

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

## A set of synthetic data, antibacterial evaluation and bacterial interaction with lipid-core nanocapsules containing fusidic acid



Rodrigo Cé<sup>a,\*</sup>, Barbara Z. Pacheco<sup>a</sup>, Taiane M. Ciocheta<sup>a</sup>, Fabio S. Barbosa<sup>a</sup>, Aline de CS Alves<sup>a</sup>, Danieli R. Dallemole<sup>a</sup>, Vladimir Lavayen<sup>b,c</sup>, Silvia S. Guterres<sup>a</sup>, Martin Steppe<sup>a</sup>, Adriana R. Pohlmann<sup>a,b</sup>

<sup>a</sup> Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, Brazil
<sup>b</sup> Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
<sup>c</sup> Departamento de Química Inorgânica Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil

## ARTICLE INFO

Article history: Received 16 March 2021 Revised 15 April 2021 Accepted 16 April 2021 Available online 24 April 2021

*Keywords:* Gram Positive bactéria Fusidic acid Lipid-core nanocapsules Antibacterial activity Nanocapsules-bacterial interaction

## ABSTRACT

A set of synthetic data, of antibacterial evaluation against gram-positive bacteria, as well as, the interaction of bacterial with lipid-core nanocapsules containing fusidic acid is presented here. In this data set, the analytical data are detailed; serial microdilution; nanoparticle tracking analysis; transmission electron microscopy; minimum inhibitory concentration; diameter size and zeta potential, and infra-red of the formulations before and after contact with bacteria.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

DOI of original article: 10.1016/j.reactfunctpolym.2021.104876

\* Corresponding author.

E-mail addresses: rodrigoce\_@hotmail.com (R. Cé), adriana.pohlmann@ufrgs.br (A.R. Pohlmann).

#### https://doi.org/10.1016/j.dib.2021.107089

2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

## Specifications Table

| hemistry, Pharmacy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ntimicrobial evaluation using polymeric nanocapsules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ables, images and figures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PLC by (Shimadzu HPLC; composed of LC-20AT pump, SIL-20AHT injector,<br>V/Vis SPD-20A detector and CBM-20A controller), serial microdilution<br>lethod (Clinical and Laboratory Standards Institute, CLSI (doc. M07-A6)<br>spectramaxM5), nanoparticle tracking analysis (NTA - LM10, NanoSight Ltd.,<br>/iltshire, UK), transmission Electron Microscopy (JEOL JEM 1200 EXII<br>licroscope), dynamic light scattering and zeta potential (Malvern Zeta sizer<br>lstrument-Nano ZS, Malvern Instruments, UK) and Fourier transform infrared<br>pectroscopy (ATR-FTIR) (Perkin Elmer instrument, Spectrum BX, USA)<br>ccessory (MIRacle, ZnSe accessory, USA). |
| aw, analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PLC analyzes were performed to validate and quantify fusidic acid in the<br>imples. Microscopic images, turbidimetry, diameter and zeta potential<br>nalyze, and infrared analyzes of the formulations were obtained without<br>re-treatment of the samples.                                                                                                                                                                                                                                                                                                                                                                                                  |
| etails of the experimental methodologies used in this study, such as<br>alidation and quantification of fusidic acid in the formulations. Antimicrobial<br>valuation of formulations and effectiveness by microbiological analysis.<br>nalyzes of particle size, zeta potential, FTIR and interactions of bacteria with<br>anocapsules.                                                                                                                                                                                                                                                                                                                       |
| orto Alegre, Brazil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ata is provided with this article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| . Cé, B. Z. Pacheco, T. M. Ciocheta, F. S. Barbosa, A. C. S. Alves, D. R. Dallemole,<br>Lavayen, S. S. Guterres, M. Steppe, A. R. Pohlmann, Antibacterial activity<br>gainst Gram-positive bacteria using fusidic acid-loaded lipid-core<br>anocapsules, Reactive and Functional Polymers. 162 (2021) 1–13,<br>https://doi.org/10.1016/j.reactfunctpolym.2021.104876.                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## Value of the Data

- The synthesis of lipid-core nanocapsules containing fusidic acid is innovative for the scientific community.
- Experimental data on antimicrobial evaluation against gram-positive bacteria showed that the formulations were effective in inhibiting microbiological growth.
- The nanocapsules-bacteria interactions data indicated that aggregates were formed; and zeta potential values decreased considerably for chitosan-coated formulations; and the results were confirmed by infrared spectroscopy analysis.

## 1. Data Description

The data presented in Section 1.1 refer to the results of the analytical validation for the quantification of fusidic acid in the formulations (Table 1). Section 1.2 involves determining the concentrations of fusidic acid, chitosan, concentration of nanocapsules, colony forming unit and the ratio of nanocapsules/colony forming unit used in this microbiological study (Table 2). In the Section 1.3 includes a comparison of the 2D graphs (scattered light intensity vs. diameter) where we observed overlapping point distributions for the formulations (LNC/LNC-FA and LNC/LNC-FA/LNC-FA-CS) (Fig. 1) determined by nanoparticle tracking analysis (NTA). Section 1.4 provides data for determining the thickness of the chitosan coating around the nanocapsules (Fig. 2). The data contained in section 1.5 - 1.7 are related (Figs. 3–5) to the data of the minimum inhibitory concentrations (MICs) of the formulations in contact with the bacteria *Staphylococcus aureus* (1), *Enterococcus faecalis* (2) and (3) *Staphylococcus epidermidis*. In the Section 1.8 shows data regard-

#### Table 1

Analytical results obtained from linearity, precision and accuracy of the HPLC method validated for determination of fusidic acid in the formulations.

| Parameter                       | Results                                                     |      |
|---------------------------------|-------------------------------------------------------------|------|
| Linearity                       |                                                             |      |
| Calibration range               | 10.0 – 80.0 μg mL <sup>-1</sup>                             |      |
| Regression equation             | y = 33242x + 9239.9                                         |      |
| Correlation coefficient (r)     | 0.9996                                                      |      |
| Standard error of regression    | 3.6%                                                        |      |
| (ANOVA) Linear regression       | $(F_{calculated} = 4570 > F_{critical} = 4.75; p = 0.05)$   |      |
| (ANOVA) Deviation the linearity | $(F_{calculated} = 0.9 < F_{critical} = 3.49; p = 0.05)$    |      |
| Cochran C-test                  | $(C_{calculated} = 0.464 < C_{critical} = 0.616; p = 0.05)$ |      |
| LD and LQ                       | 0.03 μg mL <sup>-1</sup> ; 0.09 μg mL <sup>-1</sup>         |      |
| Precision                       | Amount%                                                     | RSD  |
| Day 1 <sup>a</sup>              | 99.71                                                       | 1.49 |
| Day 2ª                          | 100.98                                                      | 2.07 |
| Interday <sup>b</sup>           | 100.38                                                      | 1.90 |
| Accuracy                        | Mean of recovery (%) <sup>c</sup>                           | RSD  |
| Spiked level                    |                                                             |      |
| Low                             | 101.53                                                      | 1.89 |
| Medium                          | 100.73                                                      | 1.69 |
| High                            | 98.49                                                       | 1.24 |
|                                 |                                                             |      |

<sup>a</sup> Six independent determinations in triplicate.

<sup>b</sup> Mean obtained from precision in different days.

<sup>c</sup> Three replicates for each level.

ing the zeta potential and size diameter profiles, and the polydispersity index of the particles after contact with the bacteria *Staphylococcus aureus* (1), *Enterococcus faecalis* (2) and (3) *Staphylococcus epidermidis* (Fig. 6). Section 1.9 (Figs. 7–9, Tables 3–5) presents infrared spectra data and sample assignments before and after contact with bacteria *Staphylococcus aureus* (1), *Enterococcus faecalis* (2) and (3) *Staphylococcus epidermidis*.

Section 1.1. Analytical results of validation for determination of fusidic acid in the formulations.

Section 1.2. Concentrations of fusidic acid, chitosan, concentration of nanocapsules, colony forming unit and the ratio of nanocapsules/colony forming unit.

Section 1.3. Comparison of the 2D graphs (scattered light intensity vs. diameter) where we observed overlapping point distributions for the formulations (LNC/LNC-FA and LNC/LNC-FA/LNC-FA-CS).

Section 1.4. MET imagens used for determining the thickness of the chitosan coating around the nanocapsules.

Section 1.5–1.7. Data of the minimum inhibitory concentrations (MICs) of the formulations in contact with the bacteria *Staphylococcus aureus*, *Enterococcus faecalis* and *Staphylococcus epidermidis*.

Section 1.5.

Section 1.6.

Section 1.7.

Section 1.8. Zeta potential and size diameter profiles, and the polydispersion index of the particles after contact with the bacteria *Staphylococcus aureus*, *Enterococcus faecalis* and *Staphylococcus epidermidis*.

Section 1.9. Infrared spectra data and sample assignments before and after contact with bacteria *Staphylococcus aureus*, *Enterococcus faecalis* and *Staphylococcus epidermidis*.

#### Table 2

Concentrations of fusidic acid (FA – 516.709 g mol<sup>-1</sup>) and/or chitosan (CS) (50.000 - Mw g mol<sup>-1</sup>) in  $\mu$ g mL<sup>-1</sup> and  $\mu$ mol  $L^{-1}$ . Particle number density (*PND*) in mL<sup>-1</sup>. Concentration of nanocapsules in  $\mu$ mol  $L^{-1}$ . Colony forming unit (*CFU*) in mL<sup>-1</sup> and, relation of *PND/CFU*.

| Serial microdilution method     | Conc of FA<br>(per well) µg mL <sup>-1</sup>                                                                                                                                                          | Conc of FA (per well) $\mu$ mol L <sup>- 1</sup>                                                                                                                                                      | Conc of CS (per well) $\mu g m L^{-1}$                                                                                                                                                                | Conc of CS (per well) $\mu$ mol L <sup>- 1</sup>                                                                                                                                             | $PND$ (per well) $mL^{-1}$                                                                                                                                                                        | Nanocapsule<br>(per well) µmol L <sup>– 1</sup>                                                                                                                                                            | Conc.of CFU<br>(per well) mL <sup>-1</sup>                                                                                                                                                                                  | PND/CFU<br>(per well)                                                                                                                                                                        |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | $\begin{array}{l} 4.50 \times 10^{+1} \\ 2.25 \times 10^{+1} \\ 1.13 \times 10^{+1} \\ 5.63 \times 10^{\circ} \\ 2.81 \times 10^{\circ} \\ 1.41 \times 10^{\circ} \\ 7.03 \times 10^{-1} \end{array}$ | $\begin{array}{l} 8.71 \times 10^{+1} \\ 4.35 \times 10^{+1} \\ 2.18 \times 10^{+1} \\ 1.09 \times 10^{+1} \\ 5.44 \times 10^{\circ} \\ 2.72 \times 10^{\circ} \\ 1.36 \times 10^{\circ} \end{array}$ | $\begin{array}{l} 4.00 \times 10^{+1} \\ 2.00 \times 10^{+1} \\ 1.00 \times 10^{+1} \\ 5.00 \times 10^{\circ} \\ 2.50 \times 10^{\circ} \\ 1.25 \times 10^{\circ} \\ 6.25 \times 10^{-1} \end{array}$ | $\begin{array}{l} 8.00 \times 10^{-1} \\ 4.00 \times 10^{-1} \\ 2.00 \times 10^{-1} \\ 1.00 \times 10^{-1} \\ 5.00 \times 10^{-2} \\ 2.50 \times 10^{-2} \\ 1.25 \times 10^{-2} \end{array}$ | $\begin{array}{c} 2.13 \times 10^{+11} \\ 1.06 \times 10^{+11} \\ 5.31 \times 10^{+10} \\ 2.66 \times 10^{+10} \\ 1.33 \times 10^{+10} \\ 6.64 \times 10^{+9} \\ 3.32 \times 10^{+9} \end{array}$ | $\begin{array}{l} 3.53  \times  10^{-4} \\ 1.76  \times  10^{-4} \\ 8.82  \times  10^{-5} \\ 4.41  \times  10^{-5} \\ 2.21  \times  10^{-5} \\ 1.10  \times  10^{-5} \\ 5.51  \times  10^{-6} \end{array}$ | $\begin{array}{c} 2 \ \times \ 10^{+5} \\ 2 \ \times \ 10^{+5} \end{array}$ | $\begin{array}{c} 1.06 \times 10^{+6} \\ 5.31 \times 10^{+5} \\ 2.66 \times 10^{+5} \\ 1.33 \times 10^{+5} \\ 6.64 \times 10^{+4} \\ 3.32 \times 10^{+4} \\ 1.66 \times 10^{+4} \end{array}$ |
| 8<br>9<br>10                    | $\begin{array}{l} 3.52 \ \times \ 10^{-1} \\ 1.76 \ \times \ 10^{-1} \\ 8.79 \ \times \ 10^{-2} \end{array}$                                                                                          | $\begin{array}{l} 6.80 \ \times \ 10^{-1} \\ 3.40 \ \times \ 10^{-1} \\ 1.70 \ \times \ 10^{-1} \end{array}$                                                                                          | $\begin{array}{l} 3.13 \ \times \ 10^{-1} \\ 1.56 \ \times \ 10^{-1} \\ 7.81 \ \times \ 10^{-2} \end{array}$                                                                                          | $\begin{array}{l} 6.25 \ \times \ 10^{-3} \\ 3.13 \ \times \ 10^{-3} \\ 1.56 \ \times \ 10^{-3} \end{array}$                                                                                 | $\begin{array}{l} 1.66 \ \times \ 10^{+9} \\ 8.30 \ \times \ 10^{+8} \\ 4.15 \ \times \ 10^{+8} \end{array}$                                                                                      | $\begin{array}{l} 2.76 \ \times \ 10^{-6} \\ 1.38 \ \times \ 10^{-6} \\ 6.89 \ \times \ 10^{-7} \end{array}$                                                                                               | $\begin{array}{l} 2 \ \times \ 10^{+5} \\ 2 \ \times \ 10^{+5} \\ 2 \ \times \ 10^{+5} \end{array}$                                                                                                                         | $\begin{array}{l} 8.30\times10^{+3}\\ 4.15\times10^{+3}\\ 2.08\times10^{+3}\end{array}$                                                                                                      |



**Fig. 1.** Nanoparticle Tracking Analysis (NTA) analysis: (A) LNC: lipid-core nanocapsule and LNC-FA: fusidic acid-loaded lipid-core nanocapsule; (B) LNC: lipid-core nanocapsule and LNC-FA: fusidic acid-loaded lipid-core nanocapsule and LNC-FA: clipid-core nanocapsule and LNC-FA: fusidic acid-loaded lipid-core nanocapsule.



**Fig. 2.** Transmission electron microscopy analysis: Photomicrograph of LNC-FA-CS (chitosan-coated fusidic acid-loaded lipid-core nanocapsule) (A and B) (bar = 200 nm), (C) (bar = 500 nm) and (D) ((bar = 1000 nm).



**Fig. 3.** MIC results from for *Staphylococcus aureus*: FA-Solution: aqueous solution of fusidic acid (A); CS-Solution: aqueous solution of chitosan (B); LNC: lipid-core nanocapsule (C); LNC-CS: chitosan-coated lipid-core nanocapsule (D); LNC-FA: fusidic acid-loaded lipid-core nanocapsule (E) and (F) LNC-FA-CS: chitosan-coated fusidic acid-loaded lipid-core nanocapsule. All control refers to absorbance read at 625 nm before incubation. \* Indicate significant diferences p < 0.0370. \*\*\*\*Indicate significant diferences p < 0.0001.



**Fig. 4.** MIC results from for *Enterococcus faecalis*: FA-Solution: aqueous solution of fusidic acid (A); CS-Solution: aqueous solution of chitosan (B); LNC: lipid-core nanocapsule (C); LNC–CS: chitosan-coated lipid-core nanocapsule (D); LNC-FA: fusidic acid-loaded lipid-core nanocapsule (E) and (F) LNC-FA-CS: chitosan-coated fusidic acid-loaded lipid-core nanocapsule. All control refers to absorbance read at 625 nm before incubation. \* Indicate significant diferences p < 0.0352. \*\* Indicate significant diferences p < 0.0059. \*\*\*\*Indicate significant diferences p < 0.0001.



**Fig. 5.** MIC results from for *Staphylococcus epidermidis*: FA-Solution: aqueous solution of fusidic acid (A); CS-Solution: aqueous solution of chitosan (B); LNC: lipid-core nanocapsule (C); LNC-CS: chitosan-coated lipid-core nanocapsule (D); LNC-FA: fusidic acid-loaded lipid-core nanocapsule (E) and (F) LNC-FA-CS: chitosan-coated fusidic acid-loaded lipid-core nanocapsule. All control refers to absorbance read at 625 nm before incubation. \*\* Indicate significant diferences p < 0.0089. \*\*\*\*Indicate significant diferences p < 0.0001.



**Fig. 6.** Diameter size (A), PDI (B) and (C) zeta potential profiles of formulations in contact with bacteria. Medium: MH Broth; LNC: lipid-core nanocapsule; LNC-CS: chitosan-coated lipid-core nanocapsule; LNC-FA: fusidic acid-loaded lipid-core nanocapsule and LNC-FA-CS: chitosan-coated fusidic acid-loaded lipid-core nanocapsule.



**Fig. 7.** Infrared spectra of samples before and after contact with *Staphylococcus aureus* on the interval 4000 – 1000 cm<sup>-1</sup>. (1) Control Negative (MH Broth); (2) Control Positive (MH Broth + bacteria); (3) CS (chitosan) - solution after contact with bacteria; (4) CS (chitosan) - solution before contact with bacteria; (5) FA (fusidic acid) - solution after contact with bacteria; (6) FA (fusidic acid) - solution before contact with bacteria; (7) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria; (8) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria; (9) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria; and (10) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria.



**Fig. 8.** Infrared spectra of samples before and after contact with *Enterococcus faecalis* on the interval 4000 – 1000 cm<sup>-1</sup>. (1) Control Negative (MH Broth); (2) Control Positive (MH Broth + bacteria); (3) CS (chitosan) - solution after contact with bacteria; (4) CS (chitosan) - solution before contact with bacteria; (5) FA (fusidic acid) - solution after contact with bacteria; (6) FA (fusidic acid) - solution before contact with bacteria; (7) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria; (8) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria; (9) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria and (10) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria.



**Fig. 9.** Infrared spectra of samples before and after contact with *Staphylococcus epidermidis* on the interval 4000 – 1000 cm<sup>-1</sup>. (1) Control Negative (MH Broth); (2) Control Positive (MH Broth + bacteria); (3) CS (chitosan) - solution after contact with bacteria; (4) CS (chitosan) - solution before contact with bacteria; (5) FA (fusidic acid) - solution after contact with bacteria; (6) FA (fusidic acid) - solution before contact with bacteria; (7) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria; (8) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria; (9) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria and (10) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria.

 Table 3

 Infrared assignment of the samples before and after contact with Staphylococcus aureus.

| (1)          | (2)          | (3)          | (4)          | (5)          | (6)          | (7)          | (8)          | (9)          | (10)         | Assignment                                                         |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------------------------------------------------------|
| 3778<br>3215 | 3778<br>3215 | 3778<br>3215 | 3778<br>3215 | 2970         | 3778<br>3215 | 3371<br>3215 | 3371<br>3215 | 3371<br>3215 | 3371<br>3215 | ν (NH)<br>ν (OH)                                                   |
|              |              |              |              |              |              |              | 2958         | 2951         | 2959         | $vas (CH_{3)}$                                                     |
| 2934         |              | 2010         |              | 2939<br>2910 |              |              |              | 2014         |              |                                                                    |
|              |              | 2310         |              | 2926         |              |              |              | 2926         | 2925         | vas (CH <sub>2)</sub>                                              |
|              | 2868         | 2861         |              | 2861         |              |              | 2050         | 2054         | 2052         | $\nu s (CH_{3})$                                                   |
|              | 2829         |              |              | 2853         |              |              | 2858         | 2854         | 2852         | $\nu s (CH_{2})$                                                   |
|              |              |              |              | 1740         |              |              |              |              |              | $\nu_{(C = 0)}$ ketone,<br>carboxylate dimer                       |
|              |              | 1000         |              | 1707         | 1692         |              |              |              |              | $\nu_{(C = 0)}$ Carboxyl FA                                        |
|              |              | 1650         |              | 1007         | 1649         | 1651         | 1651         | 1651         | 1651         | $\nu_{(C = 0)}$ II, amide I / $\nu$<br>(C = 0) of COO <sup>-</sup> |
| 1640         |              | 1638         | 1643         |              | 1642         | 1639         | 1639         | 1639         |              | $v_{(C = 0)}$ III, amide I                                         |
|              |              | 1634         |              |              | 1636         | 1634         | 1634         | 1634         | 1635         | $v_{(C = 0)} / v_{(C = 0)}$<br>(amide I)                           |
|              |              | 1622         | 1628         |              | 1622         | 1620         | 1620         | 1620         | 1620         | $\mathcal{V}_{(C = C)}$ FA                                         |
|              |              | 1550         |              | 1549         | 1549         |              |              |              |              | $v_{(NH)}$ , amide II                                              |
| 1463         | 1463         | 1440         |              |              |              | 1460         | 1460         | 1460         | 1460         | $\delta as_{(CH2)}, \delta as_{(CH3)} / FA$                        |
|              |              | 1448         |              |              |              | 1445         | 1445         | 1445         |              | o <sub>(CH2)</sub> / rA                                            |
|              |              |              |              | 1376         |              |              |              |              |              | $\nu_{(C = C)}$ aromatic FA                                        |
| 1150         | 1145         |              |              | 1233         |              |              |              |              |              | $\nu$ as (PO2-), $\nu$ (CO), FA                                    |
|              | 1129         |              |              |              |              |              |              |              |              | · (c=0), 7 (c01)                                                   |
| 1008         |              |              |              | 1020         | 1008<br>983  |              |              |              |              | v in-plane (C-H), FA                                               |
|              |              |              |              |              | 967          |              | 954          |              |              | FA                                                                 |
|              |              |              |              |              |              |              | 944          |              | 947          | $v_{(COP)} / \delta$ out-of-plane (OH), FA                         |
|              |              | 012          |              |              | 909          |              |              | 800          |              | $v_{(COP)}$                                                        |
|              | 759          | 613          |              |              | 785          |              |              | 809          |              | FA                                                                 |
|              |              | 737          |              | 742          |              | 703          |              |              |              | $\rho$ out-of-plane $_{\rm (-C-H)}$ , FA                           |

(1) Control Negative (MH Broth); (2) Control Positive (MH Broth + bacteria); (3) CS (chitosan) - solution after contact with bacteria; (4) CS (chitosan) - solution before contact with bacteria; (5) FA (fusidic acid) - solution after contact with bacteria; (6) FA (fusidic acid) - solution before contact with bacteria; (7) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria; (8) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria; (9) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria and (10) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria.

( $\nu$ ) stretching mode; ( $\delta$ ) bending mode; ( $\rho$ ) rocking band; (as) asymmetrical band; (s) symmetrical band.

 Table 4

 Infrared assignment of the samples before and after contact with Enterococcus faecalis.

| (1)  | (2)  | (3)  | (4)  | (5)  | (6)  | (7)  | (8)  | (9)  | (10) | Assignment                                                  |
|------|------|------|------|------|------|------|------|------|------|-------------------------------------------------------------|
| 3778 |      | 3778 |      |      |      |      |      |      |      |                                                             |
| 3380 |      |      |      |      |      |      |      |      |      | ν <sub>(NH)</sub>                                           |
| 3216 | 3216 | 3126 | 3216 | 3216 | 3216 |      |      |      |      | ν <sub>(OH)</sub>                                           |
| 2934 |      | 2965 |      |      |      |      | 2958 |      | 2958 | vas (CH <sub>3</sub> )                                      |
| 2926 |      | 2926 |      |      |      | 2925 | 2926 | 2925 | 2926 | vas (CH <sub>2</sub> )                                      |
|      |      | 2861 |      |      |      |      |      |      |      | νs (CH <sub>3</sub> )                                       |
|      |      | 2851 |      |      |      |      | 2853 |      | 2853 | νs (CH <sub>2</sub> )                                       |
|      |      | 1739 |      |      |      |      |      |      | 1738 | $\nu_{(C = 0)}$ , carboxylic acid                           |
|      |      |      |      |      |      | 1653 | 1647 | 1653 |      | $\nu_{(C = 0)}$ of COO <sup>-</sup>                         |
| 1640 |      | 1642 | 1643 |      |      | 1645 | 1642 | 1645 | 1640 | $\mathcal{V}(C = 0)$                                        |
|      |      | 1635 |      |      |      | 1635 | 1635 | 1635 |      | $\nu_{(C = 0)}$ (amide I)                                   |
| 1620 |      | 1625 | 1628 |      |      | 1626 | 1620 | 1626 | 1622 | $\delta$ scissoring N–H                                     |
|      |      |      |      |      |      | 1551 |      | 1551 |      | $\nu_{(NH)}$ amide II                                       |
| 1463 |      |      | 1464 |      |      |      |      |      |      | $\delta$ as <sub>(CH2)</sub> , $\delta$ as <sub>(CH3)</sub> |
|      |      | 1369 |      |      |      | 1395 |      |      | 1395 | $\nu$ (C = 0) of COO <sup>-</sup> / $\delta$ C-O-H CS       |
|      |      | 1274 |      |      |      |      | 1243 |      | 1276 | ν C-O CS                                                    |
|      |      | 1157 |      |      |      | 1157 | 1161 | 1149 | 1159 | $\nu$ as <sub>(C-O)</sub> , CO-O-C- ester bonds             |
| 1150 |      |      |      |      |      | 1148 |      |      |      | ν <sub>(C-0)</sub> , γ <sub>(COH)</sub>                     |
|      |      | 1103 |      |      |      |      |      |      | 1105 |                                                             |
|      |      | 1096 |      |      |      | 1089 | 1101 |      | 1095 | ν <sub>(C-N)</sub>                                          |
|      |      | 1084 |      | 1084 |      |      |      |      |      | FA                                                          |
|      |      |      |      | 1051 |      |      | 1053 |      | 1059 | ν <sub>(COH)</sub> , FA                                     |
|      |      |      |      | 1036 |      | 1038 |      | 1038 |      | FA                                                          |
| 1008 |      |      |      |      | 1010 |      |      |      | 1018 | $\nu$ in-plane <sub>(C-H)</sub> , FA                        |
|      |      |      |      |      | 958  |      |      |      | 954  | FA                                                          |
|      |      |      |      |      | 943  |      |      |      | 941  | $\delta$ out-of-plane $_{\rm (OH)}$ , FA                    |
| 814  |      |      | 814  |      |      | 813  |      |      |      | $\nu$ out-of-plane $_{(N-H)}$                               |
| 767  |      |      | 743  |      |      | 741  |      |      |      | $\delta$ out-of-plane $_{\rm (C-H)}$ , FA                   |
|      |      |      |      |      |      |      |      | 712  |      | $ ho$ out-of-plane $_{(\text{-C-H})}$ , FA                  |

(1) Control Negative (MH Broth); (2) Control Positive (MH Broth + bacteria); (3) CS (chitosan) - solution after contact with bacteria; (4) CS (chitosan) - solution before contact with bacteria; (5) FA (fusidic acid) - solution after contact with bacteria; (6) FA (fusidic acid) - solution before contact with bacteria; (7) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria; (8) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria; (9) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria and (10) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria.

( $\nu$ ) stretching mode; ( $\delta$ ) bending mode; ( $\rho$ ) rocking band; (as) asymmetrical band; (s) symmetrical band.

 Table 5

 Infrared assignment of the samples before and after contact with Staphylococcus epidermidis.

| (1)  | (2)  | (3)  | (4)  | (5)  | (6)  | (7)  | (8)  | (9)  | (10) | Assignment                                                   |
|------|------|------|------|------|------|------|------|------|------|--------------------------------------------------------------|
| 3380 | 3380 | 3380 | 3380 | 3380 | 3380 | 3369 | 3369 | 3369 | 3369 | ν <sub>(NH)</sub>                                            |
| 3219 | 3219 | 3219 | 3219 | 3219 | 3219 | 3214 | 3214 | 3214 | 3214 | ν <sub>(OH)</sub>                                            |
|      |      |      |      |      |      |      | 2957 |      | 2957 | vas (CH <sub>3</sub> )                                       |
| 2926 |      | 2929 |      |      | 2924 | 2926 | 2924 | 2926 | 2925 | vas (CH <sub>2</sub> )                                       |
|      |      |      | 2904 |      |      | 2862 |      |      | 2860 | vs (CH <sub>3</sub> )                                        |
|      | 2853 |      |      | 2850 |      | 2854 | 2856 | 2857 | 2852 | vs (CH <sub>2</sub> )                                        |
|      | 2843 |      | 2841 |      |      |      |      |      |      |                                                              |
|      |      |      |      |      |      | 1745 | 1745 | 1751 |      | $v_{(C = 0)}$ ketone, carboxylic                             |
|      |      |      |      |      |      |      | 1731 |      | 1738 | $\mathcal{V}(\mathcal{C}=0)$                                 |
|      |      |      |      |      |      | 1664 |      |      |      | $v_{(C = 0)}$ carboxylic acid FA                             |
| 1651 | 1648 | 1649 |      | 1650 | 1649 |      | 1650 | 1655 | 1649 | $\nu_{(C = 0)}$ , amide I / $\nu(C = 0)$ of COO <sup>-</sup> |
| 1643 | 1641 | 1640 | 1643 | 1641 | 1641 | 1646 | 1641 | 1643 | 1642 | $\mathcal{V}(\mathcal{C}=0)$                                 |
|      | 1634 | 1633 | 1626 | 1634 | 1634 | 1630 | 1632 | 1627 | 1633 | $\nu_{(C = 0)}$ , amide I                                    |
| 1620 | 1622 |      | 1623 | 1624 |      |      | 1621 |      | 1623 | $\delta$ scissoring (N-H)                                    |
|      |      |      | 1549 |      |      |      |      |      |      | $\delta_{(N-H)+\nu(C-N)}/\nu_{(NH)}$ amide II                |
| 1469 |      | 1469 | 1471 | 1464 |      | 1468 | 1471 | 1465 |      | $\nu_{(C = C)}$ , FA                                         |
| 1460 | 1459 | 1459 |      | 1459 | 1459 |      | 1459 |      | 1460 | $\delta_{(CH2)}$ , $\delta_{as}_{(CH3)}$                     |
| 1443 |      | 1443 | 1443 |      | 1444 |      |      |      |      | FA                                                           |
| 1428 |      |      |      | 1428 |      | 1431 |      |      | 1426 | $\nu_{(C-N)}$ aromatic, FA                                   |
| 1405 |      |      | 1405 |      |      |      |      |      |      | $\nu$ (C-N), CS/ $\nu$ (C = 0) of COO <sup>-</sup> , FA      |
|      |      |      |      |      |      | 1381 |      |      |      | $v_{(C = C)}$ aromatic                                       |
|      |      |      |      |      |      | 1372 |      |      |      | δ <sub>(CH)</sub>                                            |
|      |      |      |      |      |      |      | 1002 |      |      | $\mathcal{V}(C = C)$                                         |
|      |      |      | 970  |      |      | 955  |      |      |      |                                                              |
|      |      |      |      |      |      | 944  |      |      |      | $\gamma$ ring $\nu$ (C-C)                                    |
|      |      |      |      | 814  |      |      | 835  |      |      | N-H out-of-plane motion, FA                                  |
|      | 757  | 736  |      | 743  |      | 737  | 755  | 748  | 740  | ho out-of-plane (-C-H)                                       |

(1) Control Negative (MH Broth); (2) Control Positive (MH Broth + bacteria); (3) CS (chitosan) - solution after contact with bacteria; (4) CS (chitosan) - solution before contact with bacteria; (5) FA (fusidic acid) - solution after contact with bacteria; (6) FA (fusidic acid) - solution before contact with bacteria; (7) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria; (8) LNC-FA (fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria; (9) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) after contact with bacteria and (10) LNC-FA-CS (chitosan-coated fusidic acid-loaded-lipid-core nanocapsules) before contact with bacteria. ( $\nu$ ) stretching mode; ( $\delta$ ) bending mode; ( $\rho$ ) rocking band; (as) asymmetrical band; (s) symmetrical band.

## 2. Experimental Design, Materials and Methods

#### 2.1. FA quantification by liquid chromatography (HPLC)

HPLC instrument (Shimadzu HPLC; composed of LC-20AT pump, SIL-20AHT injector, UV/Vis SPD-20A detector and CBM-20A controller) was used to quantify folic acid in the fomrulations. The analysis was carried out using a column LiChroCART<sup>®</sup> 250 - 4 and LiChrospher<sup>®</sup> 100 RP - 18 (5 µm) and a mobile phase consisting of acetonitrile:water:acetic acid (70:29:1 v/v/v). The injection volume was 50 µL, and the flow rate 1 mL min<sup>-1</sup>. FA was detected at 210 nm with a retention time of 10 min. The methodology was validated using an FA stock solution and respective dilutions in terms of specificity, linearity, precision, accuracy, limit of detection and quantification. All measures were carried in triplicate (n = 3).

The total concentration of FA in the nanocapsule formulation was determined after extraction using acetonitrile. A sample of the formulation (500  $\mu$ L) was added in a volumetric flask with 10 mL of capacity. Then, the volume was adjusted with acetonitrile. The solution was sonicated (RMS unique ultrasonic, Brazil) for 120 min. An aliquot was filtered (Filter, SartoriusStedim, 0.45  $\mu$ m, Biotech, Germany) and injected for analysis (HPLC).

The encapsulation efficiency was determined after determining the total concentration and the concentration in the ultrafiltrate (non-encapsulated FA). The latter was measured after ultrafiltration-centrifugation. A sample (400  $\mu$ L) of each formulations (LNC-FA or LNC-FA-CS) were separately inserted into ultrafiltration units (10 kDa, Amicon<sup>®</sup> Ultra – 0.5 mL, Ireland) and centrifuged (1870  $\times$  g) for 5 min. After centrifugation, each ultrafiltrate (LNC-FA or LNC-FA-CS) was directly injected (50  $\mu$ L) for analysis (HPLC).

## 2.2. Nanoparticle tracking analysis

Nanoparticle tracking analysis was carried out using a LM10 instrument (NanoSight, NanoSight Ltd., Wiltshire, UK). Samples of the nanocapsule formulations were diluted (10,000x) in pre-filtered (0.45 µm, Millipore<sup>®</sup>) ultrapure water. Each diluted solution was injected into the chamber and analyzed (10 s) at 22–25 °C. Light scattered by individual nanocapsules in Brownian motion is observed and recorded using a CCD camera coupled to the microscope. The video is analyzed by *NTA Analytical Software* (NanoSight Ltd., Wiltshire, UK) providing size distribution curves, mean diameters and particle number density (*PND*) (particles mL<sup>-1</sup>).

#### 2.3. Transmission electron microscopy

The nanocapsule formulations were analyzed using the JEM 1200 EXII microscope (JEOL, Japan) at the Microscopy and Microanalysis Center of the Federal University of Rio Grande do Sul (CMM-UFRGS, Porto Alegre, Brazil). The images were recorded operating with a voltage of 80 kV. Previously, samples of the formulations were diluted in water (1:10, v/v) and deposited (20 µL) on copper grids (400 mesh) (Formvar/Carbon film). A negative contrast consisting of 2% uranyl acetate solution was dropped on each grid. The excess of solution was removed with a paper filter. Subsequently, the grids were maintained in a desiccator under vacuum (24 h). The photomicrographs images were processed on a computer using the public domain NIH Image program (developed at the U.S. National Institutes of Health and available on the Internet at http://rsb.info.nih.gov/nih-image/) Using *ImageJ*, we also determined the thickness of the chi-tosan coating around of the nanocapsules in nm.

## 2.4. Minimum inhibitory concentration

The serial microdilution method was used in liquid growth medium MH at 37 °C for 24 h, in 96-well plates. The minimum inhibitory concentration (MIC) of FA ( $\mu$ mol  $L^{-1}$ ) were determined

in *Staphylococcus aureus* (*S. aureus*) (ATCC 25,923), *Enterococcus faecalis* (*E. faecalis*) (ATCC 29,212) and a *Staphylococcus epidermidis* (*S. epidermidis*) strain resistant to antibiotics, including gentamicin, erythromycin, ciprofloxacin, norfloxacin, cefoxitin and sulfamethoxazole/trimethoprim. Bacterial growth (BG) was determined by the measurements of absorbance (at 625 nm) to access turbidity of the medium before (T0) and after 24 h (T24) of incubation.

# 2.5. Mean diameter, polydispersity index and zeta potential of formulations after contact with bacteria

Mean diameter, polydispersity index and zeta potential of formulations were investigated after contact with bacteria (*S. aureus, E. faecalis* and *S. epidermidis*). The formulations (0.2 mL) were added into the culture medium containing the microorganisms (96-well plates). After a period of contact (24 h), an aliquot (0.02 mL) was withdrawn and diluted (500x) in water to determine the particle size distribution. In parallel, an aliquot (0.02 mL) was withdrawn and diluted (500x) in 10 mmol  $L^{-1}$  NaCl aqueous solution to determine the zeta potential. All results were carried in triplicate (n = 3). Formulations were used at MIC and bacterial concentrations were fixed at  $2 \times 10^5$  CFU mL<sup>-1</sup>.

## 2.6. Infrared spectroscopy

The vibrational spectra of the nanocapsules at MIC concentrations after contact with bacteria (*S. aureus, E. faecalis* and *S. epidermidis*) were studied by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The spectra of the formulations in contact (or not) with bacteria in the MH broth were obtained using a Perkin Elmer instrument (Spectrum BX, USA) equipped with attenuated transmission reflectance accessory (MIRacle, ZnSe accessory, USA). Each measurement was performed by adding an aliquot (10 - 20  $\mu$ L) of sample in the equipment unit. After that, measurements were performed in the range from 4000 to 600 cm<sup>-1</sup>, 64 scans with a resolution of 4.0 cm<sup>-1</sup>. The spectrum baseline was corrected and the noise smoothed using the Savizky-Golay function. The derived function was used to start the analysis.

## **Ethics Statement**

All authors have been personally and actively involved in substantial work leading to the paper, and take public responsibility for its content.

## **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

## **CRediT** authorship contribution statement

**Rodrigo Cé:** Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing - original draft. **Barbara Z. Pacheco:** Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing - original draft. **Taiane M. Ciocheta:** Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing - original draft. **Fabio S. Barbosa:** Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing - original draft. **Fabio S. Barbosa:** Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing - original draft. **Aline de CS Alves:** Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing - original draft.

**Danieli R. Dallemole:** Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing - original draft. **Vladimir Lavayen:** Conceptualization, Methodology, Validation, Writing - review & editing, Supervision, Project administration, Funding acquisition. **Silvia S. Guterres:** Conceptualization, Methodology, Validation, Writing - review & editing, Supervision, Project administration, Funding acquisition. **Martin Steppe:** Conceptualization, Methodology, Validation, Writing - review & editing, Supervision, Project administration, Funding acquisition. **Adriana R. Pohlmann:** Conceptualization, Methodology, Validation, Writing - review & editing, Supervision, Project administration, Funding acquisition.

## Acknowledgments

The authors thank the Brazilian Agencies: Coordination for the Improvement of Higher Education Personnel (CAPES), National Council of Technological and Scientific Development (CNPq) and Research Support Foundation of the State of Rio Grande do Sul (FAPERGS: PRONEX FAPERGS/CNPq 12/2014 #16/2551–0000467–6 and Pesquisador Gaucho 17/2551–0001 002–7). "This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001". This study is part of the National Institute of Science and Technology in Pharmaceutical Nanotechnology: a transdisciplinary approach INCT-NANOFARMA, which is supported by Sao Paulo Research Foundation (FAPESP, Brazil) Grant #2014/50928–2, and by National Council of Technological and Scientific Development (CNPq, Brazil) Grant # 465687/2014–8. We are thanking Profa. Fatima Theresinha Costa Rodrigues Guma (Department of Biochemistry/UFRGS) for facilities provided on the use of SpectraMax M5 equipment and to Profa. Juliana Caierao (Department of Clinical Analysis/UFRGS) for having kindly gifted the bacteria used in this study.

#### Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2021.107089.

## Further Reading

R. Cé, B.Z. Pacheco, T.M. Ciocheta, F.S. Barbosa, A.C.S. Alves, D.R. Dallemole, V. Lavayen, S.S. Guterres, M. Steppe, A.R. Pohlmann, Antibacterial activity against Gram-positive bacteria using fusidic acid-loaded lipid-core nanocapsules, React. Funct. Polymers (2021).