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Regulation of gene expression through multiple epigenetic components is a highly

combinatorial process. Alterations in any of these layers, as is commonly found in

cancer diseases, can lead to a cascade of downstream effects on tumor suppressor

or oncogenes. Hence, deciphering the effects of epigenetic alterations on regulatory

elements requires innovative computational approaches that can benefit from the huge

amounts of epigenomic datasets that are available from multiple consortia, such as

Roadmap or BluePrint. We developed a software tool named IRENE (Integrative Ranking

of Epigenetic Network of Enhancers), which performs quantitative analyses on differential

epigenetic modifications through an integrated, network-based approach. The method

takes into account the additive effect of alterations on multiple regulatory elements of

a gene. Applying this tool to well-characterized test cases, it successfully found many

known cancer genes from publicly available cancer epigenome datasets.
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INTRODUCTION

Epigenetic alterations are frequent in many cancers. In particular, DNA methylation and histone
modifications are two main mechanisms that allow cancer cells to alter transcription without
changing the DNA sequences, and lead to many abnormalities such as persistent activation of
cell cycle control genes or deactivation of DNA repair genes. For example, promoter DNA hypo-
methylation accompanied by histone hyper-acetylation is frequently observed in the activation of
oncogenes in cancer. Besides, aberrant activation of distal regulatory elements is often associated
with the up-regulation of cancer-promoting genes. Interestingly, epigenetic modifications at
proximal and distal regulatory elements often appear to be earlier events than the gene expression
(Hartley et al., 2013; Ziller et al., 2014), and can hence serve as potential early markers in
cancer diagnosis.

Various histone modifications on promoters have been categorized into either activation or
repression effects on gene expression. Such effects can bemeasured by comparing histone alteration
levels between tumor and their corresponding normal tissues using ChIP-Seq (Karlic et al., 2010).
A number of tools, such as ChIPComp (Chen et al., 2015), ChIPDiff (Xu et al., 2008), ChIPnorm
(Nair et al., 2012), csaw (Lun and Smyth, 2015), DBChIP (Liang and Keles, 2012), DiffBind (Stark
and Brown, 2011), MAnorm (Shao et al., 2012), RSEG (Song and Smith, 2011) have demonstrated
their usefulness in cancer studies by comparing the histone intensities between two conditions (see
Steinhauser et al., 2016 for a review of these tools). However, they are limited to the comparison
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of a single histone mark. Furthermore, many tools such
as jMOSAiCS (Zeng et al., 2013), IDEAS (Zhang et al., 2016),
and ChromHMM (Ernst and Kellis, 2012) are able to perform
integrative analyses across multiple epigenetic marks. However,
while these tools provide an integrated description of the
epigenetic characteristics at individual genome loci, they do
not take into account the combined effects of these changes at
multiple regulatory elements controlling a gene.

As previously mentioned, many histone modifications that
potentially regulate gene expression also occur in other
genomic regions besides promoters. Enhancers are distal
regulatory elements that interact with gene promoters through
chromosomal loops to regulate gene transcription. Most of the
enhancers are located within ±1 Mb of the transcription start
site (TSS) of their target genes (Maston et al., 2006). Enhancer
activity is regulated through epigenetic modifications (Zentner
et al., 2011), including positive regulation from histone marks,
such as H3K27ac (Creyghton et al., 2010; Stasevich et al., 2014)
andH3K4me1 (Heintzman et al., 2007; Calo andWysocka, 2013),
and negative regulation by H3K27me3 (Charlet et al., 2016) and
H3K9me3 (Zhu et al., 2012).

Given the complexity of epigenetic regulation, novel tools
are required to combine this information, and create a
comprehensive overview of the differential epigenetic landscape,
integrating multiple data layers. The method we developed,
named IRENE (Integrative ranking with an epigenetic network
of enhancers), combines a quantitative analysis on multiple
differential epigenetic modifications with an integrated, network-
based approach, in which we integrated two levels of epigenetic
information: the signal intensity of each epigenetic mark, and the
relationships between promoters and distal regulatory elements
known as enhancers (Figure 1). In this paper, we describe the
method and present the test cases. In our benchmarking tests on
cancer datasets, the IRENE ranked lists have higher relevance to
cancer marker genes (CMGs) than the other approaches. Being
implemented as an R package, IRENE is an easy to use method
allowing gene ranking between two conditions and highlighting
potential cancer biomarkers.

RESULTS

IRENE: Epigenetic Ranking With an
Epigenetic Network of Enhancers
IRENE analyzes epigenetic changes between two biological
conditions (e.g., ChIP-seq data for histone modifications or
whole-genome bisulfite sequencing for DNA methylation), and
translates the differential signals at multiple regulatory elements
into a unique score (Figure 1). Hence, IRENE performs a
double integration, both across multiple epigenetic datasets and
across different regulatory regions linked to a gene. To integrate
multiple datasets, we use dPCA, which captures the directions
of the greatest differential variance comparing two conditions,
at each regulatory element (see section Materials and Methods)
(Ji et al., 2013). As the goal of our method is to capture the
differential signal at proximal and distal regulatory elements,
we performed a dPCA analysis both at gene promoters and

distal regulatory elements, which we call promoter interacting
regions (PIRs) extracted from the 4DGenome database (Teng
et al., 2015). Similar to standard PCA, differential PCA captures
the directions of the greatest differential variance along several
differential principal components (dPCs). We selected the first
two dPCs, which appear to capture the differential signal both
from activating and repressive epigenetic marks. The sum of the
absolute values of dPC1 and dPC2 at each regulatory element was
used as a score for this element. These scores are summarized
as a weighted network relating regulatory elements to their
target genes. The network consists of promoters and connected
PIRs. Oriented edges from PIRs to promoters indicate a 3D
interaction between these regulatory elements. Despite being in
principle a bipartite graph (with nodes being either PIRs or
promoters), we do not make a distinction between these two
types of regulatory elements. A random walk based method then
assigns a score to the corresponding gene. The output of the
method is a ranked list of genes from the most to the least
affected one, which incorporates both promoter and enhancer
alterations. As a comparison, we also generated ranked lists
based only on the promoter score (named promoter ranked lists
in the following), discarding the contributions from distal PIR
elements. This approach can be applied whenever two conditions
are to be compared, for example, normal/tumor tissue, various
tumor subtypes, or different developmental stages. More details
are given in the Materials and Methods section. In order to
benchmark our method, we used seven test cases consisting
of tumor samples for seven different tumor types and normal
matching samples. For each of these test cases, we compiled
a list of CMGs (Supplementary Table 2) from the literature,
and considered tissue-specific genes (TSGs) obtained from the
ArchS4 database (Lachmann et al., 2018) as controls.

Cancer Marker Genes Are Scored Higher
by Incorporating Enhancer in the Ranking
In our analysis, we determined that taking into account the first
two dPCs is able to capture most of the differential variance
for both activating and repressive epigenetic modifications
(Figures 2A,B). After comparing the dPC1+dPC2 values
between the CMGs and TSGs in each test case, we found that
the scores from CMGs are generally higher than the scores of
the TSGs for the enhancers, whereas the situation is less clear
at promoters. This might indicate that most of the differential
signal between tumor and normal occurs at distal regulatory
regions. (Figure 2C).

Using the ranked gene lists generated by IRENE, we further
computed the area under the curve (AUC) for the empirical
cumulative density function (ECDF) of the high-confidence
CMG ranks as a benchmarking approach, as described in
the methods. First, we examined the IRENE ranks computed
using the dPC1+dPC2 on gene promoters and their targeting
enhancers, and found that the marker genes are ranked higher
than TSGs in every test case, indicating that our approach
captures the specific differential epigenetic signals at CMGs
(Figure 3A). Moreover, both for CMGs and TSGs, the IRENE
AUC values are higher than the AUC values computed using the

Frontiers in Genetics | www.frontiersin.org 2 May 2021 | Volume 12 | Article 664654

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Integrative Ranking of Enhancer Networks

FIGURE 1 | Overview of the method. General overview of the input/output of the IRENE method; user defined input is indicated in red, while input provided by the

method (e.g., regulatory loci and interactions) are displayed in gray. Step 1: Regulatory elements are scored using all epigenetic modifications, and related to the target

gene. Step 2: Epigenetic alterations are scored using the first dPC and combined using PageRank into an integrated meta-gene score. Step 3: Ranked gene lists

based on the score are converted to eCDF curves showing the enrichment of a given gene set within the top-ranked genes, and corresponding area under the curve

(AUC) values are computed.

dPC1+dPC2 of gene promoters only (Figure 3A). The fact that
the genes ranked higher in IRENE suggests that a significant part
of the altered epigenetic alteration arises from distal enhancer
regions. We then validated these findings on the larger CMG
and TSG gene sets, and we found the AUCs of CMGs are
all significantly higher (one-tailed t-test p-value<0.01) than the
AUCs of TSGs (Figure 3B).

Some genes have a much high number of linked enhancers
than others. To test whether this might bias the ranks of
these genes, we performed 1,000 degree-preserving random
perturbations, which completely rewired the enhancer–promoter
graph but maintaining the degree distribution. We used the
high-confidence CMGs in the benchmarking, and the AUCs
with randomly assigned enhancers dropped 5–10% on average,
indicating that the higher ranks of CMGs are not explained by
their higher connectivity (Figure 4).

We compared the target gene assignment provided by the
4DGenome database, which is based on experimental evidence,
with the simpler nearest-gene assignment. As can be observed

in Figure 4, both approaches lead to comparable results, in line
with recent reports indicating that the nearest gene assignment
is reasonably effective in linking enhancers with target genes
(Moore et al., 2020).

As mentioned in the Introduction, several other methods
have been developed to integrate multiple epigenetic marks over
genomic regions. Most of these methods provide qualitative
analysis in the form of discrete chromatin states. To our
knowledge, none of these methods apply a network-based
integration as in IRENE to summarize regulatory elements
related to the same gene. In order to provide a comparison, we
focused on one of the mostly used such method, ChromHMM,
which integrates various histone marks into discrete chromatin
states (Ernst and Kellis, 2012). We combined ChromHMM with
the Chromswitch method (Jessa and Kleinman, 2018), which
computes a differential score between two groups of samples
over specific regions. Applying this scoring approach to promoter
regions, we compared the ranked lists obtained by IRENE at
promoter regions with the ChromHMM-based ranks for the
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FIGURE 2 | Differential principal components. (A) Contributions of the six histone marks to each differential principal component (dPC). (B) Variances accounted for

each dPC in the seven test cases. (C) Values of dPC1+dPC2 in the seven test cases, comparing cancer marker genes (CMGs) with TSGs, both for enhancers (top),

and promoters (bottom).

Frontiers in Genetics | www.frontiersin.org 4 May 2021 | Volume 12 | Article 664654

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Integrative Ranking of Enhancer Networks

FIGURE 3 | (A) Empirical cumulative density function (ECDF) curves regarding the cancer marker genes and tissue-specific genes in seven test cases. The marker

gene ranks using IRENE scores (red) are compared against their ranks using the promoter scores (cyan). (B) Distribution of the area under the curve (AUC) values

using the cancer marker gene (CMG) sets from CancerMine in the seven test cases, compared to randomly picked tissue-specific genes to define equal size sets.

Glioma/normal brain test case, and found that the AUC values
of the CMGs related to Glioma are significantly higher for the
IRENE method (Supplementary Figure 2).

Network Analyses Characterized the
Highly Ranked Genes in the IRENE and
Promoter List
We downloaded 184 KEGG pathways in KGML format and
loaded them as directed graphs using KEGGgraph (Zhang and
Wiemann, 2009). Then we took the top 15% genes from the
IRENE and promoter rank lists in each one of the seven test
cases, and mapped the genes to the KEGG cancer signaling
pathway (hsa05200). In total, the reference pathway contains
531 genes and 1989 interactions, and on average 208 of the 531
genes are found in the IRENE rank lists, while only 152 genes
are found in the promoter rank lists. In addition, the IRENE-
ranked genes differ from promoter-ranked genes in both in-
degrees and out-degrees of the nodes (Table 1). As the IRENE
nodes generally have higher in-degrees than out-degrees in the
graph presentation of the reference pathway, implying the IRENE
genes are more often targeted by the other regulatory genes on
their enhancers as they harbor more differential enhancers. We
further examined the glioma signaling pathway (hsa05214) and
found 19 genes from the IRENE rank list and 10 genes from
the promoter rank list in the glioma test case (Figure 5). One
common gene, EGFR, is in both lists and has been reported
to undergo tight control through epigenetic regulation on both

promoters and enhancers (McInerney et al., 2000; Liu et al., 2015;
Jameson et al., 2019). Moreover, nine genes are present only in
the IRENE rank list, such as CCND1, which has been reported to
be regulated by an estrogen-mediated enhancer (Eeckhoute et al.,
2006). In conclusion, this analysis shows that the IRENEmethods
provide a ranked gene list, which is enriched for high-ranking,
cancer-relevant genes.

DISCUSSION

From the above benchmarking on seven cancer test case
studies, we showed that IRENE is a more comprehensive
approach comparing to the current frequently used approaches
such as separate ranking gene promoters and enhancers. This
highlights the importance of epigenetic regulation through
distant enhancer regions. Using IRENE, users cannot only
discover the genes which show significantly epigenetic alterations
on their promoters, but also the ones that are connected with
strong epigenetic modifications on distal interacting enhancers,
which facilitates the discovery of potential epigenetic marker
genes. On the other hand, by interpreting the higher ranked
genes mapped to the existing pathways, the user may also
find the enhancers of interests from their differential epigenetic
modifications. For example, we found the PAX5 gene to have
a significantly higher rank in the IRENE list compared to the
promoter-only list in the two CLL case studies, which implies
that PAX5 is extensively regulated by enhancers. PAX5 is a key
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FIGURE 4 | Area under the curves (AUCs) of empirical cumulative density function (ECDF) curves of dPC1+dPC2 ranks from randomized promoter–enhancer

interactions. The boxplots indicate the 25–75% quantile ranges from benchmarking each cancer marker gene set with 1,000 different rewired promoter–enhancer

networks, whereas the red lines show the AUCs with the original promoter–enhancer interactions from IRENE using experimentally detected interactions (red), and

interactions assigned by the nearest promoters (blue), and only promoters (green) rank lists.

TABLE 1 | Graph properties in respect of the nodes from the IRENE and promoter rank lists.

Node number Median in-degree Median out-degree

IRENE Promoter IRENE Promoter IRENE Promoter

CLL 214 167 2 2 1 3

Glioma 193 133 2 1 1 1

CRC 219 168 2 0 1 3

B-ALL 180 124 1 1 1 0

mCLL 211 168 2 0 1 3

MM 219 165 2 1 1 1

PTC 219 137 2 1 1 3

transcription factor in B-cell development, and its promoters
have no significant epigenetic alterations in the CLL case studies.
However, this gene is associated with several hyperacetylated and
hypomethylated distal enhancers, one of which is located at 330
kilobases (kb) upstream of the PAX5TSS, and has been also found
as extensively mutated in CLL (Puente et al., 2015) (Figure 6).
The deletion of this enhancer resulted in a 40% reduction in
the expression of PAX5 expression and chromatin interaction
of this enhancer and PAX5 has been proven from chromosome

conformation capture sequencing (4C-Seq) analysis (Puente
et al., 2015). Themain difficulty of this study is obtaining cell type
specific enhancer–promoter interactions, as the high-resolution
chromatin interaction map for the cancer cells is currently not
available.We have tested two alternative approaches in this study,
using either the experimentally validated chromatin interaction
or distance-based interactions. The performance of the above two
approaches are similar (Figure 4). We believe better performance
can be achieved when cell type specific enhancer–promoter
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FIGURE 5 | The top 25% genes from the IRENE and promoter rank list are highlighted on the KEGG glioma signaling pathway. Pink, genes from the IRENE list;

yellow, genes from the promoter list; cyan, genes from both lists.

interactions are available in the future, and using IRENE, user
can replace the interaction map with a more specific one
when applicable. Being a differential approach comparing two
conditions, it might be affected by the possible heterogeneity
of the groups being compared. If the heterogeneity is due to
biological reasons (for example, different subtypes in the disease
group), the comparison will be affected by the greater variance
within one group. However, if the heterogeneity is of technical
nature, then this noise will likely be buffered by the fact that our
method integrates multiple regions to score the genes.

CONCLUSIONS

Genome-wide integrative epigenetic analysis is challenging and
essential in many comparative studies. As far as we know, IRENE
is the first tool that integrates quantitative and genome context
information in the differential epigenetic analysis. Applying
this tool to well-characterized test cases, it detects a number
of candidate genes with significant epigenetic alterations, and
comprehensive benchmarking validated these findings in cancer
studies. As epigenomic datasets accumulate, the computational

approaches employed in this study would be highly relevant
in both comparative and integrative analysis of the epigenetic
landscape. The discovery of novel epigenetic targets in cancers
not only unfolds the fundamental mechanisms in tumorigenesis
and development but also serves as an emerging resource for
molecular diagnosis and treatment.

MATERIALS AND METHODS

Data Preparation
Retrieving Epigenetic Modification and Chromatin

Interaction Datasets
Genome-wide ChIP-seq data are downloaded in BigWig format
from NIH Roadmap Epigenomics (Bernstein et al., 2010),
Blueprint (Adams et al., 2012), and the International Human
Epigenome Consortium (IHEC) (Stunnenberg et al., 2016).
We selected the six most frequently studied histone marks:
H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, and
H3K9me3. These resources allow us to investigate the histone
modification differences between tumor and normal tissues
(Supplementary Table 1). For restricting the comparisons to
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FIGURE 6 | A known PAX5 enhancer (chr9:37,370,916-37,371, and 635) in CLL exhibits hyperacetylation and hypomethylation [analysis of variance (ANOVA) p-value
<0.05]. (A) PAX5 enhancer positions in each track are surrounded by two black solid lines. (B) H3K27ac and (C) DNA methylation levels between CLL and healthy

samples.

the genomic loci of interests (promoters and enhancers), we
downloaded the GRCh37 and GRCh38 coordinates of promoters
from the eukaryotic promoter database (EPD) (Dreos et al.,
2013), and the promoter interacting regions (PIRs) from the
4DGenome database (Teng et al., 2015). We treated the PIRs
as potential enhancer regions, and filtered for tissue-specific
enhancers by requiring the presence of H3K4me1 or H3K27ac
peaks (peak calls provided in the Supplementary Table 1) in
at least two samples from either tumor or normal tissues.
By doing this, we enrich for cell type specific PIRs, which
show a tissue-driven clustering (Supplementary Figure 1). The
promoter coordinates were extended to±1000 base pairs around
the original coordinates. The sum of the numeric values from the
BigWig blocks which overlap with the promoter and interacting
regions are available from our project homepage. To build the
relationships between and enhancers and promoters, we also
download all the experimentally validated chromatin interaction
datasets in various human tissues from 4DGenome.

Defining Disease and Control Datasets
We used histone modification datasets from seven cancer types
in this study, i.e., B-ALL, CRC, glioma, MM, PTC, CLL, and
mCLL from the Blueprint and IHEC consortia. For each cancer
dataset, we paired it with the available dataset from the healthy

tissue from which the cancer is most likely originated from. For
example, the B-ALL, CLL, andMMwere all compared against the
healthy B cells in our design (see Supplementary Table 1 for the
pairs of normal/tumors used).

Definition of Cancer Marker Genes and

Tissue-Specific Genes
We evaluated our algorithm on a small set of high-confidence
CMGs, which is based on the tier-1 genes of the corresponding
tissues from the Cancer Gene Consensus (CGC-t1) (Sondka
et al., 2018) (Supplementary Table 2). As a negative control, we
compiled a list of tissue-specific genes (TSGs) related to the
tissues of interest for the tumor cases from ARCHS4_Tissues
(https://maayanlab.cloud/archs4/). There are 2,318 genes for
every tissue in the list. To validate our findings on independent,
larger datasets of CMGs and TSGs, we compiled additional
CMG lists containing 4,212 CMGs from 90 different cancer
types from CancerMine (Lever et al., 2019), which incorporates
the manual curated lists including the Cancer Gene Consensus
(Sondka et al., 2018) and IntOGen (Gonzalez-Perez et al., 2013).

Data Processing Procedures
Combining Histone Marks
The epigenetic intensities on regulatory elements were
summarized on a 1 kb scale, then power-transformed and
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quantile normalized. We use the dPCA (Ji et al., 2013) to
decompose the matrix D representing the difference between M
epigenetic datasets at G genomic loci comparing two groups of
samples, into matrices B and V (1)

DG×M = BG×RVR×M + E (1)

where E is the random sampling noise.
We use the first k dPCs to represent the major changes

between two conditions.We implemented an Rwrapper function
for dPCA in our tool, which takes the mean differences of the
normalized ChIP-Seq signals in each genomic locus between
two biological conditions as input, and returns the dPCs from
dPCA. The definition of dPCs varies between the test cases
(Figure 2A). The largest variances of the positive and negative
histone mark components are captured by dPC1 and dPC2 in
our test case studies (Figure 2B). Therefore, we selected the sum
of the absolute values of the first two dPCs for representing the
overall differences of these epigenetic marks.

Promoter–Enhancer Interaction Analyses
In our approach, the enhancer–promoter relationships are
described as a weighted bipartite graph, in which both enhancers
and promoters are represented as vertices, and edges are directed
from enhancers to their target promoters (Figure 1 Step 1). The
weights of the vertices are defined as the sum of the absolute
values of the first two dPCs when combining multiple epigenetic
marks, or the absolute value of the difference if a single epigenetic
mark is considered. We adopt an algorithm called “PageRank,”
which is originally designed for evaluating the importance of
web pages (Brin and Page, 1998), for ranking the magnitude of
epigenetic alterations in each gene. We use the “personalized”
PageRank implemented in igraph (Rye et al., 2011) to summarize
the weights of one promoter and its connected enhancers into a
unique meta-gene score (Figure 1 Step 2). Since our enhancer–
promoter network is a directed graph, all the enhancer weights
will eventually be attributed to their target promoter using
PageRank, yielding a unified score for each gene, which can be
used to rank the genes. Overall, there are ∼ 251, 000 promoter
interacting fragments in the promoter–enhancer interaction
networks in our case studies, which is 8.5 times the number
of promoters in the networks. The number of the interacting
fragments targeting a gene varies from none to 227, and on
average, 21 interacting fragments are targeting a promoter in
the networks.

Scoring Ranked Lists
Using the gene ranks computed as described in the previous
section, we can now evaluate the enrichment of a specific gene
set G in the ranked list by computing the empirical cumulative
distribution function (ECDF) obtained ranking the genes in
decreasing order based on the previously described rank, and
summing the indicator function

eCDFG(k) =

k
∑

i=1

δi wi th δi =

{

1 i f gi ∈ G

0 i f gi /∈ G
(2)

We use the area under the curve (AUC) as a measure of the
enrichment of the gene set G, with AUC = 0.5 corresponding
to a random distribution of the genes in G inside the
ranked list.

Comparison With ChromHMM
We applied the ChromHMM method (version v1.22) to
the Glioma and the healthy brain control samples (see
Supplementary Table 1). The 6 histone marks were integrated
into 10 chromatin states, of which 2 correspond to active
promoter regions and one to active enhancer regions
(Supplementary Figure 2B). The chromswitch package (Jessa
and Kleinman, 2018) (v. 1.12.0) from Bioconductor was applied
to the promoter and PIR regions linked to promoters for
specific chromatin states. The chromswitch method determines
a consensus score between changes occurring in chromatin
state within a group of sample, and the labels of these samples.
Hence, a maximal consensus score for a region of interest
would correspond to changes in a chromatin state within the
region of interest occurring only in the samples of one of the
two groups. A minimal consensus score would on the opposite
correspond to changes in chromatin states in the region of
interest occurring in samples, which are randomly distributed
over the two groups. For each gene, we compute a score by
averaging the consensus score of all regulatory elements related
to this gene, and use this score to rank the genes, as a comparison
to the IRENE ranking.
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