candidate events (Dataset 4b). Notations: : total epoch number; 1: epoch 
number that had no less than 10% active cells; 2: epoch number with |R| >  0.5; 3: epoch number with Z >  1.65; 
4: number of significant events based on three significance criteria. The last two columns show the median |R| 
and Z-score statistics derived from the 4 group. Two numbers in the last five columns show the results derived 
from DecodewRF (top) and DecodewoRF (bottom), respectively.
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to design statistical methods that can adapt to specific temporal (e.g., inhomogeneous, nonstationary, and hetero-
scedastic) structure of ensemble spike data. Thus far, we have used a uniform temporal bin size throughout SWS, 
yet finding the optimal timescale is critical for decoding analyses. Our current study has focused on hippocampal 
ripple-associated ensemble spike activity and ignored other spike activities outside of ripples. Analyzing contin-
uous sleep-state spike activity would be the next goal. Notably, hippocampal and cortical neurons operate at a 
different timescale in REM sleep from SWS. The question of interpreting sparse and sporadic REM-associated 
hippocampal spike activity remains unresolved. A recent report has revealed similar geometric structure in neu-
ral correlations of hippocampal neurons between active navigation and REM sleep39. It would be interesting to 
test the population decoding methods on such independent recordings. In addition, these methods can be tested 
to evaluate brain state transition.

In principle, our unsupervised population decoding framework can be applied to hippocampal-cortical or 
thalamocortical ensemble spikes in sleep10,40–42. Joint investigation of spatiotemporal sequences in these circuits 
during sleep replay events are crucial to infer the communications and information transfer between these cir-
cuits during memory consolidation. Given a large neuronal ensemble, the DecodewoRF method is appealing since 
it requires no explicit measure of behavior or receptive fields, where the latent states may represent non-spatial 
features of experiences or distinct behavioral patterns that cannot be measured directly. Ultimately, it is critical to 
discover nonlinear interactions and extract spatiotemporal organization among neuronal ensembles, integration 
of such principles and data-driven neuronal models will be the key to revealing intrinsic structures of neuronal 
ensemble spikes.

Methods
Animal behavior and neurophysiological recordings. Long-Evans rats were freely foraging in familiar 
spatial environments for a period of 30–45 minutes (Datasets 1–3). In Datasets 4a and 4b, rats were first put in 
a sleep box of a familiar environment for 4 hours, and then moved to a circular track (novel environment) for 
running about 45 minutes, and then put back to the sleep box for another 4 hours (ref. 31). All procedures were 

Figure 5. QW-associated ensemble spike data analysis. (A) Example of spike rasters and the associated 
decoded spatial trajectories in quiet wakefulness. The number at the top of each panel indicates the absolute 
weighted correlation |R|. (B) Examples of detected significant replays. X-axis represents time bin (bin size 
Δ  =  20 ms).
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approved by the MIT and NYU Institutional Animal Care and Use Committee and carried out in accordance with 
the approved guidelines.

Custom microelectrode drive (Datasets 1–3) or silicon probe arrays (Datasets 4a and 4b) were implanted uni-
laterally or bilaterally in the animal’s dorsal hippocampal CA1 area. Spikes were acquired with a sampling rate of 
31.25 kHz and filter settings of 300 Hz–6 kHz. Two infrared diodes alternating at 60 Hz were attached to the drive 
of each animal for position tracking. We used a custom manual clustering program for spike sorting to obtain 
well-isolated single units. Details are referred to previous publications23,31. Putative interneurons were identified 
based on the spike waveform width and average mean firing rate. In addition, all putative pyramidal neurons 
selected for analysis had peak firing rate > 1 Hz.

Bayesian decoding. The Bayesian decoding algorithms is formulated within a state-space model frame-
work21,22,28–30. Let St represent the animal’s spatial position label at discrete time t, and let yt represent the observed 
neuronal population spike count between ((t −  1)Δ , tΔ ], where Δ  is the temporal bin size. The state variable St is 
assumed to follow a first-order Markovian dynamics and characterized by p(St|St − 1). The goal of Bayesian decod-
ing is to infer the posterior probability p(St|y1:t) given all the spike history up to time t. Here we assumed that 
conditional on the state St, the population firing of C hippocampal place cells follows a Poisson likelihood model

Figure 6. SWS-associated ensemble spike data analysis. (A,B) Examples of detected significant pre-SWS 
(A) and post-SWS (B) reactivation events. The number at the top of each panel indicates |R|. X-axis represents 
time bin (bin size Δ  =  20 ms). (C,D) Testing predictability of RUN and SWS(1) data for SWS(2): scatterplot 
comparison of weighted correlation (C) and Z-score (D) between RUN →  SWS(2) and SWS(1) →  SWS(2). 
Lower left corner marked by dashed line indicates the non-significance zone.
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where p(St|St−1) denotes the temporal prior and p(y1:t) is a normalizing constant.
For decoding analysis, we used two population decoding methods. In the first method (DecodewRF, 

Supplementary Fig. 2A), the animal’s spatial position was measured during run behavior, which was further 
used to estimate neuronal receptive fields λc(S) (note: S is continuous-valued and can be finite or infinite, with 
proper dimensionality depending on the spatial environment). Hippocampal place fields were estimated using a 
spatial bin size of 10 cm for one-dimensional tracks, and bin size of 5 ×  5 cm2 or 15 ×  15 cm2 for two-dimensional 
space, and further smoothed using a Gaussian template (5 ×  1 for one-dimensional or 3 ×  3 for two-dimensional 
environment) with a half SD. This method consists of both encoding and decoding phases, where the encoding 
phase is supervised.

In the second method (DecodewoRF, Supplementary Fig. 2B), the animal’s behavioral measures are assumed 
inaccessible, therefore no place fields can be estimated from the behavioral data. The second method only consists 
of decoding phase, and it is purely unsupervised. In this case, St represents a discrete-state label for the spatial 
position, and it can be either finite or infinite depending on the statistical assumption, spatial resolution, and 
the size of data. In this special case, the state space model is a hidden Markov model (HMM); trajectories across 
spatial locations (“states”) were associated with consistent hippocampal ensemble spiking patterns, which were 
characterized by a stationary state transition matrix defining p(St|St−1) (e.g., Fig. 1C). The observed spike count 
data was defined by a Poisson probability distribution p(yt|St) in equation (1). Unlike DecodewRF, the state of 
DecodewoRF was subject to permutation ambiguity due to the lack of behavior measure. The goal of inference is 
to estimate the maximum a posteriori (MAP) state sequences S1:T and the unknown state transition matrix and 
rate parameters λc(S) with respect to the state space S =  {Si} (where Si ∈  {1, 2, … , m} are categorical variables). See  
refs 28–30 for details of model description and inference procedure. Briefly, first, we applied a Bayesian nonpara-
metric version of the HMM: hierarchical Dirichlet process (HDP)-HMM, combined with advanced Markov chain 
Monte Carlo (MCMC) inference methods30. The number of latent states, m, was automatically inferred from the 
MCMC inference procedure (Supplementary Fig. 17A). Second, we constructed a “state space map” between 
the discrete state and the spatial position (see Supplementary Fig. 17B for illustrations). For one-dimensional 
environment, the ideal state space map shall have a one-to-one mapping. Third, to visualize the inferred state 
transition matrix (Fig. 1C), we applied a force-based algorithm to derive a scale-invariant topology graph that 
defines the connectivity between different states (nodes) (Fig. 1D), which provided intuitive result interpretation 
and qualitative assessment.

In the testing phase, two population decoding methods were operated in a similar way, except with different 
λc(S) (one constructed from behavior and the other estimated from spikes alone). We applied these two methods 
to reconstruct the spatial position or state S at each time bin, and computed the average MAP probability score 
from multiple bins.

Information rate of hippocampal neurons. Information-theoretic measures have been used to charac-
terize the information of hippocampal neurons43. We define the spatial information rate of the c-th hippocampal 
neuron as follows

∫ λ
λ
λ

=I p dS S S S( )log ( ) ( )
(3)c c

c

c
2

where λc(S) denotes the mean firing rate at spatial location S, and λc =  ∫ λc(S)p(S)dS denotes the total average 
firing rate (spikes/s). The unit of Ic is measured by bits/s. To account for the total firing rate effect, we compute the 
normalized information rate, 

λ
,Ic

c
 measured by bits/spike.

Statistical assessment. For DecodewRF, we computed the median decoding error between the estimated 
animal’s position and the actual position. For DecodewoRF, the animal’s actual position was solely used for result 
assessment. Based on the state space map, we estimated animals spatial trajectories and computed the median 
decoding error29,30.

Statistically significant reactivation events were determined by three established criteria17,18: (1) The absolute 
“weighted correlation” R (which measures the strength of correlation between the changes in probability values 
across time and spatial position) greater than 0.5. (2) The time length is greater than five temporal bins (i.e., 
100 ms for QW or SWS epochs). In addition, the MAP probability score equal or less than the threshold (5/total 
number of position bins; below which is just a chance level) is also regarded non-significant. In addition, we 
generated shuffled candidate events from each pre-identified candidate event, and computed the Rshuffle from ran-
domly shuffled population spike data. Two types of shuffling operations were considered: temporal shuffling and 
cell shuffling. Algebraically, the spike count matrix was subject to both row (temporal) and column (cell) shuffle 
operations. A total of 1000 shuffled samples were constructed. From the raw and shuffled statistics, we computed 



www.nature.com/scientificreports/

1 2Scientific RepoRts | 6:32193 | DOI: 10.1038/srep32193

the Z-score for R as follows31: Z =  (R −  mean of Rshuffle)/(SD of Rshuffle). (3) The Z-score of R is greater than 1.65 
(equivalent to one-side P-value 0.05 assuming the null distribution is normally distributed). A high positive 
Z-score indicates that the raw data statistic is much greater than those obtained by chance (null hypothesis), and 
therefore is highly significant in a statistical sense. If the null distribution (of shuffle statistics) is non-normally 
distributed (Shapiro-Wilk test or Anderson-Darling test), we derived the Monte Carlo P-values from the sample 
distribution.

Identification of hippocampal ripple candidate events during sleep and quiet wakefulness.  
During sleep, we focused on SWS epochs, which were primarily determined by the low EMG amplitude and 
high delta/theta power ratio in EEG activity (REM sleep is associated with low EMG, low delta/theta power ratio 
and high theta power). For screening the candidate events, we used hippocampal LFP ripple band (150–300 Hz) 
power combined with hippocampal multi-unit activity (threshold >  mean +  3SD). We also imposed a minimum 
cell activation criterion (> 6 or 10% of cell population, whichever is greater). Similar LFP and multi-unit activity 
criteria were also applied to QW periods, when the animal was in an immobile wake state (speed < 2 cm s−1).
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