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Abstract

Phylogeographic methods can help reveal the movement of genes between populations of organisms. This has been
widely done to quantify pathogen movement between different host populations, the migration history of humans, and
the geographic spread of languages or gene flow between species using the location or state of samples alongside
sequence data. Phylogenies therefore offer insights into migration processes not available from classic epidemiological
or occurrence data alone. Phylogeographic methods have however several known shortcomings. In particular, one of the
most widely used methods treats migration the same as mutation, and therefore does not incorporate information about
population demography. This may lead to severe biases in estimated migration rates for data sets where sampling is
biased across populations. The structured coalescent on the other hand allows us to coherently model the migration and
coalescent process, but current implementations struggle with complex data sets due to the need to infer ancestral
migration histories. Thus, approximations to the structured coalescent, which integrate over all ancestral migration
histories, have been developed. However, the validity and robustness of these approximations remain unclear. We
present an exact numerical solution to the structured coalescent that does not require the inference of migration
histories. Although this solution is computationally unfeasible for large data sets, it clarifies the assumptions of previously
developed approximate methods and allows us to provide an improved approximation to the structured coalescent. We
have implemented these methods in BEAST2, and we show how these methods compare under different scenarios.

Key words: phylodynamics, phylogenetics, population structure, migration, phylogeography, infectious diseases.

Introduction

The relatedness of samples of homologous genetic sequences
are the result of a past branching process. The same applies to
other sources of data, such as languages or phenotypic
markers. This past branching process contains information
about ancestral population histories and can be inferred
from data using phylogenetic trees. In particular, phylogenies
encode information about the structure of a population and
the movement of information (e.g, genes or words) between
subpopulations. Phylogeographic methods allow us to eluci-
date such movements given the state or location of samples.
Phylogeographic methods have been used to analyze the glo-
bal spread of influenza viruses (Bedford et al. 2010; Bahl et al.
2011; Lemey et al. 2014; Bedford et al. 2015), the origins of HIV-
1 (Faria et al. 2014) and various other diseases (Bourhy et al.
2008; Raghwani et al. 2011). Analogously to the analysis of
epidemics, such methods have been used to study the geo-
graphic origin of species such as brown and polar bears
(Edwards et al. 2011). Related methods have been used to
study the demographic history of species, including their di-
vergence from related species of humans (Gronau et al. 2011)
and great apes (Mailund et al. 2012). Similar methods have
also been applied to study the origin of the Indo-European
language family (Bouckaert et al. 2012).

A range of phylogeographic methods for inferring popula-
tion structure from phylogenies have been proposed. The

mugration method (Lemey et al. 2009) treats migration as a
continuous time Markov chain, such as used to model mu-
tation, and assumes the migration process to be independent
of the tree generating process. In other words, it is assumed
that the shape of a phylogeny is not in any way influenced by
the migration process. This assumption can lead to biases in
estimates of migration rates when sampling is biased (De
Maio et al. 2015). Other methods, such as those based on
the structured coalescent (Takahata 1988; Hudson 1990;
Notohara 1990) and the related isolation-with-migration
models (Wakeley 2000; Nielsen and Wakeley 2001; Hey
2010), do not make this independence assumption. In con-
trast to the mugration-based methods, they require the state
(or location) of any ancestral lineage in the phylogeny at any
time to be inferred (Beerli and Felsenstein 2001; Ewing et al.
2004; Vaughan et al. 2014). Inferring lineage states is compu-
tationally expensive, as it normally requires Markov chain
Monte Carlo (MCMC) based sampling, and limits the com-
plexity of scenarios that can be analyzed.

Other approaches (Volz 2012; Palczewski and Beerli 2013)
seek to marginalize over all possible migration histories by
treating lineage states probabilistically instead of using
MCMC based sampling. Rather than assigning lineages to
particular states, the probability of each lineage being in
each state is calculated at all times using a set of previously
described differential equations (Volz 2012). Such a
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marginalization approach (rather than explicit sampling of
states) allows for the analysis of larger data sets (De Maio
et al. 2015). Although this approach appears to only make the
assumption of lineage independence, that is, that the state or
location of one lineage does not depend on any other lineage
(De Maio et al. 2015), it remains unclear if there are additional
assumptions not being accounted for.

In this paper, we derive an exact numerical solution of the
structured coalescent with discrete states for neutrally evolv-
ing homologous non-recombinant sequences. This solution is
based on the joint probabilities of lineages being in any pos-
sible configuration. However, it quickly becomes computa-
tionally unfeasible for more than a few lineages and states. It
allows us however to clarify the assumptions used in previous
approaches (Volz 2012; De Maio et al. 2015) and to develop a
more refined approximation to the structured coalescent. We
then show how the different approximations compare in
terms of tree, parameter and root state inference under
both biased and unbiased sampling conditions. Simulations
reveal that our new approximation outperforms previous
approximations at comparable computational cost. We
then apply these different approximations to a previously
described avian influenza virus data set (Lu et al. 2014)
sampled from different regions of North America to show
that the choice of method influences the interpretation of
data in practice.

New Approaches

The structured coalescent describes a coalescent process in
subpopulations between which individuals can migrate (see
Methods). The state of a lineage in a phylogenetic tree now
denotes the subpopulation to which the lineage belongs.
Approaches that calculate the probability density of a phyl-
ogeny under the structured coalescent given a set of coales-
cent and migration rates typically use MCMC to integrate
over possible migration histories, that is, to integrate over
ancestral lineage states. Using this Monte Carlo integration
however strongly limits the size of data sets that can be
analyzed. Already at a small number of different states, effi-
ciently exploring the space of all possible migration histories
becomes unfeasible. Methods that are able to integrate over
these migration histories but avoid MCMC sampling hold
great promise in their ability to analyze larger data sets. We
therefore derive an exact solution to the structured coales-
cent process with discrete states for neutrally evolving pop-
ulations that integrates over all possible migration histories
using ordinary differential equations. We refer to this ap-
proach as ESCO, the exact structured coalescent.

Although ESCO is exact, it requires solving a number of
differential equations that is proportional to the “number of
different states” to the power of the “number of coexisting
lineages”. This originates from the need to calculate the prob-
ability of every possible configuration of a set of coexisting
lineages and states using migration and coalescent rates. We
therefore develop a lower-dimensional approximation that is
based on keeping track of the marginal lineage state proba-
bilities instead. We call this approach the marginal lineage

states approximation of the structured coalescent (MASCO).
This approach allows us to reduce the number of differential
equations that have to be solved between events to the
“number of states” times “number of lineages”, but ignores
any correlations between lineages. Using this approach, the
state of a lineage is calculated backwards through time, inte-
grating over potential migration events and incorporating the
probability of no coalescent events between branching events
in the phylogeny. This means that the state or location of a
lineage is directly dependent on the coalescent process. In
particular, the observation that two lineages that do not co-
alesce for a longer time are unlikely to be in the same state is
incorporated in this approach.

In comparison to MASCO, we show that the approach of
(Volz 2012) requires the additional assumption that the state
of a lineage evolves independently of the coalescent process
between events. This means that changes in the probabilities
of lineages being in a certain state are only dependent on the
migration rates, and are completely independent of other
lineages in the phylogeny. We refer to this approach as
SISCO, the state independence approximation of the struc-
tured coalescent. The differential equations describing how
lineages evolve between events for ESCO and MASCO are
both derived in the Materials and Methods section and the
differential equations for SISCO have been derived previously
(Volz 2012).

Results

Tree Height Distributions under the Structured
Coalescent and Its Approximations

The structured coalescent and its approximations describe
different probability distributions over trees. To see how these
distributions compare, we performed direct backwards-in-
time simulations under the structured coalescent using
MASTER (Vaughan and Drummond 2013), analogously to
Vaughan et al. (2014). These trees were compared with trees
sampled under ESCO, MASCO, SISCO, as well as BASTA (De
Maio et al. 2015), a numerical approximation of SISCO. Under
these latter four models, trees were sampled from their re-
spective probability distributions using MCMC in BEAST2
(Bouckaert et al. 2014). Since it is difficult to directly compare
distributions of trees, we instead compared the distribution of
tree heights.

For each of the five scenarios (direct, ESCO, MASCO,
SISCO, BASTA) and three different overall migration rates,
we obtained 8,000 trees. We used a model with three different
states, sampling three, two and one individuals from each
state, respectively. Coalescent rates were different in each
state (4 = 1, 4, = 2, A3 = 4) and migration rates were dif-
ferent between states (mq; = 1,m;3 =2,my; = 0.1,
my3 = 0.3,m3 1 = 1,ms, = 1). To show how the different
methods perform under different overall migration rates, the
rates between states were scaled by factors of 1 (fast migra-
tion), 0.1 (medium migration), and 0.01 (slow migration). All
rates are given in arbitrary units of time.

Figure 1 shows the distribution of tree heights sampled
using MCMC and compares them to the distribution of tree
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Fic. 1. Comparison of MCMC sampled to simulated tree heights using the different structured coalescent approaches. Sampled tree heights in
arbitrary units of time when the rates of migration are fast, that is, in the same order of magnitude as coalescence, when the rates of migration are
medium, that is, one order of magnitude lower than coalescence and slow, that is, two orders of magnitude lower than coalescence. The trees were
sampled using MCMC for one million iterations, storing every thousandth step, after a burn-in of 20%.

heights obtained by directly simulating trees under the struc-
tured coalescent. Of the different methods, only the distribu-
tion of ESCO is consistent with direct simulation. Only
keeping track of the marginal lineage states (MASCO) leads
to slightly shorter tree heights. Further assuming lineage states
to be independent of the coalescent process (SISCO) results
in much shorter trees. BASTA (De Maio et al. 2015), being an
approximation of SISCO, performs very similar to SISCO. The
shorter tree heights under SISCO compared with MASCO can
be explained in the following way. Not taking into account
how the coalescent process influences lineage states leads to
an overestimation of the probability of two lineages being in
the same state if no coalescent event is observed by SISCO
compared with MASCO. Overestimating the probability of
two lineages being in the same state then also leads to a
higher probability of them coalescing. This in turn results in
shorter trees since lineages are expected to coalesce at a faster
rate. SISCO and BASTA in general perform worse at slower
migration rates than at rates in the same order of magnitude
as the rates of coalescence.

Root State Probabilities

The ancestral state or location of lineages back in time is often
of interest for biological questions. For example, in a pathogen
phylogeny the root location is informative of the geographic
origin of an epidemic. Here, we show on one fixed tree how
the exact structured coalescent compares in the inference of
the root state to its approximations. We additionally inferred
the root state using MultiTypeTree (Vaughan et al. 2014),
which uses MCMC to sample lineage states and does not
rely on approximations, to obtain a reference root state prob-
ability (Vaughan et al. 2014). We inferred the probability of
the root being in either state for different migration rates in
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one direction while holding the rate in the other direction
constant.

The exact structured coalescent and only keeping track of
the marginal lineage states (MASCO) agree well with the
inferred posterior mean using MultiTypeTree (fig. 2). The
inferred state probabilities using SISCO on the other hand
do not, showing that the assumption of independence be-
tween the lineage states and the coalescent process does not
only describe a misspecified probability distribution over trees
but can also lead to biased inference of ancestral states.

Estimation of Migration Rates

Coalescent methods are often used to infer population and
migration parameters from trees. To show how the inference
of the migration rates compares to the true rate, we simu-
lated 1,000 trees under the structured coalescent with sym-
metric migration rates from 107° to 1and pairwise coalescent
rates of 2 using MASTER. Hence, we consider a range of cases
from very strong to very weak population structure, where
the probability of migration is on the same order as coales-
cence. Each tree consisted of four contemporaneously
sampled leafs from each of the two states. We fixed the co-
alescent rates to the truth, assumed symmetric migration
rates and then inferred the maximum likelihood estimate
of the migration rate using the exact structured coalescent
(ESCO) and its approximations MASCO and SISCO.

The results are summarized in figure 3. When only keeping
track of the marginal lineage states (MASCO), the migration
rates are estimated well. Making the further assumption of
independence of the lineage states and the coalescent process
(SISCO) leads to strong biases in estimates of the migration
rates. The lower the migration rates are compared with the
coalescent rates, the greater the underestimation of the mi-
gration rates becomes.
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Fic. 3. Maximum likelihood estimates of migration rates using the
exact structured coalescent and its approximations. Here, we com-
pare simulated migration rates (x-axis) to the maximum likelihood
estimates of the migration rate (y-axis), estimated using the exact
structured coalescent ESCO and its approximations MASCO and
SISCO. The coalescent rates are fixed to the truth, and the migration
rates are assumed to be symmetric. The red line indicates where the
true values should lie.

Estimation of Rate Asymmetries

In the previous section, we inferred the rate of migration
given (or conditional on) the true coalescent rate and the
information that the migration rates were the same in both
directions. In reality, these rates can greatly vary across states
or locations. It is therefore important for methods to be able
to perform well in situations where rates are asymmetric.

ree was ~42 arbitrary units of time and the coalescent rates were 2 (in blue)

Previous work showed that the ability to infer migration
rate asymmetries greatly depends on the method used (De
Maio et al. 2015). Here, we compare inferences of rate asym-
metries under MASCO and SISCO. Applying ESCO to the
same trees would not be computationally feasible, due to
the larger number of lineages existing in parallel.

Figure 4 shows the median ratios of inferred coalescent
and migration rates using MASCO and SISCO. The estimates
of coalescent rate ratios (fig. 4, top row) are accurate under
both simulation scenarios and methods. Estimates of the mi-
gration rate ratios are biased in the presence of asymmetric
coalescent rates (fig. 4, bottom left) using SISCO, but not
MASCO. SISCO overestimates the backwards in time migra-
tion rate out of the state with a faster coalescent rate and into
the state with a slower coalescent rate. An underestimation of
the rate in the other direction was observed as well. When the
coalescent rates are symmetric, both methods are unable to
capture very strong asymmetries in the migration rate ratios
(fig. 4, bottom right). However, when taking into account the
highest posterior density (HPD) intervals of the estimates,
most estimates contain the true rate ratio (see supplementary
figs. ST and S2, Supplementary Material online). MASCO is
overall better at inferring those migration rate asymmetries
than SISCO.

Sampling Bias
Previous work showed that the approximate structured co-
alescent is able to accurately infer migration rates even when
sampling fractions are biased, given samples are taken con-
temporaneously (De Maio et al. 2015). Here, we explore the
effect of biased sampling fractions in the presence of serial
sampling. We compare the exact structured coalescent ESCO
to its approximations MASCO and SISCO.

Figure 5 reveals that ESCO is able to unbiasedly infer the
migration rates in both directions, independent of sampling
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Fic. 4. Inferred asymmetry of migration and coalescent rates. Here we show the inferred median coalescent (upper row) and migration (lower row)
rate ratios under different conditions. In the first column, the coalescent rate ratios (x-axis) are varied while the migration rates ratios are kept
constant. In the second column, the migration rate ratios (x-axis) are varied, whereas the coalescent rate ratios are kept constant. We simulated a
total of 2,000 trees using MASTER with 100 tips from each of the two different states sampled uniformly between times t = 0 and t = 10. Of these
trees, 1,000 were simulated with pairwise coalescent rate ratios 4,/ 4, from 0.01 to 1, 4, + 4, = 4 and migration rates in both directions equal to 1.
The other 1,000 trees were simulated with migration rate ratios from m,,/m,, from 0.01 to 1, m;, + m,; = 2 and pairwise coalescent rates in both
states equal to 2, using exponential priors with mean 2 for the coalescent rates and mean 1 for the migration rates. Both coalescent rates and both
migration rates are estimated. The red line indicates where the estimates should lie.

biases or migration rates. The same applies to MASCO. For
SISCO however, biased sampling leads to an underestimation
of the backwards migration rate into the oversampled state
and an overestimation of the rates into the undersampled
state for intermediate and high migration rates. At low mi-
gration rates, both rates are underestimated.

Application to Avian Influenza Virus
To show how the inference of the origin of an epidemic varies
with the method used, we applied the two approximations of
the structured coalescent (MASCO and SISCO) to a previ-
ously described avian influenza data set (Lu et al. 2014; De
Maio et al. 2015) to infer the geographic location of the root.
In figure 6, we show the inferred region of the root using
MASCO and SISCO. Despite the fact that almost all samples
from the central US were collected after 2009 and that sam-
ples from the East Coast and the North West fall closer to the
root, SISCO places the root with over 80% probability in the
central US. MASCO on the other hand places the root to be
most likely at the East Coast, one of the least likely root
locations according to SISCO. Also, in contrast to SISCO it
does not exclude most regions from being the location of the
root based on the phylogenetic data available. We provide a
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possible explanation to why we observe differences in the
inferred root state in the Discussion below.

Discussion

We provide an exact way to calculate the probability density
of a phylogenetic tree under the structured coalescent
(Takahata 1988; Hudson 1990; Notohara 1990) without the
need to sample migration histories, as in previously described
approaches (Beerli and Felsenstein 2001; Ewing et al. 2004;
Vaughan et al. 2014), by solving a set of ordinary differential
equations.

Additionally, we introduce a new approximation that is
more accurate than a previously described approximation
(Volz 2012). This new approximation facilitates a trade-off
between speed and accuracy. The increased speed compared
with the exact solution originates from ignoring any correla-
tions between lineages. This assumption leads to better scal-
ing of the computational complexity with the number of
states and lineages. We show that this assumption allows
us to infer migration, coalescent rates and root states in all
scenarios tested within this simulation study.

Additionally assuming independence of the lineages states
from the coalescent process, as introduced in (Volz 2012),
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t = 25. Each simulation was repeated 100 times and each inference was run with 3 parallel MCMC chains, each with different initial values. An
exponential prior distribution with the mean = 1 was used on the migration and coalescent rates.

leads however to major biases in parameter and root state
inference. These biases are especially pronounced in our simu-
lations when migration is slow compared with the coalescent
rate. This observation can be explained in the following way:
The lower the migration rates are compared with coalescent
rates, the stronger the influence of the coalescent process on
the configuration of lineages across states becomes. The as-
sumption of independence of the lineage states from the co-
alescent process does not allow for the incorporation of this
information into the calculation of lineage state probabilities
though.

Next, we showed how the approximations of the struc-
tured coalescent perform in inferring asymmetric coalescent
and migration rates. Although coalescent rates are inferred
accurately for both approximations, inference of migration
rate ratios is biased when coalescent rates are asymmetric
under SISCO. We also showed that under biased sampling,
inferences of migration rates are strongly biased under SISCO,
but not under MASCO.

Both biases can be understood in the following way. A
lineage may have a higher probability of coalescing in one
state than another either because the pairwise coalescent rate
in one state is higher (e.g, due to a smaller effective popula-
tion size) or because more lineages reside in one state than
another (e.g, because of biased sampling). Taking the influ-
ence of the coalescent process on lineage states into account,
as done under MASCO, reduces the probability of a lineage
occupying a state with a high coalescent rate if no coalescent
events occur.

In other words, MASCO redistributes the probability mass
assigned to each state to reflect the observed coalescent his-
tory, including the observation that a lineage may have not
yet coalesced (see eg. 3). SISCO does not redistribute prob-
ability mass to reflect the observation that a lineage has not
yet coalesced. In order to reduce the probability of lineages
coalescing in a state with high rates of coalescence, it over-
estimates the migration rate out of such states. This overesti-
mation of migration rates out of a state is observable when
having asymmetric coalescent rates due to either a higher
pairwise coalescent rate within a state or having more line-
ages in a given state due to biased sampling. Either way, the
migration rate out of the state with a higher coalescent rate is
overestimated and underestimated in the other direction.
While revising this manuscript, it was brought to our atten-
tion that updates to the R package rcolgem (Volz 2016; based
on Volz [2012]), uses a related approach to redistribute prob-
ability mass between states.

Although MASCO does redistribute probability mass via
the coalescent process, it ignores the correlations between
lineages encoded in the joint probabilities when only consid-
ering marginal lineage state probabilities. These correlations,
induced by the coalescent process, are expected to be espe-
cially strong in parts of the tree where there are only a few
coexisting lineages present. The rate at which lineages co-
alesce is highly dependent on the number of lineages in a
state. Having one or two lineages in the same state is the
difference between having a zero or nonzero rate of coales-
cence, whereas having a 1,000 or a 1,001 lineages in the same

2975



Muiller et al. - doi:10.1093/molbev/msx186

MBE

>

SISCO

@ Alaska @ cCenter North East
@ nNorth West @ East Coast
@ south West @ North Mid East
3 £
>
@ - ®
2 Q
@ 51 it f <\> ‘ o
€. é & 6
8o
2
L—————— ¢
% N 2
o @
° Q
N o
== LS 4§2> A

I l l

l l l

2000 2002 2004 2006 2008 2010 2012
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plots of the inferred coalescent rates for the different regions. The black plot distribution is the exponential prior with mean 1. We used this prior

for both coalescent and migration rates.

state doesn’t impact the rate of coalescence as much. In turn,
this means that at lower number of lineages, the state of a
single lineage has a much larger impact on the rate at which
coalescent events are expected. In the case of two lineages,
two states and high coalescent rates, the two lineages are
highly unlikely to occupy the same state and not coalesce.
Therefore, their states would be highly correlated. We how-
ever did not find a scenario under which MASCO would be
considerably biased compared with the exact description of
the structured coalescent.

We applied the different approximations of the structured
coalescent to avian influenza virus HA sequences sampled
from different orders of birds in North America. We found
that the inferred region of the root varies with the method
used. SISCO places high confidence in the center of the USA
being the root state. MASCO on the other hand infers the
East coast to be the most likely location of the root, while also
placing a considerable amount of probability mass on other
locations such as the North East or North West, reflecting
greater uncertainty in the root location.

Asymmetric coalescent rates may offer one explanation why
SISCO places more probability on the center being the root
location than MASCO and why it excludes all other states
from being possible root states. We have shown that asymmetric
coalescent rates can bias the inference of migration rates. Under
SISCO, asymmetric coalescent rates lead to an overestimation of
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the migration rate from a state with a fast coalescent rate into a
state with a slow coalescent rate and an underestimation of the
migration rates in the other direction (recall that we consider
backwards in time rates). Because the coalescent rate in the
center is inferred to be low, SISCO puts much more weight
on it being the source than MASCO. The opposite appears to
occur for the East Coast, which is inferred to have a very high
rate of coalescence. MASCO infers the East Coast to be the most
likely source region while it is almost excluded using SISCO. We
expect seeing such differences in cases where coalescent rates
differ significantly across different states.

Although we used the AV analysis to illustrate how infer-
ences obtained from MASCO and SISCO can differ, the results
presented here should be interpreted with caution with
regards to any biological implications as we ignored popula-
tion structure arising between different avian host species.
We additionally assumed coalescent and migration rates to
be constant over time, potentially further biasing the infer-
ence of the root state.

Although population dynamics such as changing transmis-
sion (i.e, coalescent) and migration rates through time can
greatly influence the shape of a phylogeny, we ignored such
dynamics in this study. However, compared with mugration
type methods (Lemey et al. 2009), the structured coalescent
approximation introduced here can be extended in a con-
ceptually straightforward way to allow for dynamic
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simple tree, with time going backwards from present to past. The first two lineages, are both in state blue, that is, the configuration is
(Ly = blue, L, = blue), with lineage 1 being the parent lineage of 1and 2 after relabeling. After a lineage in state red is sampled, the configuration
changes, as given in the figure. A coalescent event in state blue then reduces the number of lineages in state blue to 1. A migration event then causes

lineage L, to change state from blue to red.

populations (Volz et al. 2009; Volz 2012). The improved ap-
proximation to the structured coalescent introduced here
should therefore allow for more accurate quantification of
movement in structured populations with complex popula-
tion dynamics while still being computationally efficient
enough to be applied to large data sets.

Materials and Methods

Principle of the Structured Coalescent Process

The structured coalescent (Takahata 1988; Hudson 1990;
Notohara 1990) extends the standard coalescent by allowing
lineages (branches in a phylogeny) to occupy different states
and to migrate between these states, which constitute differ-
ent subpopulations. Given n coexisting lineages, we label

them randomly by {1,...,n}. If we consider L; to be a ran-
dom variable that denotes the state of lineage |,
i € {1,...,n}, with state space {1,...,m}, there are m"

different possible configurations K of how n lineages can
be arranged (K= (Li=h,..,L=1l....Lp=1,),
lie {1,...,m}). These configurations can change over
time by adding and removing lineages or by lineages changing
state. Throughout this paper, we consider time going back-
wards from present to past, as typically done under the
coalescent.

A migration event along one lineage i from state a to state
b changes the configuration of lineages as follows:

(I-1 - l‘l? e '7L171 - l,',1,l_j = a,L;+1 = Ii+17 .- '7Ln = ln)
migration event from ato b
—
(L1 = I'Ia . '7’-1'71 - lif‘la’-i = b,’-i+‘| = l,‘+1, . "7Ln = In)

In figure 7, this corresponds to lineage 1 in blue changing
to red.

Configurations can additionally change due to sampling.
Sampling events simply add lineages, such as L3 = red is added
in figure 7. Typically, we condition on the sampling events, but
one can also introduce a rate for samples being obtained.

A coalescent event between lineage i and j with i<}
changes the configuration as follows:

(Ly=h,..lisga =i, L= a, Ly = i, ..,
L= Ij—h L=a,lj = Ij+17 conln = /n)
coalescent event
—
(I-1 =h,.. L=l L=ali=1ln,...

olpr = ,n)

Lineages j + 1, .., n are relabeled to j,...,n — 1 and lin-
eage i denotes the parent lineage of i and j after a coalescent
event. The most recent coalescent event in figure 7 for ex-
ample changes the configuration from (L, = blue, L, = blue,
L3 = red) to (L = blue, L, = red).

The rate at which coalescent events in state a happen can
be calculated from the pairwise coalescent rate /, in state a
and the number of lineages k,(KC) in state a for a given
configuration C. The pairwise coalescent rate denotes the
rate at which any two lineages in a state coalesce. For a given
configuration /C, the total rate C at which coalescent events
between any two lineages in the same state happen is:

La =l =l,..

m [ ka(K)
C=Y Ja (1
a=1 2
ka(K)
where is the number of pairs of lineages in state a
2

given configuration K. Under the standard Wright—Fisher
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model and haploid organisms, the pairwise coalescent rates,
A are the inverse of the effective population sizes N,
Throughout this paper, we consider the coalescent and mi-
gration rates to be in the same time unit as the phylogeny. In
the simulations, these are arbitrary units and in the case of the
AlV example, these are per year rates.

Calculating the Likelihood for a Tree under the
Structured Coalescent

Structured coalescent methods typically use MCMC to inte-
grate over possible lineage state configurations along a tree
(Beerli and Felsenstein 2001; Ewing et al. 2004; Vaughan et al.
2014). This is sometimes referred to as sampling migration
histories. Given a migration history, the likelihood for a tree
can be calculated under the structured coalescent with given
migration and coalescent rates. Here, we want to calculate the
marginal likelihood for a tree without sampling those migra-
tion histories, but by integrating over all possible migration
histories H. Formally, we seek to calculate the following
probability:

P(TIS, M, A) = J P(T, HIS, M, A)dH
H

with T being the tree, S the sampling states of the tips, M the
set of migration rates and A the set of coalescent rates.

Let Py(Ly =h,...,Li=1,...,L, =1,,T) be the prob-
ability density that the samples more recent than time t
evolved according to the coalescent history, that is, the
branching pattern, given by our tree T between the present
time 0 and time t and that the n lineages at time t, L+, ..., L,
are in states I, .. ., I,. Furthermore, this probability is condi-
tional on S, M, and A. For convenience, we do not explicitly
write this. In figure 7, this probability is the joint probability of
a configuration at time t with the lineages being either in red
or blue, and the probability of the branching pattern and tip
states being as observed between time t and 0 (ignoring the
particular configurations in that time interval).

We aim to calculate P, for t =t,,,, with t,,, being the
time of the root of the tree T. At the root of the tree, sum-
ming over the probability of the remaining lineage being in
any state will vyield the likelihood for the tree,

m
P(TISM,A)=> P, (L =a,T).
a=1

In order to evaluate P, at t = t,,,,, We start at the time of
the most recent sample, at t =0, and iteratively calculate
P, A based on P, To calculate P, we split the calculation
into three parts: time intervals in the tree where no coalescent
or sampling events happen, sampling events, and coalescent
events.

Interval Contribution

For the interval part, we calculate P, 5, based on P; allowing
for no event in time step At (second line below), observing a
migration event leading to the configuration at t + At (third
line below), or seeing more than one event (i.e, higher order
terms which are of order O((At)?) leading to the configur-
ation at t + At (forth line below):
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Pt+At(L1 :I17'-'7I—i:li7"'

- Pt(’—'l - I-|,...,L,‘ - l,‘,...,’_n— I,,, )(1 —MAt—CAt)

+ZZ ,ua,AtPt L1 —l1,..., a, ..

i=1 a=

~7Ln = IVM T))

o((Ar)’*)

Here, M is the sum of migration rates and C the
sum of coalescent rates for configuration (L, =
Ly .. Li=1,...,L, =1I,). The rate Ug denotes the rate
at which migration events from a to I; happen. Now, when
rearranging and letting At — 0, we obtain the differential
equation,

dPt(L1 :l-|,...,L,‘ = I,‘,...,L” = I,—,,T)
dt
—(M+C)Pt(L1 - I1,...,L; :I,',...7I.n - In,T)
+ZZ Pl =h, o li=a,.. Ly = I, T)).

i=1 a=1

With explicitly writing M and C (using eq. 1 for C), we
obtain,

dPt(l_1 = l1,...,’_,‘ = I,‘,...,Ln - I,,,T)

dt
= ZZ(,ua,‘Pt(h =h,..uli=a,... L,=1I,T)
i=1 a=1
_,ulapt('-'l_lh” A_IH"'?LH_In) ))
m ko ()
—Zza Pe(ly =11, .. li=h....Ly =1,,T)
a=1 2
(interval contribution)
)

with the double summation on the right hand side consid-
ering the contribution of migration and the fourth line con-
sidering the contribution of coalescence. Note that in the case
of I; = a, the two terms in the migration part cancel each
other out and the net migration is 0. This interval contribution
equation allows us to calculate P, within intervals by solving
the differential equation.

It is important to note that this differential equation shows
a direct link between the coalescent process and the prob-
ability of a set of lineages being in a configuration. For ex-
ample, configurations that would favor high coalescent rates
among lineages would become less probable over intervals
during which no coalescent events occur in the tree.

Sampling Event Contribution
At every sampling event the state of the sampled lineage is
independent of all other lineages in the tree. We can therefore
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calculate the probability of any configuration at a sampling
event at time t as follows:

PRI (Ly=hy ooyl = by Lpst =l T)
= b, T)Pe(Lps1 = hpy|T)

(sampling event)

:Pt(L1 :I1,...7L,‘:I,‘,...,L”

with after indicating the probability density after the event at
time t (going backwards in time) and the other expressions
indicating the probability density before the event. In scen-
arios where the sampling state is known to be say g, as
assumed throughout this paper, we have Py(L, 1 = a|T) =
1and P¢(Ly+1 = b|T) = 0 for b # a. One can allow for un-
certainty in the sampling states by allowing this value to be

m
between 0 and 1, such that Y Py(Lysq = a|T) = 1.

a=1

Coalescent Event Contribution

Next, we have to calculate the probability of the new config-
uration resulting from a coalescent event between lineages i
and j in state a at time t. This probability can be expressed by
the following equation:

P (L =1, .. li=a,.... Ly =1,,T)
:Pt(L1 :I-I,...,L,' :a,...,l.j :a,....,Ln :IH,T);LG
(coalescent event)

Likelihood for a Tree

Based on the three equations, (interval contribution), (sam-
pling event), (coalescent event), we can calculate the likelihood
for a tree, P(T|S,M, A). We refer to this approach as the
exact structured coalescent (ESCO).

Approximations of the Exact Structured Coalescent
Between events (sampling and coalescent), the exact struc-
tured coalescent requires m" differential equations to be
solved, with m being the number of different states and n
the number of coexisting lineages at a point in time. To be
able to analyze data sets with more than a few states and
lineages, approximations have to be deployed.

In the exact structured coalescent, the state of a lineage i is
always associated with a configuration /C and the coalescent
history described by the tree T. Keeping track of these con-
figurations automatically keeps track of all correlations be-
tween lineages. We will now assume that lineages i, j, and k
and their states /; [, and I are uncorrelated, that is:

Pe(Lj = I, L = I, Li = [i|T)
MASCO
Pe(Li = L|T)Pe(Lj = ;| T)Pe(Li = k|T)

Using this approximation, we will write down an expres-
sion for:

Pi(li =1, T) =Y P(K,T),

K\

with Z,C\,- being the summation over all configurations while
fixing the state of lineage .

The interval contribution, that is, the change in marginal
lineage state probability over time, 4P,(L; =/;,T), can be
derived from equation (2), employing the MASCO assump-
tion. This derivation is explained step by step in the
Supplementary Material online, and results in the following
differential equation:

d m

P L—aT
dt Ma/t ) —

a=1

M/,-apt(Li =1, T))

P (L =1, T) (% Zpt Ly = i|T)
k;é:

+Z Ao ZZPt ;= a|T)Pi(Ly = a|T)).

a=1 JE kA
j=1 k=1

3)

The second line denotes the change in marginal lineage
state probability due to migration. The third line denotes the
reduction in P(L; = [;, T) due to the rate of coalescent events
directly involving lineage i. The fourth line denotes the reduc-
tion in probability due to rate at which coalescent events that
do not involve lineage i are expected to occur. Integrating
equation (3) over time is equivalent to calculating the prob-
ability that the lineage i is in state I; and that all lineages
evolved up to time t as given by the coalescent history T.

m
The above equation ensures that Y P;(L; = a,T) = P¢(T)
a=1
for every lineage i.
For the coalescent event contribution, we calculate the

probability of lineage i coalescing with lineage j in state a as,

Ptafter(L‘_ =a, T) — Pt(’-i = a|T)Pt(Lj = a|T)Pt(T))va

with > Pi(L; =a,T) = P,(T) being the probability of
a=1

having observed the coalescent history T up to time t, and
Pi(Li = a|T) = Pi(Li = a, T)/P(T) where Pi(L; = a,T) is
obtained through equation (3). As with ESCO, we relabel the
indices of all lineages after each coalescent event such that the
labels of n coexisting lineages are always i € {1, ..,n}. Note
that since we keep track of the joint probabilities of lineages
being in any state and the coalescent history T, the proba-
bilities of all lineages k not involved in the coalescent event
have to be updated as well. For all lineages k not involved in
the coalescent event, the probability after the event can

be written as PT(L,=a,T)= Pl =a|T)

m
S PH (L =a,T).
a=1
For the sampling event contribution, we can simply add a
lineage n+1 with associated probability P (L, =

Ing1, T) = Pe(Lyns1 = loa | T)Pe(T).
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The likelihood for a given tree under,the MASCO approxi-
mation now is, P(T|S,M,A)=> P, (L1 =a,T)=
P;,.(T). a=1

A further approximation to the interval contribution can
be obtained by ignoring the two coalescent terms in equation
(3), that is, additionally assuming independence of the lineage
states from the coalescent process between events. Thus, we
assume that lineages move independently of the coalescent
process between events:

SISCo
Pi(Li = |T) =

Pe(Li = 1)).
This allows to simplify equation (3) to:

dP(Lj = I; .
t(T) Z(ﬂa/ Pe(Li = a) — paPe(Li = 1)) (4)

a=1

and:

dpP; " s
e SN

a) zn:Pt(Lj = a).

J#
=1

The derivation of the two equations above is explained
step by step in the Supplementary Material online.

At a coalescent event between lineage i and j, the prob-
ability of P,(T) is updated as follows:

Ptafter _ Pt

ZAaPt (Li = a)P(L; = a).

Similarly, we can calculate the probability of the parent
lineage being in state g as:
iaPt(L,’ = a)Pt(Lj = a)

Z )\.th(L,' - b)Pt(L} - b)
b=1

P (L =a) =

That is the probability of observing a coalescent event in
state a over the probability of observing a coalescent event in
% state. The sampling event contribution can be written as
(Ln+1 - In+1> - Pt<Ln+1 - In+1)
The likelihood for a given tree under the structured co-
alescent under the SISCO approximation now is,
m
P(TIS,M,A) =P, (T) 21 P, (Ly=a)=P, (T).
o=
We refer to this as the state independence approximation
of the structured coalescent (SISCO). The equations used by
SISCO to calculate the state of a lineage over time have been
described previously in Volz (2012). Although these lineage
state probabilities evolve independently of the coalescent his-
tory T between events, they do depend on T at sampling and
coalescent events.

Application to Avian Influenza Virus

We applied the different approximations of the structured
coalescent to a previously described data set of Avian
Influenza Virus H7 hemagglutinin (HA) sequences (Lu et al.
2014), sampled from the bird orders Anseriformes,
Charadriiformes, Galliformes, and Passeriforms in Canada,
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Mexico and the USA. We used previously aligned sequences
from De Maio et al. (2015). The sequences were analyzed in
BEAST2 (Bouckaert et al. 2014) using an HKY + I'; site
model. A strict molecular clock model was assumed and
the first two and the third codon positions were allowed to
have different mutation rates. MASCO and SISCO were used
as structured coalescent population priors. The data set was
split into seven different states according to geographic
regions in North America (see supplementary table S1,
Supplementary Material online). Three parallel MCMC chains
were run for 1 * 107(MASCO) and 2 * 107(SISCO) iterations
with different initial migration and coalescent rates. After a
burn-in of 10%, the chains were combined and the probability
of the root being in each state was assessed. The combined
chain had ESS values above 100 for any inferred probability
density or parameter.

Implementation

We implemented all three approximations in one common
package for BEAST2. ESCO and MASCO use a forth order
Runge—-Kutta solver with fixed step size implemented in the
Apache Commons Math library (version 3.1.1, http://com
mons.apache.org; last accessed March 27, 2017) to solve equa-
tions (2) and (3). SISCO uses matrix exponentiation to solve
the lineage state probabilities over time (eq. 4). All three
structured coalescent methods use pairwise coalescent rates
and backwards in time migration rates as described above. In
the Results section, we present simulation analyses highlight-
ing the quality of the different structured coalescent
approximations.

Software

Simulations were performed using a backwards in time sto-
chastic simulation algorithm of the structured coalescent pro-
cess using MASTER 5.0.2 (Vaughan and Drummond 2013)
and BEAST 2.4.2 (Bouckaert et al. 2014). We then used these
simulated trees to infer parameters and root states. Script
generation and postprocessing were performed in Matlab
R2015b. Plotting was done in R 3.23 using ggplot2
(Wickham 2009). Tree plotting and tree height analyses
were done using ape 3.4 (Paradis et al. 2004) and phytools
0.5-10 (Revell 2012). Effective sample sizes for MCMC runs
were calculated using coda 0.18-1 (Plummer et al. 2006).

Data Availability

All scripts for performing the simulations and analyses pre-
sented in this paper as well as the Java source code for the
structured coalescent methods are available at https://github.
com/nicfel/The-Structured-Coalescentgit ~ (last  accessed
March 27, 2017). Output files from these analyses, which
are not on the GitHub folder, are available upon request
from the authors.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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