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Abstract: Background: Immune-checkpoint inhibitors (ICIs) have increased and improved the
treatment options for patients with non-oncogene-addicted advanced stage non-small cell lung
cancer (NSCLC). However, the role of ICIs in oncogene-addicted advanced stage NSCLC patients is
still debated. In this study, in an attempt to fill in the informational gap on the effect of ICIs on other
driver mutations, we set out to provide a molecular landscape of clinically relevant oncogenic drivers
in programmed death-ligand 1 (PD-L1) positive NSCLC patients. Methods: We retrospectively
reviewed data on 167 advanced stage NSCLC PD-L1 positive patients (≥1%) who were referred
to our clinic for molecular evaluation of five driver oncogenes, namely, EGFR, KRAS, BRAF, ALK
and ROS1. Results: Interestingly, n = 93 (55.7%) patients showed at least one genomic alteration
within the tested genes. Furthermore, analyzing a subset of patients with PD-L1 tumor proportion
score (TPS) ≥ 50% and concomitant gene alterations (n = 8), we found that n = 3 (37.5%) of these
patients feature clinical benefit with ICIs administration, despite the presence of a concomitant KRAS
gene alteration. Conclusions: In this study, we provide a molecular landscape of clinically relevant
biomarkers in NSCLC PD-L1 positive patients, along with data evidencing the clinical benefit of ICIs
in patient NSCLC PD-L1 positive alterations.
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1. Introduction

Lung cancer represents the leading cause of cancer deaths worldwide [1]. About 85%
of lung cancers are non-small cell lung cancer (NSCLC) [2,3]. In recent years, several efforts
have been made to improve clinical outcomes of advanced stage NSCLC patients. Central
to these efforts has been the advent of precision medicine. This approach, which involves
the identification of actionable oncogenic driver alterations, has spurred the development of
specific therapeutic agents capable of thwarting the molecular pathways involved in cancer
progression. Among these agents are tyrosine kinase inhibitors (TKIs). Remarkably, these
agents are able to target a long series of recently discovered oncogenetic mutations involved
in several driver genes, namely, Epidermal Growth Factor Receptor (EGFR) [4–7], V-Raf
Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) [8,9], Kirsten Rat Sarcoma Viral Onco-
gene Homolog (KRAS) exon 2 p.G12C [10,11] and gene fusions in Anaplastic Lymphoma
Receptor Tyrosine Kinase (ALK) [12–16] and ROS Proto-Oncogene 1, Receptor Tyrosine
Kinase (ROS1) [17–19]. Another milestone in the clinical management of advanced stage
NSCLC patients has been the development of immune-checkpoint inhibitors (ICIs) [20].
Currently, the evaluation of programmed death-ligand 1 (PD-L1) expression levels is the
most widely adopted and standardized tool for ICI administration [21,22]. ICIs have indeed
increased and improved the treatment options for non-oncogene-addicted advanced stage
NSCLC patients [23–26]. However, the role of ICIs in oncogene-addicted advanced stage
NSCLC patients is still debated [27]. For example, a recent review has highlighted the
lack of efficacy of pembrolizumab in naïve EGFR-mutated advanced stage NSCLC patients
expressing low levels of PD-L1 (1%) [28]. However, even less is known about the effect of
ICIs on other clinically relevant biomarkers. Undoubtedly, paucity of data in this specific
field is a major setback for lung cancer treatment. Indeed, evaluating PD-L1 expression
levels and the genomic assessment of clinically relevant oncogenic targetable drivers would
be crucial to broaden the treatment options for NSCLC patients. In our referral laboratory
experience at the Molecular Predictive Pathology Laboratory at the Department of Public
Health of the University of Naples Federico II, we routinely perform immunohistochem-
istry/immunocytochemistry (IHC/ICC) to evaluate PD-L1 expression [29,30]. In addition,
we perform both DNA-based next generation sequencing (NGS) and fully automated real-
time polymerase chain reaction (RT-qPCR), namely, Idylla™ (Biocartis, Mechelen, Belgium)
to evaluate point mutations, deletions and insertions [31–33] and IHC/ICC and RNA-based
NGS analysis to identify gene fusions [34].

In this study, in an attempt to fill in the informational gap on the effect of ICIs on
other driver mutations, we set out to provide a molecular landscape of clinically relevant
oncogenic drivers in PD-L1 positive NSCLC patients. To this aim, we retrospectively
evaluated data collected from our archives of advanced stage NSCLC patients with positive
PD-L1 expression (≥1%) who were referred to our clinic for evaluation of at least five of the
most common driver mutations, namely, EGFR, KRAS, BRAF, ALK and ROS1. In addition,
in a subset of patients, we were also able to retrieve information about patients’ medical
treatments and performance status.

2. Results
2.1. Patient and Sample Characteristics

We retrospectively analyzed data on a total of 167 samples from advanced stage
NSCLC PD-L1 positive patients (≥1%) who were referred to our clinic for molecular
evaluation of at least five proto-oncogenes, namely, EGFR, KRAS, BRAF, ALK and ROS1.
Overall, our study population was composed of n = 103 (61.7%) males and n = 64 (38.3%)
females with a median age of 67.3 years (ranging from 43 to 93 years). The vast majority
was diagnosed with adenocarcinoma (ADC) (n = 62, 37.1%), NSCLC favor ADC (n = 58,
34.7% and NSCLC not otherwise specified (NOS) (n = 32, 19.2%), followed by squamous
cell carcinoma (SqCC) (n = 8, 4.8%), NSCLC favor SqCC (n = 4, 2.4%) and adeno-squamous
carcinoma (n = 3, 1.8%). The number of histological samples (n = 110, 65.9%) was almost
double that of cytological samples (n = 57, 34.1%). Histological samples comprised small



Int. J. Mol. Sci. 2022, 23, 8541 3 of 18

biopsies (n = 86, 78.2%), and surgical resections (n = 24, 21.8%). As for the cytological
samples, they were mostly made up of cell blocks (n = 52, 91.2%); of these, some were
used for PD-L1 TPS assessment. Direct smears (n = 5, 8.8%), instead, were used for the
assessment of other clinically relevant biomarkers.

2.2. PD-L1 Status and Molecular Evaluation

For the evaluation of the expression level of PD-L1, SP263 (n = 134, 80.2%) was more
commonly used than 22C3 (n = 33, 19.8%). Overall, n = 84 (50.3%) samples expressed PD-L1
levels between 1% and 49%, and n = 83 (49.7%) samples expressed PD-L1 levels ≥50%
(Figure 4). For the evaluation of DNA-based biomarkers, NGS was used to analyze 164/167
(98.2%) cases, whereas RT-qPCR analysis was used for the remaining 3 cases (1.8%). Re-
markably, KRAS was the most commonly mutated gene (n = 56, 33.5%), followed by EGFR
(n = 21, 12.6%), BRAF (n = 4, 2.4%), Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Cat-
alytic Subunit Alpha (PIK3CA, n = 3, 1.8%), and Neuroblastoma RAS Viral Oncogene
Homolog (NRAS, n = 1, 0.6%). No alterations were reported in KIT Proto-Oncogene, Recep-
tor Tyrosine Kinase (KIT) and Platelet Derived Growth Factor Receptor Alpha (PDGFRα).
For the evaluation of ALK and ROS1 gene rearrangements, IHC/ICC was employed in the
vast majority of cases (n = 152, 91.0%), whereas RNA-based NGS analysis was adopted in
only n = 15 (9.0%) instances. Interestingly, ALK fusions emerged in n = 7 (4.2%) cases and
ROS1 in only n = 1 (0.6%) case. No additional Rearranged During Transfection (RET) and
Neurotrophic Receptor Tyrosine Kinase (NTRK) gene fusions or MET Proto-Oncogene and
Receptor Tyrosine Kinase (MET) exon 14 skipping alterations were reported. As for the
biomarker analyses, n = 93 (55.7%) cases showed at least one genomic alteration within
the tested genes, whereas no concomitant clinically relevant biomarker alterations were
detected in the remaining n = 74 (44.3%) cases.

Results are summarized in Table 1, Figures 1–3 and Supplementary Table S1.

Table 1. Clinical and molecular findings of the study population.

Global 1–49% ≥50%

Total (%) 167 (100.0) 84 (100.0) 83 (100.0)

Sex (%) M: 103 (61.7)
F: 64 (38.3)

M: 53 (63.1)
F: 31 (36.9)

M: 50 (60.2)
F: 33 (39.8)

Median Age (range) 67.3 y (43–93 y) 66.9 y (43–92 y) 67.8 y (44–93 y)

Sample type (n; %)
- subtype (n; %)

Histological (110, 65.9)
- Biopsy (86, 78.2)

- Resection (24, 21.8)
Cytological (57, 34.1)
- Cell block (52, 91.2)

- Smear (5, 8.8)

Histological (53, 63.1)
- Biopsy (40, 75.5)

- Resection (13, 24.5)
Cytological (31, 36.9)
- Cell block (29, 93.5)

- Smear (2, 6.5)

Histological (57, 68.7)
- Biopsy (46, 80.7)

- Resection (11, 19.3)
Cytological (26, 31.3)
- Cell block (23, 88.5)

- Smear (3, 11.5)

Diagnosis (n, %)

ADC (62, 37.1)
NSCLC favor ADC (58, 34.7)

NSCLC NOS (32, 19.2)
SqCC (8, 4.8)

NSCLC favor SqCC (4, 2.4)
ADC + SqCC (3, 1.8)

ADC (41, 48.8)
NSCLC favor ADC (24, 28.6)

NSCLC NOS (11, 13.1)
SqCC (6, 7.1)

NSCLC favor SqCC (1, 1.2)
ADC + SqCC (1, 1.2)

NSCLC favor ADC (34, 41.0)
ADC (21, 25.3)

NSCLC NOS (21, 25.3)
NSCLC favor SqCC (3, 3.6)

SqCC (2, 2.4)
ADC + SqCC (2, 2.4)

PD-L1 (n, %) 1–49 (84, 50.3)
≥50 (83, 49.7) - -

Clone (n, %) SP263 (134, 80.2)
22C3 (33, 19.8)

SP263 (67, 79.8)
22C3 (17, 20.2)

SP263 (67, 80.7)
22C3 (16, 19.3)

DNA based-biomarker
molecular platform (n, %)

NGS (164, 98.2)
RT-qPCR (3, 1.8)

NGS (83, 98.8)
RT-qPCR (1, 1.2)

NGS (81, 97.6)
RT-qPCR (2, 2.4)

Molecular results (n, %) WT (74, 44.3)
Mutated (93, 55.7)

WT (41, 48.8)
Mutated (43, 51.2)

WT (33, 39.8)
Mutated (50, 60.2)
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Table 1. Cont.

Global 1–49% ≥50%

DNA-based biomarkers
(n, %)

EGFR (167, 100.0)
- WT (146, 87.4)

- mutated (21, 12.6)
- p.L858R (9, 42.8)

- p.E746_A750del (6, 28.4)
- p.E709_T710insD (1, 4.8)

- p.G719A + p.T790M (1, 4.8)
- p.I744_K745insKIPVAI (1, 4.8)

- p.E746_S752del (1, 4.8)
- p.S768_D760dup (1, 4.8)

- p.S768I (1, 4.8)
KRAS (167, 100.0)
- WT (111, 66.5)

- mutated (56, 33.5)
- p.G12C (27, 48.1)
- p.G12V (13, 23.2)
- p.G12A (5, 8.9)
- p.G12D (3, 5.4)
- p.Q61H (3, 5.4)
- p.G13C (2, 3.6)
- p.G12R (1, 1.8)
- p.G13D (1, 1.8)
- p.G13R (1, 1.8)

BRAF (167, 100.0)
- WT (163, 97.6)

- mutated (4, 2.4)
- p.V600E (2, 50.0)
- p.G466V (1, 25.0)
- p.G469A (1, 25.0)
NRAS (164, 98.2)
- WT (163, 99.4)

- mutated (1, 0.6)
- p.G12D (1, 100.0)

KIT (164, 98.2)
- WT (164, 100.0)

PDGFRα (164, 98.2)
- WT (164, 100.0)

PIK3CA (164, 98.2)
- WT (161, 98.2)

- mutated (3, 1.8)
- p.E545K (2, 66.7)
- p.E542K (1, 33.3)

EGFR (84, 100.0)
- WT (72, 85.7)

- mutated (12, 14.3)
- p.E746_A750del (4, 33.4)

- p.L858R (4, 33.4)
- p.E709_T710indD (1, 8.3)
- p.G719 + p.T790M (1, 8.3)
- p.S768_D760dup (1, 8.3)

- p.S768I (1, 8.3)
KRAS (84, 100.0)
- WT (59, 70.2)

- mutated (25, 29.8)
- p.G12C (10, 40.0)
- p.G12V (8, 32.0)
- p.G13C (2, 8.0)
- p.G12A (1, 4.0)
- p.G12D (1, 4.0)
- p.G12R (1, 4.0)
- p.G13R (1, 4.0)
- p.Q61H (1, 4.0)
BRAF (84, 100.0)
- WT (83, 98.8)

- mutated (1, 1.2)
- p.G469A (1, 100.0)

NRAS (83, 98.8)
- WT (82, 98.8)

- mutated (1, 1.2)
- p.G12D (1, 100.0)

KIT (83, 98.8)
- WT (83, 100.0)

PDGFRα (83, 98.8)
- WT (83, 100.0)

PIK3CA (83, 98.8)
- WT (82, 98.8)

- mutated (1, 1.2)
- p.E542K (1, 100.0)

EGFR (83, 100.0)
- WT (74, 89.2)

- mutated (9, 10.8)
- p.L858R (5, 55.6)

- p.E746_A750del (2, 22.2)
- p.I744_K745insKIPVAI (1, 11.1)

- p.E746_S752del (1, 11.1)
KRAS (83, 100.0)
- WT (52, 62.7)

- mutated (31, 37.3)
- p.G12C (17, 54.8)
- p.G12V (5, 16.1)
- p.G12A (4, 12.9)
- p.G12D (2, 6.5)
- p.Q61H (2, 6.5)
- p.G13D (1, 3.2)
BRAF (83, 100.0)
- WT (80, 96.4)

- mutated (3, 3.6)
- p.V600E (2, 66.7)
- p.G466V (1, 33.3)

NRAS (81, 97.6)
- WT (81, 100.0)

KIT (81, 97.6)
- WT (81, 100.0)

PDGFRα (81, 97.6)
- WT (81, 100.0)

PIK3CA (81, 97.6)
- WT (79, 97.5)

- mutated (2, 2.5)
- p.E545K (2, 100.0)

RNA-based biomarker
assays (n, %)

IHC/ICC (152, 91.0)
NGS (15, 9.0)

IHC/ICC (78, 92.9)
NGS (6, 7.1)

IHC/ICC (74, 89.2)
NGS (9, 10.8)
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Table 1. Cont.

Global 1–49% ≥50%

RNA-based biomarkers
(n, %)

ALK (167, 100.0)
- Negative/WT (160, 95.8)

- Positive/rearranged (7, 4.2)
ROS1 (167, 100.0)

- Negative/WT (166, 99.4)
- Positive/rearranged (1, 0.6)

RET (15, 9.0)
- WT (15, 100.0)
NTRK (15, 9.0)

- WT (15, 100.0)
MET (15, 9.0)

- WT (15, 100.0)

ALK (84, 100.0)
- Negative/WT (81, 96.4)

- Positive/rearranged (3, 3.6)
ROS1 (84, 100.0)

- Negative/WT (84, 100.0)
RET (6, 7.1)

- WT (6, 100.0)
NTRK (6, 7.1)

- WT (6, 100.0)
MET (6, 7.1)

- WT (6, 100.0)

ALK (83, 100.0)
- Negative/WT (79, 95.2)

- Positive/rearranged (4, 4.8)
ROS1 (83, 100.0)

- Negative/WT (82, 98.8)
- Positive/rearranged (1, 1.2)

RET (9, 10.8)
- WT (9, 100.0)
NTRK (9, 10.8)
- WT (9, 100.0)
MET (9, 10.8)

- WT (9, 100.0)

Abbreviations: ADC: adenocarcinoma; ALK: Anaplastic Lymphoma Receptor Tyrosine Kinase; BRAF: V-Raf
Murine Sarcoma Viral Oncogene Homolog B1; EGFR: Epidermal Growth Factor Receptor; F: female; ICC: immuno-
cytochemistry; IHC: immunohistochemistry; KIT: KIT Proto-Oncogene, Receptor Tyrosine Kinase; KRAS: Kirsten
Rat Sarcoma Viral Oncogene Homolog; M: male; MET: MET Proto-Oncogene, Receptor Tyrosine Kinase; n: number;
NGS: next generation sequencing; NOS: not otherwise specified; NRAS: Neuroblastoma RAS Viral Oncogene Ho-
molog; NSCLC: non-small cell lung cancer; NTRK: Neurotrophic Receptor Tyrosine Kinase; PD-L1: programmed
death-ligand 1; PDGFRα: Platelet Derived Growth Factor Receptor Alpha; PIK3CA: Phosphatidylinositol-4,5-
Bisphosphate 3-Kinase Catalytic Subunit Alpha; RET: Rearranged During Transfection; RT-qPCR: real-time
polymerase chain reaction; ROS1: ROS Proto-Oncogene 1, Receptor Tyrosine Kinase; SqCC: squamous cell
carcinoma; WT: wild type; y: years.
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Results are summarized in Table 1, Figures 1–4 and Supplementary Table S1.

2.3. PD-L1 Expression: 1–49%

For DNA-based biomarker analyses, NGS was applied to almost all cases (n = 83,
98.8%), whereas RT-qPCR was used for only n = 1 (1.2%) case. Remarkably, KRAS was the
most commonly mutated gene (n = 25, 29.8%), followed by EGFR (n = 12, 14.3%), BRAF
(n = 1, 1.2%), PIK3CA (n = 1, 1.2%) and NRAS (n = 1, 1.2%). Regarding the evaluation
of ALK and ROS1 gene rearrangements, IHC/ICC was employed in the vast majority
of cases (n = 78, 92.9%), whereas RNA-based NGS analysis was adopted in only n = 6
(7.1%) instances. Interestingly, n = 3 (3.6%) cases showed ALK gene fusion, whereas no
ROS1 gene rearrangements were reported. Concerning the biomarker analyses, n = 43
(51.2%) cases showed at least one genomic alteration within the tested genes, whereas no
concomitant clinically relevant biomarker alterations were detected in the remaining n = 41
(48.8%) cases.

Results are summarized in Table 1, Figures 1–3 and Supplementary Table S1.

2.4. PD-L1 Expression: ≥50%

For DNA-based biomarker analyses, NGS was applied to almost all cases (n = 81,
97.6%), whereas RT-qPCR was employed in only n = 2 (2.4%) instances. Remarkably, KRAS
was the most frequently mutated gene (n = 31, 37.3%), followed by EGFR (n = 9, 10.8%),
BRAF (n = 3, 3.6%) and PIK3CA (n = 2, 2.5%), No alterations were reported in NRAS.
Regarding the evaluation of ALK and ROS1 gene rearrangements, IHC/ICC was employed
in the vast majority of cases (n = 74, 89.2%), whereas RNA-based NGS analysis was adopted
in only n = 9 (10.8%) instances. Interestingly, whereas ALK fusions were identified in n = 4
(4.8%) cases, ROS1 fusions were detected in only n = 1 (1.2%) case. As for the biomarker
analyses, at least one genomic alteration was detected in n = 50 (60.2%) cases, whereas no
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concomitant clinically relevant biomarker alterations were detected in the remaining n = 33
(39.8%) cases.

Results are summarized in Table 1, Figures 1–3 and Supplementary Table S1.

2.5. Clinical Management

Overall, data on the clinical management of n = 41 patients were retrieved. Among
these, n = 16 (39.0%) showed a PD-L1 expression ≥50%. Half of these patients did not show
concomitant gene alterations. In this subset, n = 6 (75.0%) patients received immunotherapy
alone, n = 1 patient chemotherapy alone (1/8, 12.5%), and n = 1 patient supportive care (1/8,
12.5%). Interestingly, five out of six patients (83.3%) are still receiving frontline treatments
comprising ICIs alone or combination therapies. In the abovementioned subset of patients
with concomitant gene alterations, almost all patients (7/8, 87.5%) presented with KRAS
gene mutations (n = 4 KRAS exon 2 p.G12C, n = 1 KRAS exon 2 p.G12A, n = 1 KRAS exon
2 p.G12V and n = 1 KRAS exon 3 p.Q61H), whereas one patient harbored one type of
EML4(6)-ALK(20) gene rearrangement. Seven cases harboring KRAS gene mutations were
treated with pembrolizumab. Overall, n = 3 (37.5%) of these patients (n = 2 with a KRAS
exon 2 p.G12C and n = 1 with KRAS exon 2 p.G12A) are still being treated with the same
therapeutic regimen.

Results are summarized in Table 2.
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Table 2. Clinical management.

Sex Age Sample
Type

Sample
Subtype Site Diagnosis PD-L1 Clone Alteration First Oncological

Observation Date
Performance

Status
First Line
Treatment

First-Line
Treatment
Starting

Date

First-Line
Treatment
End Date

M 70 Histological Biopsy Brain NSCLC
favor ADC ≥50% SP263 KRAS exon 2

p.G12C March 2019 1 Pembrolizumab May 2019 Ongoing

F 66 Histological Resection Brain ADC ≥50% SP263 WT February 2020 1 Pembrolizumab March 2021 December
2021

M 77 Histological Biopsy Lymphnode NSCLC
favor ADC 1–49% SP263 KRAS exon 2

p.G12V May 2020 1
Carboplatino +
Pemetrexed +

Pembrolizumab
June 2020 April 2021

M 75 Histological Biopsy Lymphnode ADC ≥50% SP263 WT April 2020 1 Durvalumab February
2021 Ongoing

F 75 Histological Biopsy Lung ADC 1–49% SP263 KRAS exon 2
p.G12C April 2020 0 Carboplatino-

Pemetrexed July 2020 Ongoing

M 57 Histological Biopsy Lung ADC-SqCC ≥50% SP263 WT June 2020 0 Pembrolizumab July 2020 Ongoing

M 77 Histological Resection Lung ADC ≥50% SP263 KRAS exon 2
p.G12C February 2020 0 Pembrolizumab September

2021 March 2022

F 69 Histological Biopsy Lung NSCLC
favor ADC 1–49% SP263 BRAF exon 11

p.G469A June 2020 2
Carboplatino +
Pemetrexed +

Pembrolizumab

September
2020

February
2021

F 69 Histological Biopsy Lung NSCLC
favor ADC ≥50% SP263 EML4(6)-ALK(20) September 2020 2 Brigatinib February

2021 June 2021

F 68 Histological Resection Lymphnode ADC 1–49% SP263 WT April 2019 0 Carboplatino +
Pemetrexed April 2019

Ongoing
with only

pemetrexed

F 69 Cytological Cell block Soft tissue ADC 1–49% SP263 EGFR exon 20
p.S768_D760dup December 2019 1

Carboplatino +
Pemetrexed +

Pembrolizumab

February
2020

September
2020

M 57 Histological Biopsy Lung NSCLC-
NOS ≥50% SP263 KRAS exon 2

p.G12C February 2020 2 Pembrolizumab March 2020 March 2020

F 55 Cytological Cell block Lung NSCLC-
NOS ≥50% SP263 WT December 2020 1 Pembrolizumab January

2021 Ongoing

M 62 Histological Biopsy Pleura ADC 1–49% SP263 ALK positive April 2021 1 Alectinib April 2021 Ongoing

M 72 Cytological Cell block Lung NSCLC
favor ADC 1–49% 22C3 WT June 2018 2 Carboplatin +

Pemetrexed July 2018 September
2018

M 78 Cytological Smear Lung ADC ≥50% SP263 WT May 2019 2 Carboplatin June 2019 September
2019

M 72 Cytological Cell block Lung NSCLC
favor ADC 1–49% SP263 KRAS exon 2

p.G12C March 2019 1 Carboplatin +
Pemetrexed March 2019 January

2020
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Table 2. Cont.

Sex Age Sample
Type

Sample
Subtype Site Diagnosis PD-L1 Clone Alteration First Oncological

Observation Date
Performance

Status
First Line
Treatment

First-Line
Treatment
Starting

Date

First-Line
Treatment
End Date

F 73 Histological Biopsy Lung NSCLC
favor ADC ≥50% SP263 KRAS exon 2

p.G12V June 2019 0 Pembrolizumab June 2019 January
2021

M 79 Histological Biopsy Lung ADC 1–49% SP263 WT September 2019 0 Carboplatin +
Pemetrexed

October
2019

January
2020

M 49 Cytological Cell block Lung NSCLC
favor ADC ≥50% SP263 WT December 2019 0 Pembrolizumab December

2019 Ongoing

M 60 Histological Biopsy Lung NSCLC
favor ADC ≥50% SP263 KRAS exon 3

p.Q61H December 2019 0 Pembrolizumab January
2020 April 2020

F 62 Histological Biopsy Brain NSCLC-
NOS 1–49% SP263 EGFR exon 19

p.E746_A750del December 2020 0 Osimertinib January
2021 Ongoing

F 58 Histological Resection Brain ADC 1–49% SP263 WT March 2021 0
Carboplatin +
Pemetrexed +

Pembrolizumab
April 2021 Ongoing

M 61 Cytological Cell block Lung ADC 1–49% 22C3 WT July 2018 0 Cisplatino +
Pemetrexed July 2018 September

2018

F 56 Histological Biopsy Lung NSCLC
favor ADC 1–49% 22C3 KRAS exon 2

p.G13C December 2018 2 Carboplatin +
Pemetrexed

January
2019

August
2019

M 71 Histological Biopsy Lung NSCLC
favor ADC 1–49% SP263 KRAS exon 2

p.G12V May 2019 1 Cisplatin +
Pemetrexed May 2019 July 2019

M 48 Histological Biopsy Pleura NSCLC
favor ADC 1–49% SP263 WT June 2019 1 Cisplatin +

Pemetrexed June 2019 October
2019

F 67 Cytological Cell block Lymphnode NSCLC
favor ADC 1–49% SP263 WT December 2019 2 Carboplatin +

Pemetrexed
January

2020
January

2020

M 70 Cytological Cell block Lymphnode NSCLC
favor ADC 1–49% SP263 KRAS exon 2

p.G12V June 2021 1 Carboplatin +
Gemcitabina July 2021 September

2021

F 74 Cytological Cell block Lung ADC 1–49% SP263 KRAS exon 2
p.G12C September 2020 1 Pemetrexed +

Pembrolizumab
October

2020
October

2020

M 70 Histological Biopsy Lung NSCLC
favor ADC ≥50% SP263 WT June 2021 3 Supportive care - -

M 77 Cytological Cell block Lung NSCLC
favor SqCC 1–49% SP263 WT April 2021 2 Atezolizumab May 2021 August

2021

F 71 Cytological Cell block Lymphnode NSCLC
favor ADC ≥50% SP263 KRAS exon 2

p.G12A February 2021 1 Pembrolizumab March 2021 Ongoing

F 76 Histological Biopsy Lung SqCC 1–49% 22C3 WT August 2018 1 Nivolumab January
2019

January
2019

M 72 Cytological Cell block Lymphnode NSCLC
favor ADC 1–49% 22C3 WT October 2017 1 Cisplatin +

Pemetrexed
October

2017
November

2017
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Table 2. Cont.

Sex Age Sample
Type

Sample
Subtype Site Diagnosis PD-L1 Clone Alteration First Oncological

Observation Date
Performance

Status
First Line
Treatment

First-Line
Treatment
Starting

Date

First-Line
Treatment
End Date

M 46 Histological Biopsy Brain NSCLC
favor ADC 1–49% SP263 WT May 2019 0 Cisplatin +

Pemetrexed June 2019 January
2020

M 73 Histological Resection Lung ADC 1–49% SP263 WT June 2020 0 Carboplatin +
Pemetrexed

August
2020

October
2020

M 59 Cytological Cell block Lung NSCLC
favor ADC ≥50% SP263 WT July 2020 0 Pembrolizumab August

2020 Ongoing

F 64 Histological Biopsy Lung ADC 1–49% SP263 WT September 2020 1
Carboplatin +
Pemetrexed +

Pembrolizumab

October
2020

November
2020

M 75 Histological Biopsy Liver ADC 1–49% SP263 EGFR exon 19
p.E746_A750del January 2021 1 Osimertinib January

2021 Ongoing

M 68 Histological Biopsy Lung ADC ≥50% SP263 KRAS exon 2
p.G12C December 2020 1 Pembrolizumab December

2020 Ongoing

Abbreviations: ADC: adenocarcinoma; ALK: Anaplastic Lymphoma Receptor Tyrosine Kinase; BRAF: V-Raf Murine Sarcoma Viral Oncogene Homolog B1; EGFR: Epidermal Growth
Factor Receptor; F: female; KRAS: Kirsten Rat Sarcoma Viral Oncogene Homolog; M: male; NOS: not otherwise specified; NSCLC: non-small cell lung cancer; WT: wild type; y: years.
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3. Discussion

The evaluation of PD-L1 expression is now one of the mandatory predictive tests to
conduct in advanced stage NSCLC patients. In this study, we retrospectively analyzed a
total of 167 advanced stage NSCLC PD-L1 positive patients (≥1%) who were referred to
our referral clinic for the molecular evaluation of at least five driver genes, namely, EGFR,
KRAS, BRAF, ALK and ROS1. In our experience, both histological (n = 110, 65.9%) and
cytological (n = 57, 34.1%) samples were analyzed, strongly supporting the evidence that
evaluation of PD-L1 expression levels and molecular profiling of advanced stage NSCLC
patients is feasible by using both types of specimens [21,22,29,30]. In this context, studies
have shown that NGS (both DNA- and RNA-based approaches) represents a valid solution
to analyze clinically relevant biomarkers simultaneously in small tissue samples [32,33].
Overall, n = 84 (50.3%) and n = 83 (49.7%) patients showed a PD-L1 expression level of
1–49% and ≥50%, respectively. As in other experiences, most of the patients (n = 103, 61.7%;
n = 53, 63.1%; n = 50, 60.2% were males [35]. Most cases were diagnosed as ADC (n = 62,
37.1%; n = 41, 48.8%; n = 21, 25.3%), NSCLC favor ADC (n = 58, 34.7%; n = 24, 28.6%;
n = 34, 41.0%), and NSCLC NOS (n = 32, 19.2%; n = 11, 13.1%; n = 21, 25.3%), followed
by SqCC (n = 8, 4.8%; n = 6, 7.1%; n = 2, 2.4%), NSCLC favor SqCC (n = 4, 2.4%; n = 1,
1.2%; n = 3, 3.6%) and adeno-squamous carcinomas (n = 3, 1.8%; n = 1, 1.2%; n = 2, 2.4%).
Interestingly, n = 93 (55.7%) patients showed at least one genomic alteration within the
tested genes. From an epidemiological point of view, the most common genomic alterations
were reported within the KRAS gene (n = 56, 33.5%), followed by EGFR (n = 21, 12.6%),
ALK (n = 7, 4.2%), BRAF (n = 4, 2.4%), PIK3CA (n = 3, 1.8%), ROS1 (n = 1, 0.6%), and NRAS
(n = 1, 0.6%) (Table 1 and Supplementary Table S1). The strong correlation between PD-L1
expression and KRAS mutations has been previously demonstrated. Karatrasoglou et al.
highlighted that PD-L1 positive (TPS ≥ 1%) NSCLC patients showed a concomitant KRAS
mutation, and in particular KRAS exon 2 p,G12C point mutation, in a higher percentage of
patients with respect to PD-L1 negative patients [36]. This phenomenon may be related to
the induction of PD-L1 by KRAS mutations as it has been demonstrated in human NSCLC
cell lines [37–39].

As for the data on treatment regimens, the seven cases harboring KRAS gene muta-
tions received pembrolizumab alone (6/7, 85.7%) or pembrolizumab plus carboplatin and
pemetrexed (1/7, 14.3%). Overall, in n = 3 (37.5%) of these patients (n = 2 with a KRAS exon
2 p.G12C and n = 1 with KRAS exon 2 p.G12A) the treatment is still ongoing. These data
support the role of KRAS mutations (in particular KRAS exon 2 p.G12C point mutation) in
increasing ICI sensitivity [40].

In this setting, despite the role of ICIs has been clearly demonstrated in the treatment of
high PD-L1 expressers [23], little is known about the role of concomitant genomic alterations
on this regimen. Lee et al. showed that ICI administration in KRAS mutated patients
may determine an overall survival (OS) benefit respect to KRAS wild-type patients [41].
Similarly, Bodor et al. highlighted that KRAS-mutated NSCLC patients with PD-L1 TPS
≥1% had a longer progression-free survival respect to PD-L1 negative patients (4.1 vs.
3.2 months, p = 0.001) [42]. A possible explanation may be the presence of a specific
interaction between the tumor microenvironment and ICIs for this specific subset of patients
as demonstrated by Falk et al. [43]. Similarly, the adoption of front-line pembrolizumab in
PD-L1 positive advanced stage NSCLC patients harboring a KRAS exon 2 p.G12C point
mutation seemed to be predictive of higher objective response rate (ORR, 57% versus
29%), median progression free survival (PFS, 12 versus 6 months) and OS (28 versus
15 months) [44]. Different from KRAS exon 2 p.G12C, the identification of other concomitant
driver mutations is predictive of poor response to ICIs administration in the PD-L1 positive
population [27]. The limited efficacy of ICIs in patients harboring EGFR mutations has
been widely demonstrated [45]. In a phase II study, Lisberg et al. highlighted the absence
of response to pembrolizumab as first line approach in advanced stage PD-L1 positive
EGFR-mutant NSCLC patients naïve to TKI administration [28]. Similar data have been
reported for other ICI drugs, such as atezolizumab and durvalumab [46,47]. The role of
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ICIs is controversial in BRAF-mutated patients [48]. In fact, in a multicentric retrospective
cohort, Dudnik et al. showed promising data in terms of clinical efficacy of ICIs in BRAF-
mutated advanced stage NSCLC [49]. Conversely, in a small retrospective study, Tan et al.
highlighted an inferior OS in BRAF-mutated patients receiving ICI respect to those treated
with front-line chemotherapy [50]. Regarding gene rearrangements, a very limited efficacy
of ICIs in ALK- [47,51–54], ROS1- [55,56], RET- [57] and NTRK-rearranged [27] NSCLC
patients has been highlighted. Considering MET exon 14 skipping, despite some evidence
reporting response to ICIs [58], the overall efficacy of immunotherapy respect to target
therapy is quite modest [59].

In conclusion, in this study we have provided a real-world practice experience on the
molecular landscape of clinically relevant biomarkers in NSCLC PD-L1-positive patients.
The most significant limitations of our study were the limited number of cases, the absence
of molecular data on PD-L1 negative patients, the limited number of gene alterations
analyzed and clinical data on progression-free survival and overall survival and the lack
of clinical data on the vast majority of patients. Further studies are thus needed to better
assess the role of the complex genomic landscape in advanced stage NSCLC patients.

4. Materials and Methods
4.1. Study Design

In this study, we retrospectively reviewed cases referred to our clinic from 1 January
2018 to 30 June 2021 for molecular evaluation of at least five driver druggable oncogenes,
namely, EGFR, KRAS, BRAF, ALK, ROS1 and PD-L1 expression assessment; PD-L1 positive
cases (expression in ≥1% tumor cells) were selected. Information regarding sex, median
age, sample type and subtype and diagnosis was also retrieved. (Figure 5) Furthermore,
for a subset of patients, data related to the duration of the first-line treatment, or until the
loss of data for any causes, were also gathered.
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Figure 5. Study design and results. Abbreviations: ALK: Anaplastic Lymphoma Receptor Tyrosine
Kinase; BRAF: V-Raf Murine Sarcoma Viral Oncogene Homolog B1; EGFR: Epidermal Growth Factor
Receptor; ICC: immunocytochemistry; IHC: immunohistochemistry; KRAS: Kirsten Rat Sarcoma Viral
Oncogene Homolog; NGS: next generation sequencing; NRAS: Neuroblastoma RAS Viral Oncogene
Homolog; PD-L1: programmed death-ligand 1; PIK3CA: Phosphatidylinositol-4,5-Bisphosphate
3-Kinase Catalytic Subunit Alpha; RT-qPCR: real-time polymerase chain reaction; ROS1: ROS Proto-
Oncogene 1, Receptor Tyrosine Kinase.
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All information regarding human material was managed using anonymous numerical
codes, and all samples were handled in compliance with the Declaration of Helsinki
(http://www.wma.net/en/30publications/10policies/b3/, last accessed on 30 June 2022).

4.2. IHC/ICC Analysis

PD-L1 IHC/ICC evaluation was performed with a validated laboratory developed test
(LDT), consisting of the use of Dako’s concentrate 22C3 anti-PD-L1 primary antibody with
a Ventana’s detection systems on the BenchMark XT platform, or by using the companion
diagnostic kit SP263 assay (Ventana Medical Systems, Tucson, AZ, USA) [29,30]. The level
of PD-L1 expression was determined by using tumor proportion score (TPS). PD-L1 positive
cases were classified either as low-positive PD-L1 expression (1–49%) or as high-positive
PD-L1 expression (≥50%) [29,30].

ALK IHC/ICC evaluation was performed by using the Ventana ALK D5F3 companion
diagnostic (CDx) assay (Ventana Medical Systems) together with the OptiView (Ventana)
detection system. The latter system features a tyramide-based amplification phase in
addition to the polymeric step. In particular, by increasing the signal difference between the
specific immunoreaction of neoplastic cells and the background, the amplification phase
significantly reduces equivocal results. Thus, only positive or negative ALK cases can be
reported. Typically, only strong and granular cytoplasmic signals are scored as positive,
regardless of the percentage of stained neoplastic cells [60–62].

ROS1 IHC/ICC evaluation was carried out with the D4D6 (Cell Signaling Technology,
Inc., Danvers, MA, USA) clone. Generally, only tumors with a moderate- to strong staining
intensity signal (2+ or 3+ scores) in more than half of the neoplastic cells are considered
positive [60,63,64].

Finally, ALK and ROS1 IHC/ICC assays were adopted to confirm RNA-based NGS
positive cases.

4.3. Molecular Testing

DNA- and RNA- based analyses of samples were carried out. DNA-based NGS
analysis was performed with our narrow NGS panel, namely, SiRe® [65]; this panel was
designed, developed and validated in the Molecular Predictive Pathology Laboratory of
the Department of Public Health at the University of Naples Federico II [65]. SiRe® can
simultaneously detect multiple hotspot gene alterations in seven genes (EGFR, KRAS,
BRAF, NRAS, KIT, PDGFRα, and PIK3CA) [31,65]. In the present study, only variants with
allele coverage >20X and a quality score >20, with an amplicon coverage of at least 500X
alleles, were called.

RNA-based NGS analysis was performed with a narrow NGS panel, namely, SiRe
fusion [34]. This panel was also designed, developed, and validated in the Molecular
Predictive Pathology Laboratory of the Department of Public Health at University of
Naples Federico II [34]. It simultaneously detects alterations in six oncogenic genes, namely,
ALK, ROS1, RET, NTRK gene rearrangements, MET exon 14 skipping alterations [34]. In all
the study cases, ALK and ROS1 status was further confirmed with IHC/ICC.

In a limited number of cases, the fully automated Idylla™ RT-qPCR platform was
adopted to evaluate the molecular status of EGFR, KRAS and BRAF [32,33,66].
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