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FBXW7, a member of the F-box protein family within the ubiquitin–proteasome system,
performs an indispensable role in orchestrating cellular processes through ubiquitination
and degradation of its substrates, such as c-MYC, mTOR, MCL-1, Notch, and cyclin E.
Mainly functioning as a tumor suppressor, inactivation of FBXW7 induces the aberrations
of its downstream pathway, resulting in the occurrence of diseases especially
tumorigenesis. Here, we decipher the relationship between FBXW7 and the hallmarks
of cancer and discuss the underlying mechanisms. Considering the interplay of cancer
hallmarks, we propose several prospective strategies for circumventing the deficits of
therapeutic resistance and complete cure of cancer patients.
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1 INTRODUCTION

Over the past few decades, accumulated knowledge in cancer research has gradually sketched the
outline of cancer hallmarks in reference to molecular, biochemical, and cellular characteristics. In
2000, Hanahan and Weinberg generalized the hallmarks of cancers into 6 major biological
capabilities, which comprises self-sufficiency in growth signals, limitless replicative potential,
evading apoptosis, insensitivity to anti-growth signals, sustained angiogenesis, and invasion and
metastasis (1). A decade later, this notion was further refined by introducing two emerging
hallmarks: deregulating cellular energetics and avoiding immune destruction. The
aforementioned eight hallmarks can be explained by two enabling characteristics: genome
instability and mutation as well as tumor-promoting inflammation (2). Recently, this concept of
cancer hallmarks has been updated again owing to the in-depth mining of cancer mechanisms,
incorporating novel emerging hallmarks as well as enabling characteristics including unlocking
phenotypic plasticity, non-mutational epigenetic reprogramming, polymorphic microbiomes, and
senescent cells (3).
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Rapid advances have gradually deepened our understanding
of cancer biological behaviors. During these years, unremitting
efforts in the fields of cancer biology have also shed light on its
link with the main degradation mechanism of eukaryotes, that is,
the ubiquitin–proteasome system (UPS). Through the
degradation of proteins involved in a broad spectrum of
cellular processes, such as cell cycle progression, signal
transduction, and endocytosis, UPS is of great significance to
regulate immune response, development, and apoptosis to
maintain homeostasis, the abnormalities of which contribute to
uncontrolled development, genomic instability, and even
transformation of malignancy. The UPS-based degradation,
termed ubiquitination, is a multi-level cascade associated with
the covalent binding of ubiquitin throughout the course, mainly
consisting of the following components: a ubiquitin-activating
enzyme (E1), a ubiquitin-conjugating enzyme (E2), a ubiquitin
ligase (E3), and a 26S proteasome. The initiation of ubiquitin-
mediated degradation involves sequential reactions. After the
ATP-dependent activation triggered by E1, the 76-amino-acid-
residue protein ubiquitin (Ub) binds to E1 in a thiolester linkage.
Then, Ub is transferred to E2, and subsequently transferred
through E3 to substrate proteins (4, 5). Afterwards, a
polyubiquitin chain can be formed for further degradation by
the 26S proteasome complex.

The S-phase kinase-associated protein 1 (SKP1)-cullin-1
(CUL1)-F-box-protein (SCF) complex belongs to the really
interesting new gene (RING) family of E3 ubiquitin ligases,
mediating the degradation of ~20% proteins related to cell-
cycle regulation, transcription, oncogenesis, and tumor
suppression (6). The SCF complex contains the invariable
subunits CULl, RING-box 1 (RBX1), and SKP1, as well as the
variable component F-box proteins (7), which is characterized by
an approximately 40-amino-acid motif and determines the
substrate specificity of the SCF complex.

F-box and WD repeat domain containing 7 (FBXW7, also
known as AGO, hCdc4, FBW6, FBW7, SEL10 or FBX30) is a
member of F-box proteins encoded by FBXW7 gene. The
FBXW7 gene (Gene ID: 55294) maps to chromosome region
4q31.3 including 18 exons, where mutations are frequently
detected in multiple human cancers, such as colorectal cancer
(CRC) (8, 9), ovarian cancer (10), breast cancer (BC) (11),
endometrial cancer (12), and human T-cell acute lymphoblastic
leukemia (T-ALL) (13). Based on the statistics of COSMIC
Cancer Gene Census list (Tier 1), the calculated population-
level mutation proportion of FBXW7 is approximately 4.17% in
Americans, ranking 28th among all genes counted (14).
FBXW7 is composed of a tandem WD40-repeat domain, an
F-box domain, a 5-residue tail, and an a-helical linker domain
(15). Additionally, FBXW7 can be subdivided into three
isoforms: FBXW7a localized in the nucleoplasm, FBXW7b
residing in the cytoplasm, and FBXW7g within the nucleolus
(16), all of which recognize substrates through a conserved
CDC4 phosphodegron (CPD) motif, requiring phosphorylation
of substrates at particular sites by protein kinases such as the
glycogen synthase kinase-3 (GSK3) to accelerate the
ubiquitination and proteolysis process of substrates (17). As a
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consequence, the process of UPS-mediated proteolysis involved
in FBXW7 is shown in Figure 1.

The mRNA and protein expression of FBXW7 can be
detected almost in all human normal organs and tissues (18).
FBXW7 protein expression level can be high, seen in lung,
stomach, colon, kidney, breast, skin, etc.; it also can be
medium, detected in rectum, liver, endometrium, cervix, etc. In
addition, FBXW7 mRNA expression has organ specificity, such
as brain (18). However, in malignant organs and tissues, FBXW7
protein expression is decreased in glioma, lung cancer, liver
cancer, urothelial cancer, ovarian cancer, melanoma, etc. (18),
and the expression levels of aforementioned cancers are
positively correlated with prognosis in the majority (besides
liver cancer and melanoma).

It is universally acknowledged that FBXW7 exerts its major
function as a tumor suppressor (19–21), orchestrating cellular
processes by virtue of interacting with its substrates, such as c-
MYC (22), Notch (23), cyclin E (11), myeloid cell leukemia-1
(MCL-1) (24), c-Jun (25), p53 (15, 26), and mechanistic target of
rapamycin (mTOR) (27). As a consequence, in the following
sections, we will mainly elaborate on the relationship between
FBXW7 and cancer hallmarks and unravel the underlying
mechanisms (Figure 2). In light of the interplay of cancer
hallmarks, we highlight the prospects to battle against
therapeutic resistance, one of the thorniest obstacles in the
course of completely curing the patients.
2 FBXW7 AND THE HALLMARKS
OF CANCER

2.1 Maintaining Growth Signals
Tumor cells are independent of exogenous growth signal
stimulation and generate their own proliferative signals, which
serves as one of the six hallmarks of cancer. FBXW7 reshapes the
proliferative niches of tumor cells through ubiquitinating and
degrading several crucial signal molecules, such as c-MYC, c-Jun,
phosphatidylinositol 3-kinase (PI3K)/AKT, mTOR, Notch, as
well as JAK/STAT signaling pathway.

c-MYC is a critical transcription factor in control of various
biological processes such as proliferation, differentiation, and
apoptosis (28, 29). Accumulated evidence has indicated that
FBXW7 strictly regulates c-MYC turnover at the post-
translational level following phosphorylation of its specific
sites, where the sequential steps is associated with feedback
mechanisms (30, 31). In adult T-cell leukemia/lymphoma
(ATLL) cell lines, the mRNA and protein level of c-MYC is
higher than normal due to the aberrations of FBXW7 expression,
which is correlated with ATLL proliferation and poor prognosis
of patients (32). Another study has disclosed that the oncogene
Ecotropic viral integration site 5 (Evi5) accelerates laryngeal
cancer cell proliferation by counteracting FBXW7, thus
facilitating the accumulation of its substrate c-MYC (33).

c-Jun, a crucial member of the AP-1 family, participates in
cellular proliferation, apoptosis, survival, and tumorigenesis.
FBXW7 exerts its role as a component of c-Jun’s E3 ligase, and
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knockdown of FBXW7 confers the accumulation of c-Jun (25). In
colon cancer cells, the lysine demethylase KDM5c could attenuate
FBXW7-mediated degradation of c-Jun by epigenetically
modifying FBXW7 and decreasing FBXW7 transcription, further
promoting cell proliferation (34).

The PI3K/AKT signaling pathway regulates the functions of
cellular growth, survival, and cell cycle, the dysregulation of
which is frequently detected in human cancers (35). For example,
microRNA-27a (miR-27a) downregulates FBXW7 expression by
binding to its 3’-untranslated region (3’-UTR), and promotes
OSCC cell proliferation via the PI3K/AKT axis (36). The serine/
threonine kinase mTOR is capable of interacting with both
upstream and downstream proteins of the PI3K/AKT pathway,
which performs an indispensable role in orchestrating
metabolism, cellular proliferation, and survival (37). FBXW7
deficiency results in elevated mTOR and phosphorylated mTOR
(p-mTOR) protein levels, supporting that the turnover of mTOR
is controlled by FBXW7 via targeted ubiquitination and
degradation (38). Ectopic expression of the oncogene family
with sequence similarity 83, member D (FAM83D) facilitates
breast cancer cell proliferation partly through the accumulation
of mTOR by reducing the expression level of FBXW7 (39).

As a substrate of FBXW7-dependent ubiquitination and
proteolysis, the Notch signaling pathway has significant
influences on cellular differentiation, proliferation, and
apoptosis (40), while the dysregulated Notch signaling is also
linked to oncogenesis of both solid tumors and leukemias (41,
42). Liu et al. have revealed that the serine/threonine/tyrosine
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interacting protein (STYX) accelerates endometrial cancer cell
proliferation and suppresses apoptosis partly through the Notch/
mTOR pathway by downregulating the expression of FBXW7
(43). The relationship between Notch and mTOR has been
explored, presumably that the HES1 protein activated by
Notch suppresses PTEN transcription, subsequently promoting
the phosphorylation of AKT and mTOR activation (44).

In gastric cancer (GC), the downregulated level of FBXW7
attenuated its impact on growth arrest and apoptosis (45). One
possible mechanism has elucidated that the transcription factor
growth factor independence 1 (GFI1) promotes cell proliferation
partly by means of suppressing transcription of Gastrokine-2
(GKN2) (46). Overexpression of GKN2 in GC cell lines suppresses
GC cell proliferation through the downregulation of the JAK/STAT
signaling pathway. Noteworthily, GFI1 mutant on S94A/S98A
inhibits its phosphorylation mediated by GSK3b and
ubiquitination by FBXW7, eventually facilitating tumor progression.

2.2 Resisting Cell Death
2.2.1 Apoptosis
The apoptotic machinery comprises both upstream regulators
and downstream effectors, the latter eliciting a series of cascades
pointed to the death program. The signals between regulators
and effectors are transmitted by the so-called “apoptotic trigger”
in the control of the B cell lymphoma 2 (BCL2) protein family
including both pro- and anti-apoptotic regulatory proteins (1, 2).

By virtue of flow cytometry, apoptosis assays, and caspase 3/7
activity assays, researchers found that overexpression of FBXW7
FIGURE 1 | The ubiquitin-mediated degradation involved in FBXW7. After the ATP-dependent activation triggered by the ubiquitin-activating enzyme (E1), the 76-
amino-acid-residue protein ubiquitin binds to E1 in a thiolester linkage. Then, ubiquitin (Ub) is transferred to the ubiquitin-conjugating enzyme (E2), and subsequently
transferred through the ubiquitin ligase (E3) to substrate proteins. Afterwards, a polyubiquitin chain can be formed for further degradation by 26S proteasome complex,
conferring the recycling of ubiquitin. AMP, adenosine monophosphate; ATP, adenosine triphosphate; CUL1, cullin 1; RBX1, RING-box 1; SKP1, S-phase kinase-
associated protein 1.
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accelerates GC tissue apoptosis through inducing the
ubiquitination and degradation of RhoA (45), which is known
to promote survival by triggering the expression of BCL2 gene
(47). MCL-1, a member of BCL2 protein family, functions as a
crucial anti-apoptotic regulator in cellular differentiation and
apoptosis (48), which is overexpressed in multiple malignancies
giving rise to chemotherapeutic resistance (49–51). It has been
reported that FBXW7 regulates apoptosis cascades through
ubiquitination and degradation of MCL-1. In T-ALL cell lines,
FBXW7 deficiency confers resistance to chemotherapy, which
can be reversed by FBXW7 restoration or MCL-1 knockout,
implicating that MCL-1 promotes FBXW7-deficient cells to
escape from apoptosis (52, 53). Likewise, FBXW7 mutations
also mediates chemoresistance to some solid tumors such as
CRC (24, 54), squamous cell carcinoma (55), and BC (56), which
Frontiers in Oncology | www.frontiersin.org 4
attributes to the downregulation of MCL-1. Meanwhile,
favorable response to chemoradiotherapy is correlated with a
high level of FBXW7, which is in parallel with a low level of
MCL-1 (57).

In terms of targeting FBXW7 itself, the downregulation of
prolyl isomerase Pin1 contributes to upregulation of FBXW7 and
ensuing destruction of MCL-1, which potentiates the toxicity of
sorafenib to prevent cell proliferation and induce apoptosis in
hepatocellular carcinoma (HCC) (58). Similarly, the alkaloid
lycorine hydrochloride (LH) has been reported to upregulate
the level of FBXW7 as well as destabilize MCL-1, facilitating
BCL2-drug-resistant GC cell apoptosis and inhibiting
proliferation (59). Moreover, tyrosine kinase inhibitors (TKIs)
give rise to GSK3b-dependent phosphorylation of MCL-1,
translocation of MCL-1 to nucleus, as well as FBXW7-
FIGURE 2 | FBXW7 and the hallmarks of cancer. In this review, we mainly elaborate on seven hallmarks of cancer influenced by FBXW7, including maintaining
growth signals, resisting cell death, inducing angiogenesis, activating invasion and metastasis, reprogramming energy metabolism, avoiding immune destruction, and
genome instability and mutation. Ang-1, Angioprotein-1; BCL2, B cell lymphoma 2; C/EBPd, CCAAT/enhancer binding protein d; ECM, extracellular matrix; EMT,
epithelial–mesenchymal transition; HDAC7, histone deacetylase 7; HIF-1a, hypoxia-inducible factor-1a; ICL, interstrand cross-link; MAPK/ERK, mitogen-activated
protein kinase/extracellular signal–regulated kinase; MCL-1, myeloid cell leukemia-1; MMP, matrix metalloproteinase; MTDH, metadherin; NHEJ, nonhomologous
end-joining; PAI-1, plasminogen activator inhibitor-1; PLK1, polo-like kinase 1; SCD1, stearoyl-CoA desaturase 1; VEGF-A, vascular endothelial growth factor-A;
YAP, Yes-associated protein; ZEB1, zinc-finger E-box-binding homeobox 1.
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mediated degradation through targeting PI3K/AKT signaling,
which overcome the resistance to targeted therapy in non-small
cell lung cancer (NSCLC) (60). In addition, directly targeting
MCL-1 with small molecular MCL-1 inhibitors exhibits potent
efficacy such as S63845, AZD5991, and AMG176, sensitizing
CRC cells to treatment of the targeted drug regorafenib by virtue
of restoring apoptotic response (61). Collectively, accumulated
evidence has deciphered MCL-1’s role in therapeutic resistance,
in combination with novel strategies to dampen therapeutic
resistance by target ing MCL-1, FBXW7, and their
upstream proteins.

The mitochondria integrate an array of proapoptotic signals,
further releasing proapoptotic signaling proteins such as
cytochrome c to trigger the progression of a cascade of
apoptotic caspases. FBXW7 facilitates apoptosis of glioblastoma
cells through the ubiquitination and proteolysis of histone
deacetylase 7 (HDAC7) (62), which localizes to the inner
membrane of mitochondria and will be released into and
sequestered within the cytoplasm in response to the initiation
of apoptotic cascades (63).

c-MYC has been reported to have fundamental impacts on
cell cycle progression as well as programmed cell death (64–66).
The Aurora B kinase (AUKRB) impedes the phosphorylation of
GSK3-3b and subsequent FBXW7-mediated degradation,
rendering the accumulation of c-MYC and further promoting
the progression of T-ALL (67). Nevertheless, the AUKRB
inhibitor can reverse leukemogenesis and induce apoptosis due
to the destabilization of c-MYC. Furthermore, c-MYC influences
apoptosis partly through the p53 signaling pathway (68). The
FBXW7 deficiency in the T-cell lineage of mice results in the
accumulation of c-MYC, which promotes p53 expression, and
further cell cycle arrest and apoptosis. The abnormalities can be
reversed by the suppression of p53 (69). The development of
glioblastoma can be ascribed to p53 mutations, which promotes
the accumulation of c-MYC through the depression of FBXW7
and prevents apoptosis (70).

In pancreatic cancer tissues, FBXW7 induces apoptosis by
inhibiting the binding of nuclear receptor subfamily 4 group A
member 1 (NR4A1) to stearoyl-CoA desaturase 1 (SCD1)
promoter, thus suppressing the transcription of SCD1 (71).
SCD1 inhibition has been reported before to inactivate the
AKT signaling, seen in higher rates of cell apoptosis in human
lung adenocarcinoma (72). FBXW7 promotes apoptosis of BC
cells through the ubiquitination and proteolysis of the
oncoprotein metadherin (MTDH) (73), whose expression is
related to various pathways, for example, the AKT signaling
pathway (74). Furthermore, the inhibition of MTDH gives rise to
apoptosis of cancer cells probably due to the downregulation of
the AKT signaling (75, 76).

2.2.2 Autophagy
Autophagy is recognized as an evolutionarily conserved,
intracellular degradation process, capable of delivering
cytoplasmic materials to lysosomes (77) and regulating energy
homeostasis as well as cellular renovation (78). Based on the
differences of physiological functions and delivering modes,
autophagy can be subdivided into mainly three types:
Frontiers in Oncology | www.frontiersin.org 5
macroautophagy that is thought to be the major type,
microautophagy, and chaperone-mediated autophagy (CMA)
(77). Dysregulated autophagy is involved in the development
of multiple cancers, exerting a bifunctional role in suppressing
benign tumor development and inducing cancer progression
(79). In addition, autophagy can be induced during treatment
of drug-sensitive cancers, resulting in drug resistance and cancer
relapse (80). In general, inhibition of autophagy has been
proposed as an effective therapeutic intervention (81).

The central metabolism modulator mTOR could be directly
regulated by FBXW7 through ubiquitination and subsequent
degradation (38, 82). mTOR is an essential inhibitory regulator
of autophagy in response to growth factors as well as abundant
nutrients (77), especially mTOR complex 1 (mTORC1), which
regulates autophagy both in the process of initiation and
transcription (83). Given the pivotal suppressive functions of
mTOR in modulating autophagy, we propose the possible
metabolic crosstalk between FBXW7 and autophagy. Perifosine
is an oral alkylphospholipid with antitumor activity, whereas the
pharmacological efficacy can be partly counteracted by inhibiting
the mTOR axis dependent on GSK3/FBXW7 and inducing
prosurvival autophagy (84). SHOC2, a RAS/ERK activator and
a substrate of FBXW7, selectively combines with Raptor to
impede Raptor-mTOR binding and subsequent mTORC1
activity, contributing to the stimulation of autophagy and
acceleration of cancer proliferation (27, 85). Furthermore,
there is a negative feedback loop between mTORC1 and RAS/
ERK pathways, both under the regulation of FBXW7 targeting
SHOC2 (85).

In addition to tumorigenesis, autophagy is also integral to
therapeutic effects, capable of mediating resistance or sensitivity in
response to chemotherapy agents (86). Wang et al. demonstrated
that the microRNA-223 (miR-223) overexpression downregulates
the level of FBXW7 protein, resulting in the activation of
autophagy and cisplatin resistance of non-small lung cancer cells
(NSLCCs) (87). Furthermore, this result indicates that targeting
microRNAs can be of great value to inhibit autophagy and
attenuate chemoresistance, which will be discussed in detail in
later sections.

2.3 Inducing Angiogenesis
Growing malignant tumors are consistently endowed with the
identity of neovascularization, referred to the vigorous and
persistent growth of new capillaries (88). Angiogenesis plays a
pivotal part in supplying essential oxygen and nutrients for solid
tumor to satisfy ever-growing metabolic demands. Hypoxia-
inducible factor (HIF) is a heterodimeric transcription factor,
with the ability to trigger a large scale of pro-angiogenic factor
expressions containing vascular endothelial growth factor
(VEGF), VEGF-R1, and VEGF-R2, plasminogen activator
inhibitor‐1 (PAI-1), matrix metalloproteinase-2 (MMP-2) and
MMP-9, Angioprotein-1 (Ang-1) and Ang-2, as well as Tie-2
receptor (89, 90). In particular, the HIF-1a pathway is
acknowledged to mainly regulate vasculature formation (89).
GSK-3b/FBXW7-mediated ubiquitination and degradation is
shown to influence angiogenesis and cell metastasis by
decreasing the level of HIF-1a (91), in contrast to ubiquitin-
April 2022 | Volume 12 | Article 880077
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specific protease 28 (USP28) which abrogates FBXW7-
dependent degradation (92). miR-182, as previously
mentioned, figures as an oncogenic miRNA by targeting its
downstream gene FBXW7 in BC, capable of accelerating HIF-
1a/VEGF-A-induced angiogenesis under hypoxia condition
(93). miR-144, enriched in tumor-derived extracellular vesicles
(EVs) from nasopharyngeal carcinoma (NPC), is demonstrated
in vitro and in vivo to promote angiogenesis by downregulating
FBXW7 and promoting HIF-1a-induced VEGF-A expression
(94). Notably, FBXW7 can inactivate b-catenin pathway to
influence the expression of VEGF-A, ultimately suppressing
angiogenesis of ovarian cancer cells (95).

The Notch signaling pathway is crucial to vascular
construction reflected in regulation of sprouting tip cells,
endothelial cell development, as well as arterial differentiation
(96). In melanoma, loss of FBXW7 is relevant to enrichment of
Notch1, enhanced expression of Notch1 target genes, as well as
acceleration of angiogenesis, which vividly elucidates FBXW7 as
a critical suppressor of angiogenesis partly through degrading its
substrate Notch1 and influencing its downstream signaling (97).
In view of the pivotal role of FBXW7 in regulating angiogenesis,
it is ponderable to investigate the underlying efficacy of
dampening angiogenesis by targeting FBXW7 and its
downstream factors.

2.4 Activating Invasion and Metastasis
Epithelial–mesenchymal transition (EMT) refers to epithelial
cells’ acquisition of mesenchymal phenotypes, and is a highly
conserved cellular program that is crucial to embryonic
development and malignant progression such as migration,
invasion, stemness, and therapeutic resistance (98–101).
FBXW7 expression abundance is relevant to tumor
clinicopathologic features, and FBXW7 is capable of
dampening EMT process partly through downregulating EMT
upstream transcription factors such as Snail 1 (45, 102) and zinc-
finger E-box-binding homeobox 1 (ZEB1) (45), whereas the
downregulation of FBXW7 expression reverses its inhibitory
role. Research reveals that FBXW7 is involved in renal cell
carcinoma (RCC) cell invasion and metastasis by virtue of
suppressing EMT, which has great potential for future
therapeutic targets (103, 104). Moreover, non-coding RNAs
regulate tumor properties of invasion and metastasis via EMT
in part through interacting with FBXW7. MiR-27a
overexpression in human BC induces cell migration and EMT
dependent on its target gene FBXW7, while ectopic expression of
FBXW7 attenuates the properties of invasion and metastasis
partly associated with EMT (105). Cancer susceptibility
candidate 2 (CASC2), a long non-coding RNA (lncRNA)
downregulated in HCC cell lines, can inhibit tumorigenesis by
means of functioning as a competing endogenous RNA (ceRNA)
for miR-367 and weakening its pro-metastatic effects through
targeting FBXW7 (106).

Consequently, this pathway provides insights into potential
targeted therapies. It is well-known that FBXW7 controls various
cellular processes by regulating its substrates, of which c-MYC
and Notch participate in the promotion of EMT process (107,
108). The ATPase Thyroid hormone receptor interactor 13
Frontiers in Oncology | www.frontiersin.org 6
(TRIP13), usually overexpressed in a myriad of human
cancers, promotes glioblastoma migration and invasion by
decreasing the transcription of FBXW7 and attenuating its
inhibitory effects on c-MYC (109). Dysregulated FBXW7
appears to be a prognostic hallmark of HCC, exhibiting that
lower expression corresponds to worse progression and survival.
Moreover, FBXW7 is capable of modulating HCC invasion and
metastasis via FBXW7/Notch1 axis (23).

In addition to EMT process, there are multiple underlying
mechanisms accounting for the invasion, migration and
metastasis of cancer cells. For example, mitogen-activated
protein kinase/extracellular signal–regulated kinase (MAPK/
ERK) pathway appears to be involved in melanoma
tumorigenesis, for the treatment of MAPK/ERK kinase
(MEK) inhibitors significantly reverses FBXW7 knockdown-
induced cell migration (110). Enhancer of zeste homolog 2
(EZH2), a substrate of FBXW7, figures as an oncogenic
protein facilitating invasion and metastasis of pancreatic
cancer cells, which can be abrogated by CDK5/FBXW7-
dependent degradation (111). Cai et al. reported that
FBXW7 participates in regulating RCC metastasis partly
through modulating expression of MMP-2, MMP-9, and
MMP-13 (103), which have been disclosed to degrade
extracellular matrix (ECM) protein to accelerate cancer
metastasis (112).

2.5 Reprogramming Energy Metabolism
Under the condition of hypoxia or even adequate oxygen supply,
cancer cells choose inefficient aerobic glycolysis rather than
oxidative phosphorylation (113), giving rise to increased
glucose consumption, high-speed ATP production, as well as
transformation of glycolytic pyruvate to lactate, widely known as
“the Warburg effect” (114). The rewired metabolic network
produces intermediates, for example, figuring in the process of
glycolysis or tricarboxylic acid (TCA) cycle, not only favoring
cancer cells to meet essential energy, and anabolic and redox
demands on acquired nutrients during early stages of cancer
development (115), but also supporting cancer malignant
progression especially metastasis and therapeutic resistance in
later stages (116, 117) based on the resistance to oxidative stress.
The circuit of energy reprogramming involves a series of
signaling pathways (118), where FBXW7 participates in the
regulation of crucial metabolic molecules (Figure 3).

Growth factors trigger the PI3K/AKT axis as well as the
downstream mTOR pathway, inducing the glycolytic flux and
fatty acids (FAs) production due to activation of HIF and sterol
regulatory element binding protein (SREBP), respectively. The
mTOR pathway performs an indispensable role in nutrient
metabolism, energetic regulation, and promotion of cancer cell
survival (119). mTORC1 enhances the transcription of
glycolysis-related genes (120), and mTOR was proven to be a
crucial activator of Warburg effect (121). Evidence has shown
that the activation of mTORC1 promotes nucleotide synthesis as
well as glutaminolysis (118). Various studies report that FBXW7
targets and degrades mTOR through ubiquitin–proteasome
pathway (38, 122, 123). Fructose-1,6-bisphosphatase (FBP1)
was reported to promote the autoubiquitination of FBXW7,
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then resulting in lower levels of mTOR and subsequently
deregulated glycolysis in NPC cells (122).

In addition to the functions of HIF-1 in angiogenesis, HIF-1
exhibits a pivotal role in the aerobic glycolysis under hypoxic
conditions, including the induction of glucose transporter 1
(GLUT1) and critical glycolytic enzymes such as lactate
dehydrogenase A (LDH-A) (124). Furthermore, HIF-1 suppresses
Frontiers in Oncology | www.frontiersin.org 7
the functions of mitochondria to regulate the Warburg effect,
comprising the inactivation of TCA cycle, enzymes, and
microRNAs associated with the mitochondrial process, as well as
the decrease of activated mitochondria. Under the circumstance of
hypoxia, HIF-1a is negatively regulated by FBXW7-mediated
ubiquitination and proteolysis in human ovarian cancer cells,
proposing an underlying direction for energy reprogramming and
FIGURE 3 | FBXW7 participates in the reprogramming energy metabolism. The rewired metabolic network favors cancer cells to meet essential energy, anabolic
and redox demands on acquired nutrients during early stages of cancer development, where FBXW7 modulates metabolic reprogramming through ubiquitin-
dependent degradation of crucial metabolic molecules, such as mTORC1, SREBP, HIF-1, c-MYC and PGC-1a, their relationship seen in red solid blocking arrows.
We are awaiting the potential roles of FBXW7 in regulating tricarboxylic acid (TCA) cycle and glutamine metabolism through interacting with c-MYC, so the red dotted
line blocking arrow is shown in the lower left part of the figure. This figure was adapted from DeBerardinis and Chandel (118). ENO, enolase; FOXO1, fork head box
O1; GLUT, glucose transporter; HK, hexokinase; HNF-4, hepatic nuclear factor-4; LDHA, lactate dehydrogenase A; MEF-2, myocyte enhancer factor-2; PFKM,
phosphofructokinase; PKM2, pyruvate kinase M2; ROS, reactive oxygen species; RTK, receptor tyrosine kinase.
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angiogenesis (91). The oncoprotein TAR (HIV-1) RNA binding
protein 2 (TARBP2) can elevate the stability of HIF-1a by
decreasing its ubiquitination level through decreasing the E3
ligases activity including FBXW7 in BC cells (125).

SREBPs, a family of membrane-bound transcription factors
(126), are able to induce the expression of genes associated with
lipid metabolism (127–129) and multiple cellular processes (130),
which can be subdivided into three major members encoded by two
distinct genes (126). SREBPs translocate to the nucleus in an active
form and regulate corresponding gene expressions, and are
degraded rapidly by the ubiquitin–proteasome pathway (131). In
recent years, researchers have deciphered the role of FBXW7 in
lipogenesis related with SREBPs, whereas the precise regulatory
mechanisms remain to be elucidated. Dependent on the
phosphorylation of Cdc4 phosphodegron (CPD) motifs, FBXW7
interacts with and degrades SREBP1 and SREBP2 in control of lipid
metabolism (132, 133), reflected in the elevated cholesterol and FAs
synthesis as well as the enhanced uptake of LDL in FBXW7-/- cells
(132). miR-182, originated from a single primary transcript (134), is
emerging as an oncogenic role in various malignancies (135, 136).
miR-182 was reported to target FBXW7 and indirectly enhance the
accumulation of nuclear SREBPs; subsequently, lipid synthesis was
accelerated by stimulation of SREBP-targeted genes (137). To meet
the demand for rapidly excessive proliferation, cancer cells rely on
glucose and glutamine for de novo lipogenesis responsive to
dysregulated SREBP pathways (138). In an experiment, different
cancer cells were treated with inhibitors of mTOR complex 2
(mTORC2) and then detected to express decreased mature
SREBP1 (mSREBP1). It was unraveled that mTOR2 suppresses
the GSK3/FBXW7-mediated ubiquitination of SREBP1 and serves
as a positive regulator of SREBP1-related genes and lipogenesis
(139). Likewise, protein arginine methyltransferase 5 (PRMT5)
facilitates de novo lipogenesis by virtue of epigenetic modification
of SREBP1a and blockade of GSK3/FBXW7-mediated ubiquitin–
proteasome pathway (140).

c-MYC exerts its roles in various biological processes such as
proliferation, metabolism, differentiation, and transformation as
mentioned before (28). c-MYC modulates almost all glucose
metabolism genes, including hexokinase 2 (HK2), pyruvate
kinase M2 (PKM2), LDHA, GLUT1, phosphofructokinase
(PFKM), and enolase 1 (ENO1) (141, 142), promoting the
development of glycolysis. Additionally, c-MYC plays a
significant part in FA biosynthesis, glutaminolysis, serine
metabolism, and mitochondrial metabolism. Several studies have
demonstrated that FBXW7 interacts with and ubiquitylates c-
MYC, and phosphorylation of c-MYC on Thr-58 and Ser-62 is
essential for proteasome-dependent degradation (31). FBXW7
dramatically suppresses glucose metabolism and reduces the
18F-FDG uptake of pancreatic cancer cells through regulating
the expression of thioredoxin binding protein (TXNIP) in a c-
MYC-dependent manner, whose regulatory mode can be
summarized into the FBXW7/c-MYC/TXNIP axis (114).
PRMT5 epigenetically regulated the expression of FBXW7,
contributing to elevated c-MYC levels and subsequently
enhanced glycolysis and proliferation of pancreatic cancer cells
(22). Reversely, dioscin treatment enhanced the interaction
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between FBXW7 and c-MYC, which leads to inhibition of HK2,
a crucial enzyme catalyzing glucose phosphorylation and hence
the suppression of glycolysis (143). Likewise, Tanshinone IIA (Tan
IIA) suppresses HK-mediated glycolysis of oral squamous cell
carcinoma (OSCC) cells by promoting FBXW7-mediated
degradation of c-MYC and inhibiting the AKT-c-MYC
signaling, exhibiting its natural antitumor activity (144).

In addition, FBXW7 also ubiquitinates and degrades PPARg
coactivator-1a (PGC-1a), which serves as a critical energy
metabolism regulator, coordinating mitochondrial biogenesis and
oxidative phosphorylation (145). Outside the mitochondrion, PGC-
1a also modulates lipid and glucose metabolism through the
interaction with nuclear factors, such as SREBP1, myocyte
enhancer factor-2 (MEF-2), fork head box O1 (FOXO1), and
hepatic nuclear factor-4 (HNF-4) (146). In human melanoma cell
lines, the microphthalmia-associated transcription factor (MITF)
directly controls PGC-1a expression; hence, theMITF/PGC-1a axis
can regulate mitochondrial oxidative phosphorylation and rescue
the oxidative stress of reactive oxygen species (ROS) (147, 148).
FBXW7 expression was detected downregulated, which is correlated
with elevated expression of mitochondrial functional genes as well
as poor prognosis of melanoma patients, dependent on its
downstream MITF/PGC-1a pathway satisfying the metabolic
needs of tumor cells (149). In contrast to the aforementioned
tumorigenic functions of PGC-1a, the diminution of PGC-1a
indirectly by HIF renders metabolic reprogramming, accelerating
tumorigenesis and the resistance to chemotherapies in RCC cells
(150). The dual roles of PGC-1a in metabolic reprogramming
remain elusive and require to be explored. In addition, FBXW7
mutations in CRC cells enhance the mitochondrial gene expression,
in which the so-called “metabolic reprogramming” points to
oxidative phosphorylation and is possessed with metabolic
vulnerabilities (151).

2.6 Avoiding Immune Destruction
The consistently alerted immune system has been monitoring and
eliminating cells and tissues from forming and progressing early-
stage neoplasms, terminal tumors, and micrometastases. According
to this theory of immune surveillance, solid tumors avoid immune
eradication through evading immune detection or curtailing the
damage of immunological killing (2), both of which can be realized
through presenting tumor antigens resistant to immune effectors
(also called “immunoediting”) and the progressive formation of
immunosuppressive microenvironment (152).

Tumor-associated macrophages (TAM), the macrophages
that are characterized as immunosuppressive infiltrating
tumors, promote tumor progression through subversion of
genetic stability, nurturing cancer stem cells (CSCs), promoting
metastasis, and restraining adaptive immune response (153).
Driven by cytokines derived from tumors and T cells,
macrophages polarize into classically activated macrophages
(also called M1) and alternatively activated macrophages (also
called M2), in which TAM mainly belong to the latter, showing
anti-inflammatory and pro-tumorigenic functions (154).
FBXW7 is capable of restricting cancer progression by
haltering immunosuppressive niche and immune evasion.
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Myeloid cell-specific ablation of FBXW7 enhances tumor
proliferation by decreasing its ubiquitination on c-MYC, which
promotes TAM polarization (155).

Moreover, in a triple-negative BC (TNBC)model, low-expressed
E74-like transcription factor (ELF5) downregulates the level of
FBXW7, attenuating its degradation on interferon-g receptor 1
(IFNGR1). Afterwards, the triggered intrinsic interferon-g (IFN-g)
pathway facilitates immunosuppressive neutrophil aggregation,
accompanied by programmed death ligand 1 (PD-L1)
upregulation, which not only promotes tumor proliferation and
metastasis but also appears to accelerate CD8+ T cell exhaustion
favoring immune evasion. Therapeutic drugs targeting IFNGR1 and
PD-L1 potentiate antitumor efficacy in TNBC patients, providing
new insights into underlying targets for immunotherapies (156).
FBXW7 inhibits the transcription of Toll-like receptor 4 (TLR4)
signaling by degrading CCAAT/enhancer binding protein delta (C/
EBPd) phosphorylated by GSK3b, detected as transcriptional
activator of Tlr4 genes (157). Reversely, C/EBPd also represses the
expression of FBXW7 (158), thus forming a negative feedback cycle
through which FBXW7 inhibits inflammatory responses and TLR4-
associated immune evasion (159). In addition, high expression of
miR-101 and miR-26a are detected in ovarian cells, which
downregulate EZH2 and confer functional inactivation of effector
T cells in the absence of glucose. In mechanism, the histone
methyltransferase EZH2 triggers notch signaling by repressing its
suppressor Numb and FBXW7, maintaining effector T-cell survival
and poly-functions (160).

2.7 Genome Instability and Mutation
Genomic alterations promote the acquisition of other hallmarks
of cancer cells, prioritizing subclone of cells with superior mutant
genotype to expand progressively and play a leading role within
the local environment. The maintenance of genome stability
requires delicate modulation of DNA replication in the cell cycle
process, precise detection, and repairing any defects of DNA.

As a substrate of FBXW7, cyclin E, a nuclear protein that
interacts with and activates cyclin-dependent kinase 2 (CDK2) to
phosphorylate proteins, facilitates G1/S phase transition and is
degraded at the boundary of the S/G2 phase, whereas the
overexpression of cyclin E has been detected in human cancer
cells associated with cell cycle deregulation and chromosome
instability (CIN) (161, 162). FBXW7 mutations lead to the
aberrant accumulation of its substrate cyclin E in CRC samples,
conferring abnormality of chromosome congression during
metaphase as well as ensuing chromosome transmission,
implicating the role of FBXW7/cyclin E axis in regulating CIN
(163). An in vivo study generated a mouse model to disturb the
regulation of cyclin E relying on FBXW7, which was found fragile in
response to hematologic stress and induced CIN, ultimately
pointing to fatal T-cell malignancies (164). Additionally, cyclin E/
CDK2 overactivation due to FBXW7 deficiency could induce hyper-
phosphorylation of the centromere protein CENtromere Protein A
(CENP-A) at the N-terminal Ser18 site, thus promoting
chromosome missegregation and micronucleus formation,
demonstrating that the FBXW7-dependent cyclin E is related
with CIN via centromere dysfunction (165, 166).
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Several essential proteins and microRNAs existing in or
interacting with the FBXW7/cyclin E pathway may be underlying
targets to overturn genomic instability and disrupt tumorigenesis.
Both functioning as the upstream proteins of FBXW7, the integrator
protein TRIP-Br coordinates with the transcription regulator early 2
factor (E2F) to regulate S phase execution and maintain genomic
stability partly via the FBXW7/cyclin E axis (167). MiR-223 targets
the 3’-untranslated region of FBXW7 to regulate cyclin E activity
and cyclin E-mediated genomic stability, whereas miR-223
expression can be responsive to the acute changes of cyclin E
expression, thus forming a negative feedback circuit among miR-
223, FBXW7, and cyclin E (168). Meanwhile, Aurora-A
amplification was detected frequently in CRC tissues and
significantly correlated with a fractional allelic loss (FAL) score, so
targeting Aurora-A kinase in the FBXW7/cyclin E pathway can be a
potential CRC therapy associated with CIN (169). The excessive
activation of the oncogenic ERK1/2 MAP kinase (MAPK) pathway
results in the downregulation of FBXW7b both in epithelial cell
lines and in the intestine tissue of a transgenic mouse model,
conferring the stabilization of Aurora-A, abnormal cell division,
and polyploidization. Consequently, the ERK1/2/FBXW7/Aurora-
A axis is associated with aneuploidy and epithelial malignancies,
and the MAPK can be a good candidate for target therapy in the
not-too-distant future (170). Under the governance of p53-
dependent transcription regulation, FBXW7 protects epithelial
cells from DNA damage and malignant progression presumably
through its substrate such as cyclin E, Aurora A, or c-MYC, and p53
heterozygosity combined with FBXW7 loss can confer aneuploidy
as well as epithelial cancers (171). Another in vitro study generated
adenocarcinomas exhibiting aneuploidy, which were derived from
FBXW7-/-; p53-/- cell lines, implicating that ablation of FBXW7
and p53 synergistically promotes the occurrence of CIN and CRC
tumorigenesis (172).

As major components of surveillance mechanism, cell cycle
checkpoints ensure the order, integrity, and fidelity of crucial
events throughout the cell cycle, monitoring cell size, the
responses to DNA replication, and DNA damage (173). Under
the stress of UV irradiation, FBXW7a induces proliferation arrest in
the S phase through interacting with and ubiquitinating polo-like
kinase 1 (PLK1) that functions in eukaryotic cytokinesis, showing
the role of the FBXW7/PLK1 axis in the regulation of the intra-S-
phase DNA-damage checkpoint (174). The mice bearing P48-Cre;
LSL-KRASG12D; FBXW7fl/fl (KFCfl/fl) mutations exhibited
progressive pancreatic tumorigenesis with elevated numbers of
micronuclei, as a result of Yes-associated protein (YAP)
overexpression due to FBXW7 deficiency (175). The role of
oncogenic protein YAP in driving genomic instability has also
been established in a medulloblastoma mouse model.
Mechanically, YAP triggers the expression of insulin-like growth
factor 2 (IGF2) and ensuing activation of the PI3K/AKT pathway
after radiation, thus avoiding DNA repair and inactivating the
checkpoint regulators of ATM and CHK2, the latter inhibiting
the G1/S and G2/M checkpoints (176).

In terms of repairing machinery, FBXW7 participates in the
Fanconi anemia (FA) pathway that deals with DNA interstrand
cross-link (ICL) repair through ubiquitinating and degrading the
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crucial component of the FA pathway, FAAP20 (177). Additionally,
FBXW7 promotes nonhomologous end-joining (NHEJ) that
resolves DNA double-strand breaks (DSBs) in mammalian cells
via FBXW7a-dependent XRCC4 polyubiquitylation (178).
3 PERSPECTIVES: POTENTIAL
THERAPEUTIC STRATEGIES

Therapeutic resistance remains one of the thorniest obstacles in
the course of cancer treatment, which are associated with relapse
and poor prognosis of patients. Tumors can be resistant due to a
single or a combination of biological determining factors,
involving intrinsic factors such as tumor burden and growth
kinetics, tumor heterogeneity, physical barriers, tumor
microenvironment, and undruggable genomic drivers
(e.g., c-MYC and TP53), and extrinsic factors such as selective
Frontiers in Oncology | www.frontiersin.org 10
therapeutic pressure. The discussed hallmarks of cancer
associated with FBXW7 present necessary insights to better
understand the relationship between FBXW7 and therapeutic
resistance, emphasizing the urgency of establishing novel targets
for precise therapy. We propose three potential strategies against
therapeutic resistance as follows (seen in Figure 4).

3.1 Targeting MicroRNAs to Enhance
Therapeutic Sensitivity of Cancers
miRNAs refer to short endogenous non-coding RNAs with a
length of ∼22 nucleotides, targeting at the complementary site of
mRNAs to mediate the degradation or repression of different
genes that modulate development, apoptosis, differentiation, and
even tumorigenesis (179). Frequently altered miRNAs in diseases
make it possible to target these molecules in the form of miRNA
mimics or anti-miRs for cancer therapy, combined with the
effective application of RNA-delivering constructs (180). An
increasing number of in vitro and in vivo studies has
FIGURE 4 | Three potential therapeutic strategies. miRNA antagomirs or other agents can be administered to block the suppression of FBXW7 expression by miRNAs,
thus inhibiting the substrates of FBXW7, which promote EMT, proliferation, autophagy, and stemness and dampen apoptosis to induce therapeutic resistance. Waking-
up therapies can be applied to prevent exit of cells from cell cycle regulated by FBXW7, thus waking up cancer stem cells from quiescent to proliferative state. Based on
the role of FBXW7 in regulating circadian rhythms, it is ponderable to introduce chronotherapy and elevating FBXW7 expression to attain better therapeutic efficacy. EMT,
epithelial–mesenchymal transition; MCL-1, myeloid cell leukemia-1.
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implicated that microRNAs can regulate cancer progression and
therapeutic resistance by virtue of interacting with FBXW7,
such as miR-223, miR-363, miR-27b-3p, and miR-92a-3p
(181–184).

In addition to functioning in the hematopoietic system, miR-
223 is in close relationship with multiple malignancies, given that
miR-223 targets (e.g., IGF-1 receptor and stathmin 1) have been
Frontiers in Oncology | www.frontiersin.org 11
disclosed to impact the hallmarks of cancer, involving
proliferation, invasion, metastasis, etc. (185). In vitro and in vivo
studies have substantiated that the upregulated expression of miR-
223 dampens therapeutic sensitivity in several cancer types, such
as T-ALL, GC, NSCLC, HCC, and CRC (seen in Table 1). For
example, miR-223 was detected upregulated in cisplatin-resistant
GC cell lines, and the elevated expression of miR-223 inhibits
TABLE 1 | MicroRNAs regulate therapeutic resistance via targeting FBXW7 and the possible mechanisms.

miRNAs Cancer
types

In vitro/in vivo Expression
pattern

Therapies
induced resis-

tance by miRNAs

Possible mechanisms via
targeting FBXW7

Potential strategies
targeting miRNAs for
elevating therapeutic

sensitivity

References

miR-223 T-ALL In vitro and in
vivo

Upregulated GSI IX(DAPT) GSI induces increased C/EBPa
expression, which activates miR-223
expression, thus leading to FBXW7
loss, whereas the exact mechanism
of FBXW7’s impacts on therapeutic
resistance is not mentioned

Inhibitors of NF-kB
signaling, notch1 and
notch3; miR-223 antagomir

(181)

miR-223 GC In vitro Upregulated Trastuzumab Upregulated miR-223 induces
trastuzumab resistance by
suppressing apoptosis though the
FBXW7/MCL-1 axis

miR-223 antagomir (186)

miR-223 GC In vitro Upregulated Cisplatin miR-223 alteration promotes
cisplatin resistance by regulating the
G1/S cell cycle and apoptosis
though interacting with FBXW7

miR-223 antagomir (187)

miR-223 GC In vitro Upregulated Doxorubicin miR-223 derived from TAM targets
FBXW7 to induce EMT process

miR-223 antagomir (188)

miR-223 NSCLC In vitro and in
vivo

Upregulated Cisplatin miR-223 targets FBXW7 to enhance
cisplatin-induced autophagy

miR-223 antagomir (87)

miR-223 NSCLC In vitro Upregulated Erlotinib miR-223 promotes proliferation and
inhibits apoptosis by inhibiting
FBXW7

Inhibitors of the Akt and
Notch pathways; MiR-223
antagomir

(189)

miR-223 HCC In vitro Upregulated Sorafenib The exact mechanism of FBXW7’s
impacts on therapeutic resistance is
not mentioned

miR-223 antagomir (190)

miR-223 CRC In vitro Upregulated Doxorubicin miR-223 induces EMT process
though interacting with FBXW7

miR-223 antagomir (191)

miR-363 GC In vitro Upregulated Docetaxel +
Cisplatin + 5-FU
(DCF) regimen

miR-223 promotes cell proliferation
and DCF resistance by targeting
FBXW7

miR-363 antagomir (182)

miR-27b-3p MM In vitro Upregulated Not mentioned miR-27b-3p induced by MM-derived
exosomes stabilize MCL-1 to
suppress apoptosis by targeting
FBXW7

miR-27b-3p antagomir (183)

miR-92a-3p CRC In vitro and in
vivo

Upregulated 5-FU/L-OHP Exosomal miR-92a-3p from CAFs
promote cell stemness and EMT, as
well as inhibit cell apoptosis by
targeting FBXW7

miR-92a-3p antagomir (184)

miR-500a-3p GC In vitro and in
vivo

Upregulated Cisplatin miR-500a-3p promotes cell
stemness by targeting FBXW7

miR-500a-3p antagomir (192)

miR-19b CRC In vitro and in
vivo

Upregulated Radiation therapy miR-19b regulates the FBXW7/Wnt/
b-catenin axis to promote stemness
properties

miR-19b antagomir (193)

miR-25-3p Glioblastoma In vitro and in
vivo

Upregulated Temozolomide miR-25-3p confers temozolomide
resistance though suppressing
FBXW7, thus inducing c-MYC and
cyclin E expression

miR-25-3p antagomir (194)

miR-188-5p BC In vitro Upregulated Doxorubicin miR-188-5p impedes response to
apoptosis through the FBXW7/c-
MYC axis

Honokiol; miR-188-5p
antagomir

(195)
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cisplatin sensitivity of GC cells in vitro; these results can be
explained by miR-223 target protein FBXW7, which regulates
cell cycle and apoptosis presumably through ubiquitin-mediated
proteolysis of MCL-1 (187).

Furthermore, several therapeutic agents or signaling molecules
are involved in the regulation of miRNAs and its downstream
FBXW7, so that miRNAs or its upstream proteins can be critical
targets to enhance the sensitivity of chemo-, immuno-, and
radiotherapies. We find that inhibiting the upstream regulators of
miRNAs can be of great value to combat therapeutic resistance. For
example, serving as negative regulators of miR-223, the Notch and
Akt inhibitors have shown efficacy in increasing drug sensitivity of
T-ALL and NSCLC, respectively. Another example is that the
bioactive natural product honokiol downregulates miR-188-5p
and further attenuates the inhibition of the FBXW7/c-MYC axis,
thus increasing doxorubicin sensitivity in BC cells (195).
Nonetheless, the in vivo combined with in vitro studies on
miRNA upstream regulators are relatively rare, the mechanisms
of miRNAs targeting FBXW7 to confer therapeutic resistance of
cancers remain elusive, and the effective delivery of miRNAmimics
or anti-miRNAs to realize significant clinical values is awaiting to
be elucidated.

3.2 Waking-up Therapy
CSCs, which consis tent ly dwel l within the tumor
microenvironment, is defined as a subpopulation of cancer cells
with the ability of self-renewing and differentiating into multiple
types of heterogeneous cancers (196) like normal stem cells. The
stemness properties maintain CSCs in a quiescent and non-
proliferative state (also called dormancy), persistently staying in
the G0 stage and infrequently entering the cell cycle, which is
associated with therapeutic resistance, maintenance, as well as
anti-apoptosis (197).

Serving as a suppressor protein, FBXW7 attenuates tumor
stemness by orchestrating different pathways. EMT, a critical
cellular process as mentioned before, is associated with
acquisition of stem cell traits of normal as well as cancer cells
(198, 199), and functions as a crucial regulator of CSCs (101,
200). The mTOR complex (composed of mTORC1 and
mTORC2) has been reported to play a key role in activating
the EMT process (201), which is one of FBXW7’s substrates. In
colon cancer cells, FBXW7 deficiency results in accumulation of
mTOR, thus in turn favoring EMT-related stem-like properties
(202). The ZEB family includes ZEB1 and ZEB2, both of which
are crucial transcription factors subordinated to EMT-inducing
transcription factors (EMT-TFs), which are usually endowed
with stemness features (203). ZEB1, serving as a transcription
factor promoting the EMT process (204), is associated with the
stem-like properties of cholangiocarcinoma (CCA) cells, which
can be explained by the fact that FBXW7 dampens EMT and
stemness of CCA cells via the mTOR/ZEB1 signaling pathway
(205). ZEB2 can be directly bound and degraded by FBXW7, and
the FBXW/ZEB2 axis modulates stemness/differentiation,
therapeutic resistance, as well as metastasis in CRC cells (206).

Similar to the EMT process, the Wnt/b-catenin signaling
exerts its pivotal role in regulating functions of normal stem cells
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as well as CSCs (207, 208). Cancer-associated fibroblasts (CAFs),
the stromal cells dwelling in tumor microenvironment, is
involved in tumor progression. CAFs can deliver exosomal
miR-92a-3p to CRC cells, which in turn activates Wnt/b-
catenin pathway by suppressing FBXW7 and Modulator of
apoptosis 1 (MOAP1) and finally promotes cell stemness
(184). Moreover, the exosomal miR-19b derived from CRC
cells promotes stemness by inhibiting FBXW7 expression,
which subsequently induces Wnt/b-catenin signaling pathway
(193). In perihilar cholangiocarcinoma (pCCA), the high
mobility group A1 (HMGA1) interacts with thyroid hormone
receptor interactor 13 (TRIP13), and the HMGA1-TRIP13 axis
promotes cell stemness by downregulating FBXW7 expression
and thus stabilizing c-MYC, the latter in interplay with Wnt/b-
catenin signaling (209).

Contrary to the aforementioned onco-suppressive role,
FBXW7 is capable of promoting cancer progression by
maintaining stemness of cancer cells. FBXW7 targets positive
regulators of cell cycle, such as cyclin E (210) and c-MYC (211)
for ubiquitination and subsequent degradation, hence inducing
exit from cell cycle and maintaining cells within the quiescent
state (212, 213). Among these substrates, c-MYC is pivotal to
reverse the quiescent state of CSCs and thus induce them into cell
cycle. For example, FBXW7 deficiency gives rise to premature
loss of normal HSC, which largely boils down to c-Myc-triggered
active cell cycling, showing that FBXW7 is significant for
hematopoietic stem cell (HSC) maintenance (214). In chronic
myeloid leukemia (CML), FBXW7 expression is integral to
initiation, progression, and maintenance of leukemia stem cells
(LSCs) associated with downregulation of c-MYC (215), and
ablation of FBXW7 results in increased c-MYC and activated p53
pathway, further promoting LSC apoptosis (216). In addition to
non-solid tumors, FBXW7 also exerts a functional role in CSCs
of solid tumors. Under the condition of cycle arrest due to
anticancer agent therapy, c-MYC expression is reduced due to
the elevated level of FBXW7, and upregulated FBXW7 confers
chemoresistance on colorectal CSCs (217). Depletion of FBXW7
dominantly reduces gefitinib-resistant CSC population in
NSCLCs and alters cell cycling in the G0/G1 phase (218).
Similarly, FBXW7 diminution enhances the proliferative
identity of breast CSCs and the sensitivity to paclitaxel therapy
in vitro, and FBXW7 ablation combined with chemotherapy
exhibits longer survival period and more favorable prognosis of
mice in vivo (219).

Based on this, waking up CSCs from a quiescent to a
proliferative state by targeting its internal molecules and cues
can be a potential strategy to break the vital bottleneck. Waking-
up therapy has been applied for CML patients in several clinical
trials, with no distinct risk detected in combination with
standard regiments (219). Nonetheless, there remain several
barriers to finally realize efficacy of the waking-up therapy
targeting FBXW7. First, we wonder how to leverage the bi-
functions of FBXW7 in stemness maintenance in order to
countervail therapeutic resistance. Just as mentioned before, on
the one hand, FBXW7 has been reported to dampen stemness
properties of CSCs through the EMT and Wnt/b-catenin
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signaling pathways; on the other hand, the genetic silencing of
FBXW7 confers accumulation of c-MYC, finally repressing the
state of dormancy and sensitizing cancer cells to therapies, which
has been substantiated in vitro and in vivo studies. Second, the
delivery of drugs may bring out side effects on cancer cells aside
from CSCs, such as alterations of proliferation, apoptosis,
invasion, and metastasis based on our general concept of
FBXW7 as a tumor suppressor. Third, although a part of these
thorniest puzzles can be handled out by virtue of combined
therapies, there is still a long way to go for real clinical
applications on cancer patients not just mice models.

3.3 Therapies Based on Regulating
Circadian Rhythms
Circadian rhythms can govern a large array of biological
processes linked to body homeostasis, characterized by
periodic oscillations of 24 h, which is modulated by an
endogenous clock system (220, 221). The autonomous,
organized circadian system is composed of three critical
components including input pathways, central pacemaker, and
output pathways, among which the central pacemaker is located
in suprachiasmatic nucleus (SCN) of anterior hypothalamus
(220). Circadian rhythms are orchestrated by intricate
transcriptional–translational system feedback loops, which are
governed by clock genes. Circadian locomotor output cycles
kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1)
heterodimerize as a complex and bind to E-boxes of promoters
on clock-controlled genes, which triggers their transcriptions
containing Period (Per) and Cryptochrome (Cry) families during
the day; proteins encoded by Per and Cry families suppress
CLOCK/BMAL1 transcription activity during the night (222). In
addition, core clock proteins are under the control of the orphan
nuclear receptors REV-ERBs (including REV-ERBa and REV-
ERBb) and retinoic acid receptor-related orphan receptors
(RORs), respectively (223). Dysregulation of circadian rhythms
can contribute to metabolic disorders, carcinogenesis, immune
inefficiency, poorer cancer prognosis, and attenuation of drug
efficacy on cancer patients (221, 224).

The circadian clock protein cryptochrome 2 (CRY2) is
overexpressed in specimen of CRC patients, correlated with
chemoresistance and poor prognosis. Furthermore, FBXW7
negatively regulates CRY2 via a ubiquitin-dependent pathway
and potentiates chemosensitivity of CRC cells, which proposes
the method to enhance the antitumor efficacy targeting clock
proteins (225). After being phosphorylated by cyclin-dependent
kinase 1 (CDK1), the negative regulator of clock transcription
REV-ERBa can be degraded by FBXW7, favoring amplitude of
clock transcription. Meanwhile, rhythm disruption induced by
FBXW7-specific deficiency of liver perturbs the circadian
homeostasis of lipid and glucose metabolism (226), recognized
as a critical impediment to tumorigenesis. In addition, as an
integral part of regulating cell metabolism, mTOR signaling
pathway is detected to show an oscillated 24-h rhythm in RCC
cells in part caused by fluctuated expression of FBXW7 protein,
whose pattern shows anti-phase of rhythm of mTOR protein.
Experiment results indicate that D-site binding protein (DBP)
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binds to D-site element in the FBXW7 promoter and also
exhibits a circadian rhythm of protein levels, thus regulating
the transcriptional activity of FBXW7. The higher activity of
mTOR in tumor-bearing mice is correlated to better efficacy of
everolimus, underpinning the significant impacts of circadian
rhythm of mTOR signaling on the antitumor therapies (82).

Based on the association of FBXW7 and circadian rhythms,
we outline this potential therapy in the bud, which elevates
therapeutic responses through regulation of circadian rhythms
involving FBXW7. Dysregulated FBXW7 expression renders
tumorigenesis by conferring disrupted circadian rhythms as
well as metabolism, thus providing a potential target for
curbing tumorigenesis and elevating therapeutic responses. In
addition, FBXW7 modulates the activity of critical molecules
residing in the circadian system (such as mTOR), and the activity
of mTOR in tumor-bearing mice is correlated to better efficacy of
mTOR inhibitor everolimus, so leveraging the oscillated
therapeutic sensitivity is critical to our therapy. As a
consequence, FBXW7 expression is upregulated to maintain
circadian rhythm and metabolism homeostasis, and
chronotherapy is provided when the activity of molecules
within the circadian system regulated by FBXW7 is the
highest, both of which can be taken advantage of in order to
attain better efficacy. Nevertheless, the potential therapy we have
proposed is in the bud, which urgently requires in-depth
exploration of critical molecules within the clock system as
well as their oscillated rhythms and fluctuated sensitivity at
different times of the day.
4 CONCLUDING REMARKS

UPS has been heralded as the main degradation mechanism of
eukaryotes, located at the crossroads of multiple cellular
processes. Considering the relationship between abnormalities
of UPS and carcinogenesis, we focus on FBXW7, a component of
the SCF ubiquitin ligase complexes, which mainly serves as a
tumor suppressor through ubiquitin-mediated degradation of its
substrates, such as c-MYC, mTOR, MCL-1, Notch, c-Jun, and
cyclin E. Being devoid of FBXW7 results in the accumulation of
target proteins, demonstrated in in vitro and in vivo studies to
impact the initiation, development, relapse, and therapeutic
responses of multiple cancers. The expression levels of FBXW7
in most malignancies are downregulated compared to normal
tissues, such as glioma, lung cancer, liver cancer, urothelial
cancer, ovarian cancer, and melanoma (18), which have a
positive correlation with prognosis of patients, aside from liver
cancer and melanoma. Other studies have also shown that
expression pattern alterations of FBXW7 are correlated with
malignancy progression of cancer cel ls , as well as
clinicopathological classification and prognosis of patients who
are predisposed to relapse, so FBXW7 may figure as a predictor
of initiation, development, and prognosis of cancers (213,
227, 228).

Here, we discuss how FBXW7 influences the hallmarks of
cancer that are subdivided into 7 parts. We infer that the
April 2022 | Volume 12 | Article 880077
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pathways underlying cancer hallmarks can be intricate and
interwoven with each other, for example, that the crucial
transcriptional factor c-MYC regulated by FBXW7 participates
in proliferation, apoptosis, invasion and metastasis, energy
reprogramming, and immune evasion of cancers. In light of c-
MYC as one of the undruggable genomic drivers, attenuating
oncogenic c-MYC-induced cellular processes by targeting
FBXW7 can be new therapeutic targets, which have been
elaborated in previous sections. FBXW7’s role as a tumor
suppressor has been pervasively explored. In practice, FBXW7
figures as a double-edged sword impacting tumorigenesis,
especially its role in maintenance of cancer cell stemness.

Tumor burden and growth kinetics, tumor microenvironment,
cell death inhibition, and EMT contribute to therapeutic resistance
(229), which can be leveraged by targeting FBXW7 to elevate
therapeutic sensitivity and the prognosis of patients. We provide
three prospective strategies to deal with this problem. First, we take
advantage of miRNAs interacting with FBXW7 to regulate
therapeutic sensitivity, among which miR-223 has gained great
attention of many researchers. miR-223 is an evolutionarily
conserved microRNA mainly expressed in hematopoietic cells,
which comes from endogenous expression or releasing of
exosomes and EVs. miR-223 has been detected to be
upregulated in T-ALL, GC, NSCLC, and HCC in vitro and in
vivo, mediating therapeutic resistance presumably through
FBXW7-regulated proliferation, apoptosis, EMT, and autophagy.
More in vivo studies should substantiate the exact roles of
microRNAs in tumorigenesis, and the effective delivery of
miRNA mimics or anti-miRNAs remains to be elucidated,
emerging as a novel target therapy in cancers over the years
(180). Second, given FBXW7’s role in the maintenance of CSCs,
we introduce the waking-up therapy regulating cell cycle by
targeting the switch between quiescent and proliferative states,
and propose several potential risks for application of this therapy.
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Through the genetic ablation of FBXW7, LSCs are predisposed to
enter the cell cycle and are sensitive to chemotherapy. FBXW7
diminution combined with other drug therapies demonstrates
great efficacy in patients of CML chronic phase. Last but not
least, we unravel the relationship between FBXW7 and circadian
rhythms, the latter in close interaction with metabolism, immune
functions, and carcinogenesis. In order to maximize the
therapeutic efficacy, taking advantage of chronotherapy or
targeting critical molecules of the circadian machinery emerges
as a new treatment paradigm in cancers in the foreseeable future.
In addition, we are looking forward to incorporating additional
hallmarks, continuing to explore FBXW7’s role in other facets
of cancer.
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