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Editorial on the Research Topic

Proglucagon-Derived Peptides

PROGLUCAGON-DERIVED PEPTIDE RESEARCH TOPIC

Identification of the proglucagon gene at the beginning of the 1980s marked a huge breakthrough in
research that would lead to discovery of a family of gene products that play a multitude of roles in
regulation of feeding, metabolism and gastrointestinal function [Figure 1A (1–4)]. The peptide
family members are also emerging players in pathophysiology and therapy of obesity and diabetes as
well as several related metabolic disorders plus short bowel syndrome.

Surprisingly, it was found that glucagon-like immunoreactivity and subsequently the
proglucagon protein encoded by the glucagon gene are present not only in the alpha-cells of the
pancreatic islets but also in enteroendocrine L-cells of the intestine (5). Thus as shown in Figure 1A,
in the pancreas, the precursor is processed by prohormone convertase 2 (PC2) to generate glucagon
and glicentin-related pancreatic polypeptide (GRPP), whereas in L-cells, prohormone convertase 1/
3 (PC1/3) processing results in production of glicentin, oxyntomodulin, glucagon-like peptide 1
(GLP-1) and glucagon-like peptide 2 (GLP-2). However, recent research challenges this tissue
selectivity, demonstrating that under certain circumstances, alpha-cells appear to produce GLP-1,
oxyntomodulin and glicentin whereas the intestinal L-cells may be a source of glucagon (4, 6).

Less controversial but more remarkably, GLP-1 was found to exert a plethora of physiological
actions on intestine, pancreatic islets, brain and other tissues which are exploited in therapeutic
approaches to obesity, diabetes, cardiovascular disease and neurodegenerative disorders using stable
synthetic analogues or inhibitors of GLP-1 degradation (4). Indeed, GLP-1 mimetics and inhibitors of
dipeptidyl peptidase 4 (DPP-4), an enzyme that renders GLP-1 and other proglucagon family
members inactive by cleaving off N-terminal amino acids (7), are now well-established therapeutic
agents. GLP-2 has also been found to be metabolically active and plays key role in stimulating
intestinal growth. This has been exploited by development of N-terminally stabilised GLP-2 analogues
for treatment of short bowel syndrome (3). GLP-2 has also been shown recently to inhibit gall bladder
emptying in man, thereby promoting replenishment of bile stores following feeding (8).

During the past decade, it has been discovered that far from being inert, oxyntomodulin acts as a
dual activator of GLP-1 and glucagon receptors with potential for promoting weight loss and
glycaemic control (9). Evidence is emerging that another proglucagon-derived peptide, glicentin,
may also have hitherto poorly appreciated physiological roles and utility as biomarker for intestinal
or metabolic diseases (10).
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As evident from above, we are in a fascinating and
highly active era of research on proglucagon-derived peptides
that is attracting considerable academic and industry interest
geared towards increasing knowledge and the fight against the
epidemic of obesity, type 2 diabetes and related disorders.

Under this Research Topic, we have assembled original
research articles and reviews on many aspects of the biology,
function, pathophysiology and therapeutic potential of post-
translational products of the proglucagon gene, including:

➢Glucagon

➢Glucagon-like peptide 1

➢Glucagon-like peptide 2

➢Oxyntomodulin

➢Glicentin

➢Glicentin-related pancreatic polypeptide (GRPP)
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In total, we have gathered 24 contributions from 117 leading
scientists working in 13 different countries across the globe. The
extent of this broad participation is testimony to the rising world-
wide interest in research on proglucagon-derived peptides which is
evidenced by the number of annual publications returned over
time gathered using PubMed when searching for outputs using
specific peptides as keywords (Figures 1B, C). A particularly
strong upsurge in research on GLP-1 is evident with annual
outputs on this peptide exceeding those published on glucagon
since 2008. Interest in GLP-2 is also rising and recent evidence
suggests that it has positive actions on bone.

A short appreciation of the papers included in our special
collection on proglucagon-derived peptides is given below.
HISTORY AND STRUCTURAL ASPECTS
OF PROGLUCAGON-DERIVED PEPTIDES

The collection of papers starts with an historical perspective of
studies on the N-terminal domain of proglucagon by Michael
Conlon who together with Steve Bloom, Keith Buchanan, Jens
Holst, Vincent Marks, Ellis Samols and others, including Roger
Unger and Isobel Valverde, pioneered much of the early work in
the 1970s on the proglucagon derived peptides (reviewed by
Conlon and Marks in 5,11,12). Members of this family were
picked up by antibodies raised against glucagon and with
glucagon-like immunoreactivity. Some of the major milestones
during this period are summarised in Table 1 and several of the
early pioneers in the field are shown in Figures 1, 2. Thanks to
the subsequent advent of molecular biology techniques and the
additional pioneering efforts of Joel Habener, Daniel Drucker
and others in the 1980s (1, 4, 41), the constituent bioactive
peptides glucagon, GLP-1 and GLP-2 are now well recognised
yet, as pointed out by Michael Conlon, the possible functional
roles of oxyntomodulin, glicentin and GRPP are only just
becoming elucidated.

In the following papers dealing with structural aspects, David
Irwin has exploited advances in gene technology to document
variations in the evolution and sequences of proglucagon and
receptors for its post-translational peptide products. Such
comparative data may provide important information regarding
unforeseen functional aspects of these peptides. Indeed, the work
of Lindquist et al. considers the mutational landscape of
proglucagon-derived peptides, highlighting how small structural
changes may contribute to the pathophysiology of glucose
intolerance and the efficacy of GLP-1-based therapies.
ALPHA-CELL FUNCTION AND
SECRETION OF PROGLUCAGON-
DERIVED PEPTIDES

Turning to the alpha-cell, Dhanvantari and Asadi consider
signalling pathways involved in the regulation of glucagon
secretion with focus on direct effects of glucose plus
increasingly recognised intra-islet autocrine and paracrine
A

B

C

FIGURE 1 | (A) Structure of proglucagon, post-translational processing
and the major targets of constituent bioactive peptides: glucagon, GLP-1,
GLP-2, oxyntomodulin, glicentin and glicentin-related pancreatic
polypeptide. (B) Numbers of peer-reviewed publications on proglucagon-
derived peptides showing particularly strong surge of research on GLP-1.
(C) Publication count by geographical location divided by population of
each country (source: PubMed).
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mechanisms. This involves not only classical islet hormones,
insulin and somatostatin, but also glucagon and other products
of proglucagon processing such as GLP-1, oxyntomodulin and
GRPP. The article by Wei He et al. specifically addresses the
significance of islet GLP-2 production and its effects on islet
inflammation. Islets also contain substantial amounts of peptide
YY (PYY) known to interact with neuropeptide Y (NPY)
receptors. Lafferty et al. demonstrate important actions of
NPY1 receptor activation on islet structure with positive effects
on transdifferentiation of alpha-cells to beta-cell phenotype.
L-CELL FUNCTION AND SECRETION OF
PROGLUCAGON-DERIVED PEPTIDES

Although also expressing the proglucagon gene, the L-cell differs
substantially in its biology to the alpha-cell. The paper by Kuhre
et al. is a provocative and timely discourse on ‘What Is an L-Cell
and How Should Its Secretory Mechanisms Be Studied?’ Thus, it
is increasingly clear that enteroendocrine cells are promiscuous
and may express several structurally distinct regulatory peptides
as well as biologically active post-translational degradation
products. In the case of the L-cell, this includes PYY, GLP-1,
GLP-2, glicentin, oxyntomodulin and, perhaps under certain
circumstances, glucagon and other PC1/3-generated products.
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Furthermore, as discussed by Kuhre et al., the hormone
composition of L-cell differs markedly depending on
anatomical location and the L-cell type is not a homogeneous
population. They suggest that L-cells are sub-classified
depending on their differential peptide contents as well as their
differential expression of nutrient sensors, which ultimately
determine the secretory responses to different stimuli. The
most frequently used experimental models for functional L-cell
studies are discussed also, with the conclusion that a
comprehensive understanding can only be built on results
from a combination of models.

In rat studies, Hira et al. showed that GLP-1 was released
immediately following feeding from the distal intestine and that
dietary protein played a critical role in determining postprandial
GLP-1 response in rats. Using mice, Hunt et al. demonstrate the
importance of dietary fibre in the maintenance of intestinal
weight, colonic L-cell secretion and intestinal integrity. In
humans, Jonsson et al. reveal a limited role of endogenous bile
acids in the acute regulation of GLP-1 secretion after Roux-en-Y
gastric bypass surgery. This draws attention to the importance of
other mechanisms in the marked and therapeutically beneficial
increase of circulating GLP-1 that is observed consistently
following such procedures. With an eye on the possibility of
therapeutically exploiting endogenous GLP-1 stores, Kuhre et al.
used mouse and rat models to explore the mechanisms through
TABLE 1 | Some of the major milestones in the discovery, secretion and physiology of proglucagon-derived peptides with focus on pre-molecular biology era.

Year Author(s) Milestone Reference(s)

1907 Lane Distinguished alpha- and beta-islet cells (11)
1923 Collip Commented on initial hyperglycaemic effect of pancreatic extracts (12)
1923 Kimball/Murlin Discovered and named glucagon (13)
1948 Sutherland/de Duve Identified enteroglucagon (14)
1956 Bromer Structural elucidation of glucagon (15)
1959 Unger Glucagon radioimmunoassay (16)
1962 Hellman/Hellerström/Unger/

Madison
Islet alpha-cells recognised as site glucagon synthesis (17, 18)

1962 Marks/Samols Insulin-releasing action of glucagon (19, 20)
1964 McIntyre/Holsworth/Turner Demonstrated enhanced insulin release with oral glucose – the incretin effect (21)
1965 Marks/Samols Feeding increases circulating GLI (22)
1967 Samols/Marks Circulating GLI persists in humans following pancreatectomy (23)
1970s Valverde/Holst/Buchanan/

Conlon
Heterogeneity of gut GLI, measurement of circulating GLI (24–28)

1970s Unger/Gerich Grodsky Elucidation of glucagon physiology (29, 30)
1972 Bloom Greater villus growth in enteroglucagonoma (presumably action of GLP-2) (31)
1973 Tager/Steiner Characterization of oxyntomodulin, namely proglucagon (33–69) (32)
1976 Unger Importance of glucagon in diabetes (33)
1982 Lund/Habener/Bell Molecular biology elucidates proglucagon gene: glucagon, GLP-1, GLP-2, glicentin oxyntomodulin, GRRP (34–36)
1987 Holst/Mojsov/Weir Cleavage of GLP-1 (1–37) to GLP-1 (7–36) and demonstration of its potent insulin releasing activity (37, 38)
1987 Bloom Physiological insulinotropic action GLP-1 in man (39)
1993 Mentlein Degradation of glucagon family peptides, including GLP-1 (7–36) in vitro by DPP-4 (40)
1990s Holst/Nauck/ Drucker Elucidation of GLP-1 physiology (41–44)
1994 Steiner Role of PC2 in proglucagon processing to glucagon in islet alpha-cells (45)
1995 Deacon/Holst GLP-1 (9–36) - major metabolite in man, opening way for use of DPP-4 inhibitors and stable forms of GLP-1

for diabetes therapy
(46)

1996 Brubaker Role of PC1/3 in differential proglucagon processing gut (47)
1996 Drucker Trophic action of GLP-2 in gut – opening way for future therapeutic use of GLP-2 analogues in short bowel

syndrome
(48)
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which melanocortin-4 receptor agonists stimulate GLP-1
secretion and conclude that the effect was indirectly mediated
or possibly restricted to colonic L-cells. Further studies exploring
the metabolic benefits of GLP-1 secretagogues in type 2 diabetes,
possibly in combination with oral DPP-4 inhibitors, are
clearly warranted.
ISLET EFFECTS OF PROGLUCAGON-
DERIVED PEPTIDES

The next series of papers deals with the actions of proglucagon-
derived peptides. Starting with the beta-cell, Marzook et al.
consider substantial progress in our understanding of GLP-1
receptor signalling and trafficking, such as the perpetuation and
termination of signalling within endosomal compartments. It
emerges that the reprogramming of GLP-1 receptor endocytosis
and post-endocytic sorting represents a useful means, using
biased GLP-1 receptor agonists, to achieve distinct signalling
patterns at different subcellular locations with important
therapeutic implications. Ahrén et al. considers studies on
insulin secretion and glycaemic control in mice with knock-out
of GLP-1 receptors. The relatively mild phenotype observed
draws attention to arousal of important compensatory
mechanisms. Whether these include hyperactivity of L-cells
Frontiers in Endocrinology | www.frontiersin.org 4
and effects of raised concentrations of other proglucagon-
derived peptides or interactions beyond the GLP-1 receptors
are interesting possibilities.
EXTRAPANCREATIC EFFECTS OF
PROGLUCAGON-DERIVED PEPTIDES

Proglucagon-derived peptides exert numerous extrapancreatic
effects which are fundamental in their physiology. For example,
GLP-1 targets multiple cell types mediating diverse effects on many
body systems. Puddu and Maggi document the emerging role of
caveolin-1 in the action of GLP-1. They suggest that the interaction
between GLP-1 receptor and Cav-1 is necessary not only for
receptor trafficking to the cell membrane, but also for activation
of different components of the intracellular signalling pathway. This
is interesting given that augmentation of GLP-1 action can be
envisaged as therapeutically useful. Similarly, Lee et al. showed that
inhibition of G protein-coupled receptor kinases using small
molecule inhibitors increased the insulinotropic action of GLP-1
and potentiated DPP-4-mediated suppression of circulating glucose
in mice. The benefit of activation of GLP-1 pathways is well
established in the treatment of obesity and type 2 diabetes. The
paper by Li et al. considers additional uses for Alzheimer’s
disease, hypertension and non-alcoholic steatohepatitis
FIGURE 2 | Contributors to some of the early milestones on proglucagon-derived peptides. Top panel (from left): Professor Steve Bloom, Professor
J. Michael Conlon, Professor Julia Polak, Professor Flemming Stadil, Professor Kazuhiko Tatemoto and Professor Keith Buchanan pictured at the Annual Meeting of
Bayliss & Starling Society, held in Belfast 1987 (reproduced with permission from Belfast Telegraph). Bottom panels (from left): Professor Bo Hellman (1996), Professor
Vincent Marks (1989) and Professor Jens Holst (2020). BH by Lennart Nilsson, VM by PRF and JJH by Ricky Molloy. All photographs reproduced with permission.
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with important mediation by neuroprotective and anti-
inflammatory actions. GLP-2 is used for treatment of short bowel
syndrome, but its intestinotrophic effect has been suggested to
promote colonic neoplasia. Hunt et al. report that glucagon receptor
knock-out mice that exhibit inappropriately raised circulating
concentrations of GLP-1 and GLP-2 are not more susceptible to
azoxymethane/dextran sodium sulphate-induced tumours. Using
enzyme resistant [Gly2]GLP-2, Mieczkowska et al. also noted
enhanced collagen post-processing and crosslinking maturation in
murine osteoblasts, indicating possible therapeutic benefit in
osteoporosis or bone fragility generally. Interestingly, [D-Ala2]
GLP-1 or glucagon were without effect.
DIETARY MEASURES UTILISING
PROGLUCAGON-DERIVED PEPTIDES
TO IMPROVE METABOLIC CONTROL

It is evident from above, that proglucagon-derived peptides have
found significant therapeutic applicability. Kamruzzaman et al.
consider gut-based strategies to reduce postprandial glycaemia in
type diabetes, focussing on stimulation of GLP-1 release. Further
to this, Smith et al. describe a successful randomised control trial
in obese and lean men of postprandial glucose responses
following ingestion of a novel, ready-to-drink shot containing
low dose of whey protein. Such dietary adjuncts are being
explored in many studies currently based on the ability of
various protein digests to trigger the release of GLP-1 and
other metabolically beneficial gut peptides such as PYY and
cholecystokinin (CCK).
PROGLUCAGON-DERIVED PEPTIDES
AS THERAPEUTICS

Although dietary measures may be beneficial in mild cases of
type 2 diabetes, most patients likely to benefit therapeutically
from activation of proglucagon-derived pathways will require
drug intervention. Lafferty et al. address the current status of
proglucagon-derived peptides as therapeutics. This includes
glucagon, GLP1, GLP-2, oxyntomodulin, glicentin, GRRP as
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well as unimolecular multi-agonist peptides which activate
receptors for GLP-1, glucagon and GIP. The therapeutic
application extends to diabetes, obesity, cardiovascular and
neurodegenerative diseases , short bowel syndrome,
osteoporosis, polycystic ovary syndrome and hypoglycaemia.
Hope et al. further consider the strong potential of GLP-1/
glucagon receptor co-agonism as a treatment strategy for
obesity. They discuss the importance of relative balance of co-
agonism, the positive effect of glucagon on energy balance and
how its natural hyperglycaemic actions are countered by the
insulinotropic action of GLP-1. Tanday et al. demonstrate the
value of upregulated unimolecular GLP-1/CCK receptor
signalling in rodent obesity-diabetes, indicating the therapeutic
potential offered by recapitulation of the interlinked pathways
naturally activated by feeding. Exploitation of such an approach
requires imagination of peptide chemists to come up with viable
peptide analogues. In this vein, it is notable that He et al. describe
a simple method for conjugation of two proglucagon peptide
analogues via added cysteine residues.
CONCLUDING REMARKS

As evident from the above, research on proglucagon-derived
peptides has delivered significant outcomes and had real
measurable societal impact. Much has been discovered since
elucidation of glucagon, the exploitation of antibody-based
technologies by radioimmunoassay and immunocytochemistry
and elucidation of the proglucagon gene. The more we dig into
the biology of this influential peptide family, the more questions
we turn up that need to be answered. We extend our thanks to
the authors for their timely contributions, to the reviewers for
their efforts in evaluating the manuscripts and to you the readers
who we hope will gain knowledge and inspiration from this
timely collection of papers.
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