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The first indication of a potential mechanistic link between the pathobiology of the 
human gastrointestinal (GI)-tract microbiome and its contribution to the pathogenetic 
mechanisms of sporadic Alzheimer’s disease (AD) came a scant 4 years ago (1). Ongoing 
research continues to strengthen the hypothesis that neurotoxic microbial-derived 
components of the GI tract microbiome can cross aging GI tract and blood–brain bar-
riers and contribute to progressive proinflammatory neurodegeneration, as exemplified 
by the AD-process. Of central interest in these recent investigations are the patholog-
ical roles played by human GI tract resident Gram-negative anaerobic bacteria and 
neurotropic viruses—two prominent divisions of GI tract microbiome-derived microbi-
ota—which harbor considerable pathogenic potential. It is noteworthy that the first two 
well-studied microbiota—the GI tract abundant Gram-negative bacteria Bacteroides 
fragilis and the neurotropic herpes simplex virus-1 both share a final common pathway 
of NF-κB (p50/p65) activation and microRNA-146a induction with ensuing pathogenic 
stimulation of innate-immune and neuroinflammatory pathways. These appear to 
strongly contribute to the inflammation-mediated amyloidogenic neuropathology of AD. 
This communication: (i) will review recent research contributions that have expanded 
our understanding of the nature of the translocation of microbiome-derived neurotox-
ins-across biophysiological barriers; (ii) will assess multiple-recent investigations of the 
induction of the proinflammatory pathogenic microRNA-146a by these two prominent 
classes of human microbiota; and (iii) will discuss the role of molecular neurobiology 
and mechanistic contribution of polymicrobial infections to AD-type neuropathological 
change.

Keywords: Alzheimer’s disease, Bacteroides fragilis, herpes simplex virus-1, microrNA-146a, polymicrobial 
infections

OvervieW

Containing 95% of the entire human microbiome, the gastrointestinal (GI) tract is the largest 
reservoir of microbes in the body (2, 3). Consisting of a densely packed, genetically diverse reposi-
tory of about 1014 microorganisms, the human GI tract microbiome consists mostly of anaerobic 
bacterial and viral species with fungi, protozoa, archaebacteria and other microorganisms making 
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up the remainder (1, 3–11). The contribution of these microbial 
species to human neurobiological health, aging, and disease is 
becoming increasingly recognized, and the molecular genetics, 
epigenetics, biophysics, and signaling mechanisms of the spe-
cies involved and their abundance, speciation, and complexity 
in health and disease are becoming increasingly understood. 
One recently described benefit of GI tract microbiota is that 
they may help protect against inflammatory neurodegeneration, 
such as those encountered in Alzheimer’s disease (AD) brain, 
in part by supporting the generation of select short chain fatty 
acids which interfere with the formation and aggregation of toxic 
soluble amyloid beta (Aβ) peptides (12). Indeed, while normally 
confined within the healthy human GI tract microbiome, with 
aging and disease microbiota and/or their exuded neurotoxins 
may leak across normally protective biophysiological barri-
ers inducing a persistent systemic inflammatory condition 
that may be an early indicator and biomarker for the onset of 
chronic inflammatory neurodegenerative disorders that include 
AD (2, 13–17). This article (i) will focus on recent advances in 
our understanding of the neurotropic herpes simplex virus-1  
(HSV-1) and the GI tract abundant Gram-negative bacillus 
Bacteroides fragilis to AD-type neurological change; (ii) will 
evaluate several recent findings on the involvement of the induc-
ible microRNA-146a (miRNA-146a) by these two prominent 
classes of human microbiota; and (iii) consider the possibility 
that polymicrobial infections involving both bacterial- and 
viral-derived neurotoxins may make a significant pathogenic 
contribution to chronic, insidious and fatal neurological diseases 
of the human central and peripheral nervous system (CNS and 
PNS).

HSV-1 AND sPOrADic AD

The icosahedral capsid-enveloped HSV-1 is a neurotropic, 
neuro invasive group 1 member of the herpes virus family 
Herpesviridae (18–20). As a 155,000 base pair double-stranded 
DNA (dsDNA) virus, HSV-1 contains at least 74 genes and is 
known to be capable of establishing a persistent and lifelong 
latency in human CNS and PNS tissues (21–28). Interestingly, 
human populations are infected with at least 8 different types of 
herpes viruses, including HSV1 and HSV2 (also termed HHV1 
and HHV2, involved in oral and genital herpes, respectively), 
varicella zoster virus (human herpesvirus HHV3), Epstein-Barr 
virus (HHV4), cytomegalovirus (HHV5), herpes lymphotropic 
virus (HHV6), human myeloradiculoneuropathy/encephalopa-
thy virus (HHV7), and Kaposi sarcoma-associated herpesvirus 
(termed KSV or HHV8). In general herpes viruses: (i) are detect-
able in human nervous tissue and their presence is not related 
to either age or gender (27, 29); (ii) have variable patterns of 
activation that can be separated into low-reactivation and high-
reactivation phenotypes (24, 30); (iii) are highly neuroinvasive, 
establishing themselves as a “persistent infection” of neurons and 
neuronal ganglia of both the CNS and PNS (27); (iv) are adapted 
to lifelong “latent” infection of their human hosts (4, 5, 23, 31);  
(v) are activated by physiological stimuli that involve stress, 
mediated in part by reactive nitrogen and oxygen species (4, 5,  
18, 23, 27, 29, 32, 33); (vi) make extensive use of multiple 

immune-evasion strategies to shield themselves from the host 
innate-immune system (4, 5); (vii) when neuroactive are highly 
proinflammatory, and progressively and irreversibly incapacitate 
neurons (34); and (viii) induce proinflammatory microRNAs 
such as miRNA-146a in the host and induce AD-type inflam-
matory gene signaling immediately after HSV-1 infection of 
human neuronal-glial (HNG) cells in primary culture including 
the rounding up of cell bodies and retraction of neurites [(4, 5, 
18, 35–37); Figure 1].

Herpes viruses in general, and HSV-1 in particular, are sig-
nificant components of the human GI tract microbiome and also 
occupy a prominent role in human illnesses triggered by primary 
herpetic infection or reactivation of HSV from the latent state 
(30, 36, 43). Indeed HSV-1 presence is common in neuronal 
ganglia innervating the human GI tract, HSV-1-derived signal-
ing molecules can act on enteric neurons to influence GI tract 
motility, and HSV-1 reactivating from these sites play a role in 
recurrent GI tract disorders, especially in immune-compromised 
or immune-incompetent humans (1, 30, 36, 43). Although an 
epidemiological link between HSV-1 infection and Alzheimer’s 
disease (AD) was first suggested almost 30  years ago (44), the 
molecular-genetic mechanism of this pathogenic association is 
yet to be fully elucidated. A preferential association of HSV-1 
with trigeminal sensory ganglion and the incubation of HSV-1 
with HNG cells in primary coculture results in a number of 
morphological, neurochemical, biophysical, and genetic changes 
to the neurons favorable to the propagation of the infecting agent 
and detrimental to the function of the host cells, enabling the 
latent occupation of the neuronal cell cytoplasm and/or genome 
by HSV-1. Reactivation of latent herpesviruses can directly alter 
host cytokine profiles through both viral expression of cytokine-
like proteins and upregulation in the host expression of members 
of the arachidonic acid signaling cascade including interleukin-6 
(IL-6), cytoplasmic phospholipase A2 (cPLA2), the inducible 
prostaglandin synthase cyclooxygenase-2, the neuroinflamma-
tory cytokine interleukin-1beta (IL-1β), specific viral encoded 
and secreted small non-coding RNA (sncRNA) and microRNAs, 
and the modification and modulation of expression of host gene 
transcription pathways, such as that for nuclear factor κB [NF-κB 
(1, 45, 46)]. Interestingly, a generalized upregulation of inflam-
matory signaling has been associated with both HSV-1 infection 
of stressed brain cells in primary culture and in AD, where there 
occurs increased expression of NF-κB-regulated proinflamma-
tory microRNAs such as miRNA-146a (1, 25, 26, 46). In turn an 
upregulated miRNA-146a (i) is known to be important in the 
significant downregulation of complement factor H (CFH) and a 
chronic stimulation of an atypical and pathogenic innate-immune 
response (35, 36, 47–49); (ii) decreases the expression of the 
proline-rich postsynapse-associated synaptogenic glycoprotein 
SHANK3 with resulting synaptic disorganization and functional 
loss (36, 50–52); and (iii) induces a downregulation in the expres-
sion of the triggering receptor expressed in myeloid/microglial 
cells (TREM2) with an ensuing stimulation of tau neuropathology 
and deficits in the phagocytosis and clearance of amyloid from 
the neuronal parenchyma (36, 53, 54). These actions combined 
indicate a prominent role for HSV-1-induced miRNA-146a in the 
activation of key elements of the arachidonic acid cascade and 
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FiGUre 1 | Viral and bacterial contribution to neuroinflammatory signaling in sporadic Alzheimer’s disease (AD) brain—(A) primary human neuronal-glial (HNG)  
cells after ~2 weeks in primary coculture; the cell density is approximately 75% neurons and 25% astroglia at ~60% confluency; human primary neuronal and glial 
“support” cell cocultures are utilized because human neuronal cells do not culture well by themselves (11); neuronal cells are stained with neuron-specific β-tubulin 
(red; λmax = 690 nm), glial cells are stained with glial-specific glial fibrillary acidic protein (GFAP; green; λmax = 525 nm), and nuclei are stained with DAPI/Hoechst 
33258 stain (blue; λmax = 470 nm); photo magnification 30×; (B) control HNG cells in primary culture; as in previous panel; light microscopy 30×; (c) HNG cells 
exposed to HSV-1 for 48 h; note “rounding up of cell bodies and retraction of neurites”; (D) miRNA array analysis of an overexpressed proinflammatory miRNA-146a 
in HSV-1 treated HNG cells; on this miRNA array an upregulated miRNA-146a is indicated at position 2c (33); (e) time course of induction (0, 24, and 48 h) of a 
pathogenic miRNA-146a in HNG cells by HSV-1; at 48 h the abundance of miRNA-146a was almost fivefold over controls; miRNA-183 represents an unchanging 
miRNA control; (F) association of lipopolysaccharide (LPS) with the neuronal cytoplasm and the periphery of neuronal nuclei in AD neocortex—NeuN (neuron-
specific green stain; λmax = 520 nm), LPS (red stain; λmax = 690 nm), and DAPI (blue stain; λmax = 470 nm); human superior temporal lobe AD neocortex 
(Brodmann A22); note organization of LPS into a “clathrin-like” lattice or “net” within the neuronal cell cytoplasm (yellow arrows); (G) induction of the proinflammatory 
miRNA-146a in LPS-stressed HNG cells is almost eightfold over controls after 48 h; (H) flow chart of the potential contribution of the GI tract-resident microbiome-
abundant Gram-negative bacilli Bacteroides fragilis and herpes simplex-1 (HSV-1) to neuropathological pathways; stressed B. fragilis secrete a remarkable quantity 
of neurotoxins that include amyloids, endotoxins, exotoxins, LPS, and small toxic microRNA-like RNAs; upon HSV-1 invasion of human neurons cell surface proteins 
serve as receptors for viral entry and the HSV-1 glycoproteins gB, gD, and gH are required for infection of, and the maintenance of latency in human neurons; in 
both cases B. fragilis and HSV-1 in turn induce the evolution of reactive oxygen species (ROS), reactive nitrogen species (RNS), and the proinflammatory 
transcription factor NF-κB and upregulate a small family of NF-κB-sensitive microRNAs (miRNAs) including miRNA-146a that interact with the 3′-untranslated region 
(3′-UTR) of messenger RNA (mRNA) targets (1, 36, 37). In the case of B. fragilis signaling this drives the downregulation of complement factor H (CFH), the 
postsynaptic cytoskeletal SHANK3 and the triggering receptor expressed in myeloid/microglial cells TREM2; deficits in CFH, SHANK3, and TREM2 resulting in the 
inability to clear excessive amyloid from brain cells, amyloidogenesis, apoptosis, inflammatory neurodegeneration and synaptic and neurotropic deficits. Because all 
miRNA fractions were obtained from short postmortem interval (PMI) human tissue samples and miRNAs have been reported to have a high rate of depolymerization 
(degradation) under physiological, and especially pathophysiological conditions, only upregulated miRNAs were studied here; in fact miRNA upregulation and mRNA 
downregulation appears to be a very common posttranslational genetic regulatory mechanism in the human and murine CNS [see text (38, 39)]. Note that parts of 
Figure 1 have been considerably updated from a previous version (37, 40–42).
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proinflammatory pathways known to contribute to Alzheimer-
type neuropathological change and evasion of HSV-1 from the 
host complement system (Figure 1). Interestingly, for infectivity 
to be attained and sustained, the dsDNA HSV genome must enter 
the host cell through means of fusion of its envelope with the host 
cellular membrane and/or via endocytosis involving the HSV-1 
viral entry glycoproteins gB, gD, and gH and other elements of 
the HSV-1 secretome. Of interest is that many of these same 
glycoproteins are utilized by HSV-1 to promote HSV-1 infectiv-
ity and survival, and counteract host antiviral innate-immune 
responses—many of these later responses involve miRNA-146a 
signaling (18, 19, 55).

B. fragilis AND sPOrADic AD

Bacteroides fragilis is a Gram-negative anaerobic bacterium and 
major component of the human GI tract microbiome (1, 56, 57).  
The absolute abundance of B. fragilis in the human GI tract 
appears to be regulated in large part by the intake of dietary fiber 
such that diets low in soluble fiber tend to proliferate anaerobic 
Gram-negative bacterial species (6, 7, 57, 58). B. fragilis secretes 
a remarkably varied array of highly proinflammatory neuro-
toxins which, when released from the confines of the healthy 
GI tract into the systemic circulation and neurovasculature are 
highly toxic to nervous tissues of the CNS (7, 58). One important 
aspect of this process is the transfer of these B. fragilis toxins 
(BFTs) through the GI tract and the blood–brain barrier (BBB), 
dynamic structures which are known to become considerably 
more “leaky” with aging and disease. Multiple reviews on GI 
tract and BBB structure and function have been recently pub-
lished including (i) the role of BBB breakdown and dysfunction 
in neurodegenerative process and how targeting the BBB can 
influence the course of AD (59); (ii) the role of human ATP-
binding cassette transporters across lipid membranes of the 
BBB in AD (60); (iii) the design, development and use of poly-
mer-based, lipid-based, and inorganic-based nanocarriers to 
aid in biophysiological barrier research, and the design of drugs 
which can cross these barriers (61); and (iv) in depth studies on  
brain capillary endothelial cells, pericytes, astrocytes, platelets, 
and basement membranes and their interactions that form the 
basis for the neurovascular unit and the BBB and GI tract bar-
riers (62, 63).

When stressed, overpopulated or pathogenically stimulated, 
B. fragilis releases a remarkably complex array of endotoxins 
and exotoxins (such as fagilysin), lipooligosaccahrides (LOS), 
lipopolysaccharide (LPS), including an extremely proinflamma-
tory B. fragilis LPS (BF-LPS), microRNA-like sncRNA, and a wide 
variety of bacterial-derived amyloids (9–11, 56, 57, 64–66). These 
neurotoxins may have both PNS and CNS effects. For example, 
Bacteroides fragilis endotoxins are a leading cause of anaerobic 
bacteremia, sepsis and/or systemic inflammatory distress in the 
PNS through their generation of the highly proinflammatory 
zinc metalloprotease metalloproteinase BFT fragilysin (67, 68). 
BFT has recently been shown to disrupt epithelial cells of GI tract 
barriers via cleavage of the synaptic adhesion zonula adherens 
protein E-cadherin (67, 69, 70). BFT also has strong CNS effects in 
the induction of NF-κB signaling and miRNA-146a upregulation 

in HNG cells in primary culture, cells originally derived from 
human CNS tissues (9–11, 65, 68). Similarly BF-LPS, a charac-
teristic component of the outer leaflet of the outer membrane 
of Gram-negative bacteria B. fragilis shed into the extracellular 
space plays a key role in host–pathogen interaction of the innate-
immune system in part via the induction of NF-κB (33, 41, 42, 
65, 71–73). Of related interest is that while microbiome-derived, 
secreted LPS, proteolytic endotoxins, and amyloid monomers are 
generally soluble as monomers, over time they gradually form 
into insoluble fibrous protein aggregates that are microglial cell 
activating and characteristic of several common, age-related dis-
orders of the human systemic circulation, PNS and CNS including 
systemic inflammatory response syndrome, multiple sclerosis, 
prion disease, and AD (36, 53, 74–77). Again, the one common 
denominator regarding the pathogenic actions of these neuro-
toxins is their ability to upregulate NF-κB and NF-κB-sensitive 
genes, including the significant transcriptional upregulation of a 
small family of NF-κB-sensitive proinflammatory miRNAs such 
as miRNA-146a (18, 35–37, 53, 78–83). Interestingly, upregulated 
NF-κB-miRNA-146a circuits have also been implicated in other 
progressive neurodegenerative diseases that include Down’s 
syndrome (Trisomy 21) and the human prion diseases sporadic 
Creutzfeldt–Jakob disease and Gerstmann–Straussler–Scheinker 
syndrome (41, 42, 81, 82, 84).

UNANsWereD QUestiONs

Many unanswered questions remain concerning the role of 
microbiome-derived neurotoxins and their contribution to 
the progressive inflammatory neurodegeneration of sporadic 
AD—and these include, prominently: Does life-long exposure to 
specific infectious agents predispose one to develop AD at a later 
age? How do the secreted toxins from B. fragilis and HSV-1, and 
other microbiota, progressively leak across the GI tract barrier 
into the systemic circulation and on through the BBB to CNS 
compartments? Are other transcription factors besides NF-κB 
and other proinflammatory microRNAs besides miRNA-146a 
involved in driving AD-type neurodegeneration? What combina-
tions of bacterial- and viral-based neurotoxins and perhaps other 
microbiome-derived toxins are the most efficient in inducing a 
progressive proinflammatory neurodegeneration? Do microbial-
derived neurotoxins or polymicrobial infections exhibit syner-
gism in their toxicities toward neural cells of the PNS and CNS? 
Do prebiotics, carbohydrates and specialized plant-based dietary 
fibers that nourish beneficial microbes already in the GI tract, or 
probiotics, consisting of beneficial “health-promoting” microbes 
have any role in AD onset or progression? Would it possible to tai-
lor a life-long dietary intake that minimizes the risk of CNS-based 
age-related neuroinflammatory diseases such as AD? Is it pos-
sible to devise prebiotic, probiotic, anti-neurotoxin, anti-NF-κB,  
anti-microRNA, or combinations of these approaches for thera-
peutic benefit in the clinical management of AD?

cONcLUsiON

The potential contribution of neurotoxic components of the 
human GI tract microbiome to the initiation, development 
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and/or progression of the sporadic AD process appears to be 
both complex and significant. We still remain in the early stages 
of understanding the GI tract microbiome-brain axis in spo-
radic AD, and the biophysics, molecular mechanics, genetics 
and epigenetics of just how this is accomplished is becoming 
increasingly understood. Major bacterial and viral species of 
the human microbiome such as the Gram-negative bacillus  
B. fragilis and the neurotropic HSV-1 secrete a remarkably com-
plex array of highly pathogenic proinflammatory neurotoxins 
which, when released from the confines of a healthy GI tract, 
are highly toxic to neurons of the CNS and PNS. Interestingly, 
while an environmental cause for sporadic AD has often been 
suggested, a strong source of powerful neurotoxins already 
resides within us. For example, BF-LPS represents an internally 
generated GI tract microbiome-derived neurotoxin capable of 
driving AD-type change and has enormous potential to initiate 
and/or propagate inflammatory neurodegeneration along the 
gut–brain axis. Some understudied aspects of the bioavailabi-
lity of GI tract generated neurotoxins are (i) their translocation 
through the GI tract and BBB that involves dynamic structures 
which are known to become more “leaky” with aging and 
disease; (ii) the direct influence of these endotoxins, such as 
fragilysin, which targets zonula adherens protein E-cadherin 
and cell-cell adhesion; and (iii) the molecular exchanges 
between the GI tract, the systemic circulation and parenchyma 
of the central CNS (59, 61, 67, 69, 70). To cite another impor-
tant example, BF-LPS (i) represents an internally generated 
GI tract microbiome-derived neurotoxin capable of driving 
AD-type change and (ii) has enormous potential to initiate 
and/or propagate inflammatory neurodegeneration along 
the GI tract–CNS axis (9–11, 33, 37, 41, 42). It is remarkable 
that of the few GI tract-derived microbes so far studied that 
all appear to be employing an NF-κB-miRNA-146a signaling 
pathway that promotes amyloidogenesis, apoptosis, inflamma-
tory neurodegeneration, synaptic and neurotropic defects—all 
of which are characteristic aspects of AD-type neuropathology 
(Figure 1) (85–87). Furthering our molecular and mechanistic 
understanding of how individual secreted components of 
the GI tract microbiome—including potentially neurotoxic 
exudates consisting of endotoxins and exotoxins, fragilysin, 
select lipoglycans, LOS and LPS, specific LPS such as BF-LPS, 
amyloids and sncRNAs—affect the PNS and CNS may uncover 
potential and novel strategies for GI tract-based modulation of 
neural function and the more efficacious clinical treatment of 
terminal neurological disease.
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