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Abstract: Common alleles tend to be more ancient than rare alleles. These common SNPs appeared
thousands of years ago and reflect intricate human evolution including various adaptations, ad-
mixtures, and migration events. Eighty-four thousand abundant region-specific alleles (ARSAs)
that are common in one continent but absent in the rest of the world have been characterized by
processing 3100 genomes from 230 populations. Also computed were 17,446 polymorphic sites with
regional absence of common alleles (RACAs), which are widespread globally but absent in one region.
A majority of these region-specific SNPs were found in Africa. America has the second greatest
number of ARSAs (3348) and is even ahead of Europe (1911). Surprisingly, East Asia has the highest
number of RACAs (10,524) and the lowest number of ARSAs (362). ARSAs and RACAs have distinct
compositions of ancestral versus derived alleles in different geographical regions, reflecting their
unique evolution. Genes associated with ARSA and RACA SNPs were identified and their functions
were analyzed. The core 100 genes shared by multiple populations and associated with region-specific
natural selection were examined. The largest part of them (42%) are related to the nervous system.
ARSA and RACA SNPs are important for both association and human evolution studies.

Keywords: computational biology; genomics; polymorphism; single nucleotide; genetic variation

1. Introduction

The 1000 Genomes Project revealed 81 million SNPs in humans [1]. Most of these SNPs
present rare alleles with worldwide population frequencies less than 1% (68.4 million SNPs
in 1000 genomes). Of the remaining SNPs, 2.7 million have alternative allele frequencies
between 1 and 2%; 1.2 million between 2 and 3%; 0.76 million between 3 and 4%, and so on
with fewer SNPs as allele frequencies increase. Due to the continuous sequencing of human
genomes, the number of known SNPs constantly grows. In 2021, the NCBI public dataset
of validated human SNPs was expanded to 1.053 billion [2], predominantly by inclusion
of SNPs with very rare alleles. These rare SNPs are informative for inference of fine-scale
population structure, investigations of admixture and migration events, and genome-wide
association studies (GWAS) [3,4]. However, there are several limitations to using variants
with rare alleles effectively. The first is sample size. To obtain appropriate statistical power,
much larger sample sizes are required than in the case of common variants. The second
limitation is the necessity of controlling for population ancestry, since populations differ in
spectra of rare SNPs [5,6].

In contrast, common SNPs, with alleles that are more abundant (e.g., minor allele
frequency (MAF) > 0.05), have been widely used in non-expensive and quick analyses in
chip microarrays for different purposes. For example, ancestry explorations and finding
close genetic relatives, and revealing the genetic bases of predispositions to common
human diseases by GWAS. Alleles of common SNPs are often detected across all continents.
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However, their distributions have a large spectrum of patterns, varying from similar
patterns through the geographic regions to pronounced local changes [7]. If population
stratification of SNPs is not properly considered, incorrect conclusions may be made in
GWAS. There are many publications on common SNP peculiarities in specific populations,
including populations from different geographic regions and continents [8–11]. The most
prolific among them utilize the genome-wide data of the International HapMap Project and
the HGDP-CEPH Human Genome Diversity Cell Line Panel and whole-genome sequence
data of the 1000 Genomes Project [12–14]. However, the population sets of the HapMap and
1000 Genomes projects suffer from two limitations: (1) samples from the Oceania region
were not included and (2) American samples were admixed. For a long time, the HGDP-
CEPH data included only genome-wide microarray genotypes and thus were not suitable
for exploration of the full spectrum of SNPs. Recently the HGDP-CEPH populations have
been sequenced; however, SNP distributions were not analyzed in detail [15]. Thus, the
global picture of SNP distributions among continents and populations is not yet well
described. The goal of this paper was to investigate extreme biases in alleles of common
SNPs in different geographical regions and explore the biological reasons of these biases.

Common SNPs can be generally subdivided into “private” and “shared” on the basis of
their occurrence in a single population or a range of populations. Occurrence of population-
specific (population private) common SNPs has been previously investigated by Choudhury
et al. (2014) [9] using the 1000 Genome dataset. These authors used a 5% cutoff for MAF to
classify a variant as a common SNP. While Choudhury and co-authors state that the choice
for this frequency cutoff for characterization of common SNPs is rather random and “does
not have any special biological relevance,” it must be considered that common human SNPs
with lower frequencies tend to be younger than SNPs with higher frequencies. Moreover,
common human SNPs, characterized by much higher cutoff frequency (20–25% MAF),
often form haplotypes with very specific and intriguing properties. These haplotypes are
known as “yin yang” or mutually exclusive haplotypes [16,17]. These “yin yang” haplotype
pairs become practically undetectable when the cutoff allele frequency drops down to 5%.
Therefore, in this paper, we used a much higher cutoff frequency around 20%. Specifically,
we chose 18% due to the small number of individuals from the examined geographical
regions from the Simons Project of sequenced human genomes.

The results of Choudhury and co-authors are excellent and worthy of serious consid-
eration. However, it is interesting to note that their data on population-specific common
SNPs extensively differ from our region-specific common SNPs. This difference in results
may be due to factors other than common SNP frequency cutoff. Additionally, in our study,
neighboring mutually admixed populations were considered as belonging to the same
geographical region. The idea of such an approach correlates with the results of Coop et al.
(2009) [7], where the authors showed that even the SNPs with extreme FST-values were
distributed with high regularity across the geographic regions. This approach allows for
the detection of common genetic characteristics that distinguish populations in one region
from populations in other regions. The data on degree of population admixture were taken
from a previous study [4].

In this paper, we characterized two types of region-specific common SNPs. The
first type is abundant region-specific allele (ARSA) SNPs for which alleles are abundant
(frequency > 18%) within a particular geographical region and almost absent in the rest of
the world. The second type is regional absence of common allele (RACA) SNPs, which are
widespread globally (allele frequency > 20%), but absent in one continent.

Thousands of region-specific common SNPs restricted to Africa, America, East Asia,
Europe, and Oceania were revealed. We make them publicly available and encourage their
use for science and industry.
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2. Materials and Methods
2.1. Databases

The following whole genome sequence datasets were used for this paper: (1) the
1000 Genomes Project (phase III), including 2504 individuals from 26 populations [18];
(2) the Simons Genome Diversity Project, including 279 genomes from 142 populations [19];
(3) the Estonian Biocentre Human Genome Diversity Panel, including 402 new genomes
from 125 populations [20]. The variant call format (VCF) file from each database was used
to determine allele identification and count. Allele status (reference or alternative allele)
was read from the genotype field (GT) of the VCF file. Initially, ARSA SNPs were identified
from the Simons database and their alleles verified with the 1000 Genomes database and
subsequently the Estonian HGDP database.

2.2. Computation of ARSA SNPs

A diagram for our approach in computing ARSA SNPs is shown in Figure 1. For
computation of ARSA from the Simons database, we used the following thresholds for
allele frequency: (1) African region: 17 or more counts of an Africa-specific allele out
of 47 people from native African populations (Mozabite, Bantu, Biaka, Mbuti, Gambia,
Luo, Masai, Luhya, Somali, Ju-hoan, Yoruba, Esan, Mandenka, Mende, Khomani-San,
Dinka, Saharawi); 17 counts out of 47 people is equivalent to an 18.1% African ARSA
frequency threshold. (2) American region: 3 or more counts of America-specific allele out
of 8 people from Native American populations (Chane, Karitiana, Surui, Piapoco). In this
case, the frequency cutoff threshold is 18.75%. (3) Oceanian region: 7 or more Oceania-
specific allele counts out of 19 people from Oceanian populations (Australian, Bougainville,
Papuan) with a threshold of 18.4%. (4) East Asian region: 8 or more East-Asia-specific
allele counts out of 22 people from East Asian populations (Dai, Han, Japanese, Korean,
Miao, Naxi, She, Tujia, Yi) with a threshold of 18.2%. (5) European region: 15 or more
Europe-specific allele counts out of 41 people from 20 European populations (threshold
= 18.3%). The small number of individuals in the Simons Database meant that the ARSA
frequency cutoff threshold could only be set at discrete values. For example, the American
ARSA threshold was 3 counts of American-specific alleles from 8 people (allele frequency
cutoff threshold 18.75%). Increasing this threshold incrementally to 4 allele counts among
8 people would make this new threshold 25%. Therefore, the options for threshold count are
naturally limited. The 18% threshold was optimal for all five regions and produced minimal
deviation between regions (from 18.1% to 18.75% frequency cutoff threshold). During the
second step, the identified ARSA SNPs were validated on the 1000 Genomes dataset. For
the African region, we used six populations (YRI, LWK, GWD, MSL, ESN, and ACB)
that are represented by 600 people. For the American region, we used four populations
(CLM, MXL, PEL, and PUR) comprising 347 people. For the European region, we used
503 individuals from CEU, FIN, GBR, IBS, and TSI populations. For the East Asia region,
we used 504 people from CDX, CHB, CHS, JPT, and KHV populations. Oceania does not
have representatives in the 1000 Genomes dataset and was not tested for ARSA frequencies
at this stage. For all regions, the ARSA frequency cutoff threshold was established exactly
at 18.0%. Since many populations from 1000 Genomes are significantly admixed (especially
American populations), the percentage of admixture was used to adjust cutoff frequency
thresholds. For example, in a population with 40% admixture, the initial threshold of 18%
was reduced by the amount of admixture, becoming 10.8% in this example. We used our
previous publication to characterize admixture between populations from 1000 Genomes,
the Simons, and the Estonian HGDP [4]. Data on percent admixture were obtained from
Table S4 of the same publication. We also required that the frequency of ARSA in all
other regions were at least 40 times less than in their region of specificity. The regions
with significant admixture have been excluded from these calculations. For instance, in
calculating the frequency of European-specific ARSA in the rest of the world, the South
Asia (SAS) and American (AMR) populations were excluded. For Oceania-specific ARSA,
we also used this control with more stringent conditions (less than 7 Oceania-specific allele
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counts were allowed among all individuals of 1000 Genomes dataset). Finally, in the third
step, ARSA SNPs that passed the frequency test on 1000 Genomes were verified on the
402 genomes of the Estonian HGDP. The same criteria were applied: ARSA SNPs must
be abundant in populations inside their specificity region and be practically absent in
the rest of the world. After completing this step, the program generates comprehensive
tables of ARSA occurrences in all tested populations from three genomic datasets. These
five tables, namely, ARSAtableAFR, ARSAtableAMR, ARSAtableEAS, ARSAtableEUR,
and ARSAtableOCE, are presented in the supplementary package and described in the
ATLAS3protocols.docx file.
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Figure 1. Legend: Computational methodology for characterization of ARSA SNPs with three
validation points.

2.3. Computation of RACA SNPs

Calculations of RACA SNPs were performed with approaches very similar to ARSA
computations but using only one step where only the 1000 Genome database was processed
(see the Section 3).

2.4. Perl Programs and Computation Protocols

Computations of ARSA and RACA SNPs were performed by our pipeline of Perl
programs specific to each continental region. All Perl programs are available on our web-
site (http://bpg.utoledo.edu/~afedorov/lab/ATLAS3.html accessed on 20 May 2022) in
a package that includes an Instruction Manual (ATLAS3instruction.docx) and Protocols
(ATLAS3protocols.docx). In addition, this package of programs and protocols is avail-
able in Supplementary File SF1. Specifically, for obtaining African ARSA, we used the
following programs: (1) AfricaSimonStep1.pl; (2) Africa1000gStep2_v3.pl; (3) AfricaSNPsES-
TONIA_v3.pl. For American ARSA—(1) AmericanSNPs2020.pl; (2) America1000gStep2_v3.pl;
(3) AmericanSNPsESTONIA_v3.pl. For East Asia ARSA— (1) ChinaSimonStep1.pl;
(2) China1000gStep2_v3.pl; (3) ChinaSNPsESTONIA_v3.pl. For European ARSA—
(1) EuropeSimonStep1.pl; (2) Europe1000gStep2_v3.pl; (3) EuropeSNPsESTONIA_v3.pl.
For obtaining Oceania ARSA, we used the following programs: (1) OceaniaSimonStep1.pl;
(2) Oceania1000gStep2new_v3.pl; (3) OceaniaSNPsESTONIA_v3.pl. For obtaining African
RACA SNPs, we used PopulationSpecific1000gAFRreverse.pl; for East Asia RACA SNPs—
PopulationSpecific1000gCHIreverse.pl; for European RACA—PopulationSpecific1000g-
EURreverse.pl. The details of these computations are shown in ATLAS3_PROTOCOLS.docx
Supplementary File. In the output data files, we used the same identifiers for the individu-
als, populations, and geographic regions under analysis as in our previous publication [4].

Ancestral or derived status for the ARSA and RACA was calculated using VCF files of
the 1000 Genomes Project. In column 8 of these VCF files, the ancestral allele is shown as
“AA = n”, where n is the ancestral allele.

2.5. Characterization of Genes Associated with ARSA and RACA SNPs

The genomic context of ARSA and RACA SNPs was determined using the snpEff
5.1 program [21] with database GRCh37.87. Only canonical validated transcripts and
variants intersecting them were considered. The intersections of gene lists were visualized
with UpSet diagrams [22] that were built with the UpSetR package [23]. UpSet diagrams

http://bpg.utoledo.edu/~afedorov/lab/ATLAS3.html
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are equivalent to Venn diagrams but they are considered as being easier to read, specifically
in the cases when intersections of many data sets (e.g., four and more ones) are analyzed.

3. Results
3.1. Characterization of Abundant Region-Specific Allele (ARSA) SNPs

We characterized abundant region-specific allele (ARSA) SNPs as those that alleles
are abundant (frequency > 18%) within a particular geographical region and almost absent
in the rest of the world. Some examples of ARSA SNPs are illustrated in Figure 2. It
should be clarified that several regions/continents have strong genetic admixture with each
other; therefore, for such regions, we introduced exceptions for ARSA SNP characterization
as described in the Materials and Methods section. For example, in Figure 2A, African
populations have noticeable admixture with Native Americans from the 1000 Genomes
dataset (PEL, MXL, PUR, and CLM populations). Figure 2C reflects the highest known ad-
mixture between continents—Europeans vs. Americans and Europeans vs. Indo-European
populations from South Asia (SAS group, from the 1000 Genomes Project). Therefore, our
algorithms for identification of European ARSA require that their presence in Africa and
East Asia should be 40 times less frequent than in Europe but allow noticeable presence of
these alleles in America and South Asia.

Table 1. Numbers of ARSA SNPs in five remote geographical regions.

Region

Step-1.
Number of ARSA

SNPs in the
Simons Database

Step-2.
Number of ARSA
SNPs Filtered by

1000 Genomes

Step-3.
Number of ARSA
SNPs Filtered by
EGDP Database

Step-4.
Number of ARSA

SNP Clusters

ARSA SNP Allele
Status (Ancestral

vs. Derived)

Africa 204,983 112,658 77,820 28,774 22% vs. 78%
Americas 46,994 4133 3348 3222 1% vs. 99%
East Asia 7789 441 362 272 7% vs. 93%
Europe 6585 2484 1911 1394 3% vs. 97%
Oceania 77,437 71,848 * 1358 453 4% vs. 96%

* Oceania populations are absent in 1000 Genomes; thus, the requirement for MAF > 18% is omitted for OCE at Step-2.

ARSA SNPs were identified by consequentially processing three databases, starting
with the Simons Human Genome Diversity Project. The initial ARSA SNP datasets obtained
from the Simons database were then verified on the 1000 Genomes dataset, and finally on
the Estonian Genome Diversity Project (EGDP) dataset. The advantage of the Simons project
is that individuals with sequenced genomes represent pure populations with minimal
admixture [4]. Its main disadvantage is the very small numbers of individuals representing
each population. Counts of ARSA after Step-1 processing of the Simons database are shown
in Table 1, column #2. During the second computational step, the frequency of ARSA in
their specific regions (>18%) was confirmed on the largest dataset of 2504 genomes from
1000 Genomes Project. In addition, computations verified that ARSA frequencies are at
least 40 times lower in the rest of the world. These data are displayed in Table 1, column
3. Note that Oceania populations are absent in 1000 Genomes; thus, the requirement for
Oceania ARSA frequency > 18% is omitted at Step-2. However, the >18% frequency cutoff
was enforced at the next Step-3 for the EGDP Database, which has 51 individuals from
Oceania populations. Finally, at Step-3, we confirmed that (1) ARSA frequencies from
Step-2 are also significant in their specific regions in EGPD database and (2) frequencies
of ARSA in EGPD database are drastically reduced in other regions. The final numbers
of verified ARSA are shown in Table 1, column 4, while the entire set of these SNPs is
available in Table S1. Many neighboring ARSA SNPs are in linkage disequilibrium with
each other. Therefore, ARSAs from Step-3 were grouped into clusters where the distance
between neighboring ARSA SNPs is less than 5 kb. The number of these clusters is shown
in Table 1, column 5. The last column of Table 1 shows the proportion of ancestral versus
derived alleles among ARSA. Interestingly, African ARSA have a significant proportion
(22%) of ancestral alleles, much higher than the other four regions.
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Figure 2. Examples of ARSA SNPs for Africa, East Asia, and Europe from population data of
1000 genome project as they presented on the Ensembl genome browser. A pie chart of regional SNP
allele frequencies taken from the Ensemble website “Allele and genotype frequencies by population”
(https://useast.ensembl.org/Homo_sapiens/Variation/ accessed on 20 May 2022) through SNP
RS-identifiers. (A) Allele “T” is present only in Africa but absent in other continents (small frequency
of “T” in Americas is due to admixture in 1000 Genomes populations). (B) Allele “A” is present only
in East Asia and nowhere else. (C) Allele “G” is present in Europe but absent in Africa and East Asia.
The presence of the “G” allele in Americas and South Asia (SAS) is due to admixture of Europeans
with populations from these regions. African populations from the USA (ASW and ACB from
1000 Genomes) also have the “G” allele with 4 to 9% frequency that resulted in its 2% frequency in the
total African sample. These ASW and ACB were excluded from our Step-2 calculations. Distribution
of ARSA SNPs among continents is present in Table 1.

The highest number of ARSAs was detected in Africa, while the lowest number was
observed in East Asia (Table 1). The second highest was in Native Americans, whose total
number of ARSAs was nine times greater than the number of ARSAs from East Asia.

3.2. Characterization of Regional Absence of Common Allele (RACA) SNPs

We were also interested in the evaluation of SNPs with regional absence of common
allele(s) (RACA). Examples of RACA distribution among populations are illustrated in
Figure 3. In Figure 3A, RACA allele G is practically absent in the East Asia region, but
very abundant in the rest of the world. In Figure 3C, RACA allele G is very rare in Europe
but frequent in other continents. We allow for a very rare occurrence of RACA allele in
their specific regions because of minor genetic admixture between continents. For example,
South Europeans have higher genetic diversity, which has been associated with gene flow
from Africa [24,25]. We computed RACA alleles only from the 1000 Genomes dataset
because absence of an allele in a region can only be proven using larger populations of
hundreds of individuals. In other words, it is not reasonable to assume population-wide
absence of an allele in small population datasets, such as those in the Simons project. Our
threshold for allele counts in the region where it is “absent” was < 10 (<0.1% frequency),
while in the rest of the world, we used a cutoff of >1000 counts (>25% allele frequency
overall). We explored RACA only for Africa, Europe, and East Asia. The high degree
of admixture among Native American populations made RACA calculation impossible.
Because of strong admixture between South Asian and European populations, we computed
RACA only for European populations and omitted South Asian populations. The data
on RACA SNPs are shown in Table 2. It should be noted that biological interpretation of
RACA is ambiguous. RACA may appear not only due to purifying selection of this allele,
but also via fixation of the opposite allele through positive selection.

https://useast.ensembl.org/Homo_sapiens/Variation/
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Figure 3. Examples of RACA SNPs for Africa, East Asia, and Europe. A pie chart of regional SNP
allele frequencies taken from the Ensemble web site “Allele and genotype frequencies by population”
(https://useast.ensembl.org/Homo_sapiens/Variation/ accessed on 20 May 2022) through SNP
RS-identifiers. (A) Allele “G” is present globally, except for East Asia. (B) Allele “A” is present
globally, except for Africa. (C) Allele “G” is present globally, except for Europe. One explanation
for this phenomenon is fixation of common alleles in particular regions/continents. Distribution of
RACA SNPs is shown in Table 2.

Table 2. Numbers of RACA SNPs in three remote geographical regions.

Region Number of RACA
SNPs

Number of RACA
SNPs Clusters

RACA SNP Allele
Status

(Ancestral vs. Derived)

Africa 6897 4159 3% vs. 97%
East Asia 10,524 3021 38% vs. 62%
Europe 25 16 88% vs. 12%

Note: Due to admixture of European, American, and Indian populations, the numbers may be biased, so Europe
might be underrepresented. Nonetheless, European counts were much lower than African and EAS counts. The
last column shows whether RACA is the ancestral or derived allele.

East Asia has the highest number of RACA SNPs compared to the other regions
(Table 2). This observation is in a sharp contrast to the number of ARSA SNPs, where
East Asia has the fewest of all regions. The observed enrichment of RACA SNPs in EAS
may be explained by the recent bottlenecking of East Asian populations coupled with
stronger genetic drift as compared to European populations [26]. In this case, many
alleles could have been lost due to random genetic drift. This hypothesis is supported
by the notion that East Asian populations have the least genetic diversity [27,28]. The
last column of Table 2 shows the proportion of ancestral versus derived alleles among
RACA. African RACA have the lowest proportion (3%) of ancestral alleles, while European
RACA have the opposite trend (88% of ancestral alleles). The number of independent
(no linkage disequilibrium) European RACA with known ancestral/derived allele status
may be as small as 8, and thus their highest proportion of ancestral alleles (88%) is a
very rough estimation without appropriate statistical support. Nonetheless, our Monte
Carlo simulations on 8 outcomes demonstrated that European RACA ancestral alleles
exceed RACA-derived alleles (p-value = 0.03). Hence, RACA ancestral/derived status is
drastically different between Africa and other studied regions (Europe and East Asia).

https://useast.ensembl.org/Homo_sapiens/Variation/
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3.3. Previously Annotated RACA and ARSA SNPs

The BioMart data mining tool [29] was used to find SNPs with previously associated
phenotypes among our sets of ARSA and RACA SNPs. All ARSA SNPs from column 4
in Table 1 and RACA SNPs from column 2 in Table 2 were examined. BioMart sources
data from the following databases: AMDGC, ClinVar, dbGaP, GEFOS, GIANT, HGMD-
PUBLIC, MAGIC, NHGRI-EBI GWAS catalog, and Teslovich. These already annotated
ARSA and RACA SNPs are presented in Tables S3 and S4 and are summarized in Table 3.
It shows the total number of SNPs and the subset for which substantial statistical power
(p-values < 10−5) have been reported. Because a majority of GWAS and other studies
of SNP association with disease and/or physiological conditions use chip microarrays,
containing limited subsets of known SNPs, the intersection of our whole-genome ARSA
and RACA SNP sets with BioMart output cannot be large. European populations were
most frequently studied in GWAS; therefore, they are most densely represented in Table 3,
while Oceania populations have the least representation.

Table 3. Number of SNPs from Tables 1 and 2, with biological effects accessed with BioMart.

Region # ARSA SNPs
Total

# ARSA SNPs
p-Value < 10−5

# RACA SNPs
Total

# RACA SNPs
p-Value < 10−5

Africa 353 191 382 362
America 17 5 N/A N/A
East Asia 4 4 445 408
Europe 92 87 4 4
Oceania 3 0 N/A N/A

3.4. Analysis of Possible Functions of RACA and ARSA SNPs

SNPs that undergo rapid increase in their allele frequencies may have certain func-
tional significance in geographical regions where they underwent quick change. Keeping
this in mind, possible roles of ARSA and RACA SNPs for biological significance were ex-
amined. The genomic context of ARSA and RACA SNPs were determined using snpEff5.1
software. The list of genes associated with ARSA and RACA SNPs for different geographi-
cal regions are presented in Table S5. Figure 4A summarizes the number of genes associated
with ARSA SNPs in African, American, East Asian, European, and Oceanian regions and
their intersections. Figure 4B represents analogous gene distribution of African, East Asian,
and European RACA SNPs. Distributions of ARSA and RACA SNPs per gene are shown in
Figure 5A,B, respectively. There is strong statistically significant intersection above random
expectation of genes associated with ARSA in all regions (Figure 4A). Note that in Africa,
there are many more genes (6400) associated with ARSA than in any other region. Assum-
ing the total number of human genes is 25,000, then in a random sampling of 100 genes,
about 25 of them should match the African set of 6400 genes (100 × (6400/25,000)) by
chance. Therefore, a quarter of our set of ARSA-associated genes from America, East
Asia, Europe, or Oceania should intersect African genes by chance. However, Figure 4A
demonstrates that 58% of American and 55% European ARSA-associated genes intersect
the African set of genes. Moreover, 45% of Oceania and 37% of East Asian genes match the
African set. Furthermore, 60 ARSA-associated genes are common among Africa, America,
and Europe. Finally, 10 ARSA-associated genes are common for four populations (see
Figure 4A). Monte Carlo simulations demonstrated that all these intersections are larger
than random expectation with p-values less than 10−4. The list of 97 ARSA-associated
genes that intersect for three and four regions are described in Table S6. This set of 97 genes
containing ARSA from three or four different regions may be the most interesting because
it experienced multiple independent allele propagations. Among these 97 genes, 14 are
non-coding RNAs or predicted proteins with unknown functions. Among the remaining
known 83 genes, the dominant fraction of 35 genes (or 42%) are related to neural system
and neurological disorders including two genes related to speech development (FOXP2 and
CNTNAP2, see Table S6). Finally, Figure 4B demonstrates that there is the same statistically
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significant intersection above random expectation of genes associated with RACA genes
between Africa and East Asia.
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Figure 4. UpSet diagrams showing the number and nature intersections of gene lists for ARSA
(A) and RACA (B). Vertical bars show the number of genes resulting from the intersections between
gene lists. Horizontal bars depict the total number of genes in each continental group. The nature of
intersections is shown with gray and black dots. A black dot means the presence of the gene in the
corresponding continental group, while a gray dot means the absence of the gene in corresponding
group. Black dots connected by lines indicate the continental groups involved in the interaction. For
example, one black dot and four gray ones correspond to the vertical bar that shows the number of
genes present in one continental group and absent in all other groups.
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To gain insight into biological processes and functions associated with the region-
specific variation, the sets of ARSA-associated genes from Table S5 were subjected to func-
tional annotation analysis using the DAVID web resource [30]. Since African ARSA SNPs
are too numerous (77,820), we made a top 10% subset of them, keeping 7782 SNPs with the
highest frequencies of ARSA alleles. Overall, using DAVID, we analyzed 1138 (top 10%)
African, 1259 American, 119 East Asian, 514 European, and 145 Oceanian ARSA-associated
genes. The summary of this analysis is illustrated in Table 4. It includes all the biological
processes, molecular functions, and pathways significantly enriched for ARSA genes in at
least one region. The maximum shared annotations were found between Africa and Amer-
ica. Another point is the abundance of annotations related to development and functioning
of the nervous system that correlates with the above results of functional evaluation of the
subset of ARSA genes shared by multiple populations.

Table 4. Functional annotation of genes for ARSA SNPs obtained by the DAVID bioinformatics resource.

AFR AMR EAS EUR OCE

Biological
processes

Cell adhesion 8.8 × 10−6 0.003 + +
Neurosciences 0.007 0.0004
Ion transport 0.007 0.005

Calcium transport 0.007 + + +
Transport + 0.008

Potassium transport 0.021
Endosome + 0.029

Golgi apparatus 0.02 0.05

Molecular
functions

Calcium channel 0.002 + +
Ion channel 0.005 0.015

Guanine nucleotide
releasing factor 0.009 0.015

Actin binding 0.014 + +
Kinase 0.014 0.04

Serine/threonine-protein
kinase 0.03 +

Voltage-gated channel 0.03 0.04 +
Potassium channel 0.015 +
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Table 4. Cont.

AFR AMR EAS EUR OCE

Cellular
component

Cell junction 8.4 × 10−10 3.3 × 10−7 5.4 × 10−4 +
Synapse 1.2 × 10−6 6.6 × 10−5 + 1.2 × 10−2 +

Cell membrane 1.8 × 10−4 0.006 +
Cell protection 1.9 × 10−4 1.8 × 10−4 + 5.4 × 10−4

Cytoskeleton 0.002 + + +
Membrane 0.0024 0.032 + 0.035

Postsynaptic cell
membrane + 0.009

Cytoplasm + 0.0025 + 0.049
Endosome + 0.03

Golgi apparatus 0.02 0.049

Pathways

Cortisol synthesis and
secretion 0.007

cGMP-PKG signaling
pathway 0.013 + +

Tight junction 0.013
Axon guidance 0.025 0.0035

Arrhythmogenic right
ventricular

cardiomyopathy
0.026 0.025

Parathyroid hormone
synthesis secretion and

action
0.026 +

Type II diabetes mellitus 0.026
Calcium signaling

pathway 0.026 + +

Adrenergic signaling in
cardiomyocytes 0.026 + +

Circadian entrainment 0.028 +
Oxytocin signaling

pathway 0.028 +

Cushing syndrome 2.80 × 10−2

MAPK signaling pathway 4.90 × 10−2 +
Long-term potentiation 4.90 × 10−2

Cholinergic synapse + 6.30 × 10−3 +
Pathways in cancer + 7.70 × 10−3

Glutamatergic synapse + 1.20 × 10−2

Dopaminergic synapse + 3.90 × 10−2

Insulin secretion + 3.90 × 10−2

Inflammatory mediator
regulation of TRP channels + 3.90 × 10−2

Choline metabolism in
cancer + 3.90 × 10−2

Pancreatic secretion 5.00 × 10−2

Note: Significant (p < 0.05) p-values after false discovery Benjamini correction for multiple testing are presented.
Plus “+” denotes nonsignificant p-values, while the empty cells correspond to the biological process, molecular
function, or pathway that were missing in the DAVID output for a specific region.

It is also known that the specific patterns of allele frequencies could be the result
of natural selection. Due to small sample sizes, we could not perform common tests
to detect signals of natural selection among our ARSA and RACA SNPs. We therefore
turned to alternative sources of insight, particularly to published sets of genes showing
evidence of natural selection. Four such gene sets named by us as set 1 (1995 genes [31]),
set 2 (273 genes [32], set 3 (1365 genes [33]), and set 4 (4172 genes [34]) were intersected
with the lists of ARSA- and RACA-associated genes (Table 5). The results of intersection
demonstrate that only 5–10% of the annotated genes were in common with the data of
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relatively large sets 1, 3, and 4. The smallest intersection was between our data and set 2,
which contained data from only three populations of 1000 Genomes.

Table 5. The number of ARSA- and RACA-associated genes shared with the published core sets of
gens under natural selection.

Tab/Continental
Group SNPs

Set 1 (1995 Genes) [31] Set 2 (273 Genes) [32] Set 3 (1365 Genes) * Set 4 (4172 Genes) **
n p-Value n p-Value n p-Value n p-Value

Africa ARSA 337 1 53 1 369 1.6 × 10−2 1171 2.2 × 10−22

America ARSA 68 0.17 9 0.5 47 0.17 112 0.9
Europe ARSA 12 0.93 5 0.21 10 0.93 39 0.21

East Asia ARSA 15 5.6 × 10−4 4 0.02 4 0.87 12 0.87
Oceania ARSA 10 0.1 0 1 2 1 9 1

AFR RACA 115 1 16 1 143 5.3 × 10−6 349 1.6 × 10−5

EUR RACA 2 0.71 0 1 3 0.31 5 0.31
EAS RACA 89 0.83 10 0.83 80 2.8 × 10−2 242 3.4 × 10−10

* Genes from genome-wide published data (Table S2 from [33]). ** Genes from rawPophumanscanTable of the
PopHumanScan catalog [34].

In summary, the set of ARSA and RACA SNPs includes variants that could have
evolved due to selection. These SNPs could influence general biological processes, and, in
particular, the neural system.

4. Discussion

Among the three billion nucleotides of the human genome, there is no single nucleotide
position where every member of one continental group has a particular nucleotide while
everyone else from other continents have another nucleotide(s). This observation supports
a recent common origin of all modern humans from remote regions and can confound the
characterization of genetic differences between populations. In this paper, 84,799 ARSA and
17,446 RACA SNPs were discovered that help characterize the major genomic differences
between geographically disparate populations. The most dramatic genomic differences
are observed in ARSA SNPs where genomes of people from one continental region show
an abundance of an allele at a particular chromosomal position, while in other continental
regions, this allele is absent. The distribution of ARSA SNPs in continental regions offer
some interesting insights (Table 1). The highest number of ARSA SNPs was observed in
Africa, which supports the “Out-of-Africa” theory of the origin of humankind. Surprisingly,
the lowest number of ARSA SNPs was observed in East Asia, rather than in America, as
might be expected. Moreover, the number of ARSA SNPs in America exceeded that of even
Europe. Another prominent type of regional-specific alleles are RACA SNPs, which were
examined for Africa, Europe, and East Asia (Table 2). Surprisingly, the highest number of
RACA SNPs were observed in East Asia, the region that has the fewest number of ARSA
SNPs. Moreover, the number of RACA SNPs in Europe was found to be extremely low,
while European ARSA SNPs were much more abundant. We do not have solid explanation
of this phenomenon yet.

We also observed uneven proportions of ancestral versus derived alleles of ARSAs
and RACAs in different regions (Tables 1 and 2, last columns). African ARSAs have the
highest frequency of ancestral alleles, while African RACAs have the highest frequency
of derived alleles. This phenomenon does not seem compatible with the mainstream
conception of human evolution. It might be associated with ancient admixture of prehistoric
human populations. An example of such possible events is the well-accepted admixture of
Neanderthals with pre-historic people, which occurred unevenly in different continents
with the peak of admixture in Oceania [35,36]. Several schemes of ancient admixture have
been proposed [17]. Alternative explanations of our results may also exist. For example,
the biological reason for the origin of RACA may not be in purifying selection, but in the
fixation of the opposite allele, which may be beneficial. In this view, like for ARSA SNPs,
the derived alleles opposite to RACA alleles are more frequent in non-Africans, while
in Africa, their rate was found to be substantially lower. This correlates with the results
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of Bergström et al. (2020) [15] that demonstrated that the proportion of ancestral alleles
increased among high-frequency private African alleles, including those which were fixed.
This enrichment of ancestral alleles could be reflection of their age. All in all, the observed
peculiarities of ARSA and RACA distributions testify that the origin of people may be more
complicated than previously proposed [37].

Fewer ARSAs were found in Europe, while America had more ARSA SNPs. This
correlated with the data by Bergström et al. (2020) [15] and could reflect higher isolation of
America from the main roads of human migrations and admixture during last 10,000 years
that in turn did not promote accumulating similar private SNPs to Eurasian regions [38].
One exception here was Oceania that, like the Americas, was also in relative isolation. This
effect could be due to specificity of the filtration protocol that did not include appropriate
Oceania populations at the second step (compare step 1 and 2 in Table 1).

Comparing distribution of ARSA-associated genes among populations demonstrated
that the substantial portion was shared between populations. ARSA-associated genes
shared by multiple populations seemed to be crucial for human evolution across the globe.
Other ARSA-associated genes could be associated with local differences in adaptation and
demography. The most intriguing are shared genes between Africa and America. America
had the maximum numbers of both unique and shared genes. This could be the result of
the complex history of the Americans as compared to other continents, particularly among
South Americans, whose ancestors had to pass areas with very different climates, finally
settling in territories located in the latitudes with climatic conditions such as those encoun-
tered by early humans in Africa. According to the canalization/de-canalization hypothesis,
initial pathways formed in an organism by its relationships with the environment can be
compromised when the organism moves out its adaptive niche [39]. It will require novel
adaptations (involving new genes) to new conditions, particularly to survive in climates of
high latitudes in northern Eurasia. Returning to low latitudes in America would require
reconstruction (recanalization) of specific pathways, including the involvement of some of
the genes that had been utilized in Africa. This idea is supported by the results of functional
annotations (the biological process, molecular functions, and pathways) found in each
group where the most similarity was observed between Africans and Americans (Table 4).
In other groups, the identified functions seem to be less important (Europeans and East
Asians) or not to be significantly modified compared to Africans (Oceanians).

Comparisons of lists of ARSA- and RACA-associated genes with the sets of genes known
to be under natural selection showed no abundance of such genes, and their occurrence was
5 to 10% per geographic region. It correlates with the inferences of Choudhury et al. (2014) [9]
who analyzed distribution of common private SNPs (MAF ≥ 5%) in African, East Asian,
and European samples from the 1000 Genomes Project and observed no distinct evidence
for selective sweeps connected with common population-specific SNPs. However, their
results could have been due to low efficacy of iHS and PBS metrics chosen for testing
of signals of natural selection in the datasets containing many SNPs of low-to-moderate
allele frequencies [40,41]. Another reason why the proportion of such genes was small
among ARSA- and RACA-associated genes could be smoothing (homogenization) of allele
frequency due to the uniting of human samples from different locations in one group.
Such uniting could reflect general tendencies but mask differences arising due to local
adaptation [7]. Considering the results of enrichment analysis, such a tendency seems
be realized in adaptive adjusting of processes of neuronal development and nervous
system functioning (synaptic transmission and organization of the synapse) that has been
suggested in previous studies [9,42,43]. Enrichment of ARSA-associated genes with the
genes related to neurobiology (42%) suggests the impact of selection on brain function.
Since genes related to the nervous system are generally longer than genes expressed in other
tissues [44], these ARSA associations might be biased. The extra size of brain-specific genes
results from the large introns inside them, which are due to the accumulation of repetitive
elements and genomic duplications that do not have important biological functions [45]. We
conjecture that it is unlikely that SNPs inside non-functional intronic sequences underwent
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rapid change of their frequencies and became a significant source of ARSA SNPs. On the
other hand, the importance of neuronal genes in human differentiation and adaptation was
demonstrated in analyses of the worldwide distribution of SNPs associated with psychiatric
disorders (e.g., schizophrenia), which can be considered as forms of brain functioning that
allowed humans to survive in changing environmental conditions [46,47].

A broad range of ARSA and RACA SNP–trait associations were identified for each conti-
nental region; however, some patterns were observed in certain continents (Tables S3 and S4).
For instance, among the African ARSA SNPs, over 16% were associated with cardiovascular
and weight-related risk traits including elevated lipoprotein a levels (rs9457986) [48], high
HDL cholesterol, and high diastolic and systolic blood pressure [49]. These SNPs were
observed among Africans who likely consumed a typical modern diet higher in processed
carbohydrates and hydrogenated fats. It is possible that these SNPs associated with higher
rates of cardiovascular disease were selected against as humans left Africa and adopted
different diets, thus explaining their prevalence within the African continent. Moreover,
among the African ARSA SNPs, there were three SNPs corresponding to mutations in
SPTA1 associated with spherocytosis type 3 (rs16840450, rs35121052, and rs7547313), which
leads to lower malaria parasitemia [50]. Only four ARSA SNPs were found in the database
for East Asia, one of which was rs3805322, a variant in alcohol dehydrogenase 4 (ADH4)
associated with an increased chance of esophageal cancer [51]. These SNP–trait associations
seem to correspond well to common traits and diseases found within these continental
regions. The most common ARSA SNPs found were relating to neurological traits, account-
ing for 7% of ARSA SNPs in Europe, 15% in Africa, 75% in East Asia, and 33% in Oceania.
It should be noted only four and three ARSA SNPs were found to have database results
for East Asia and Oceania, which is why the percentage of neurological SNPs is propor-
tionally high. SNP–trait associations within the RACA SNPs did not have any perceivable
patterns within continents; however, there were many SNPs associated with eye and skin
pigmentation across all continents, which may reflect adaptations due to climate changes
between continents.

5. Conclusions

Classification and analysis of population-specific ARSA and RACA SNPs provided
new insights into worldwide genetic diversity, some aspects of which will require further
studies on larger sized populations. Both ARSA and RACA SNPs could be valuable candi-
dates for inclusion into novel studies of human population structure and evolution. Because
these polymorphic sites are enriched with functional alleles having various adaptive roles,
their inclusion should strengthen future GWAS projects, particularly those related to risk
of neuropathology.

The strength of our bioinformatics project lies in the usage of three independent whole-
genome sequence databases for computation and verification of ARSA SNPs. In particular,
we are satisfied with the characterization of the list of 3348 America-specific ARSA SNPs
despite high admixture in American populations. One limitation was the small size of
the Oceania sample. Moreover, we were unable to calculate ARSA SNPs from the Middle
East and Arctic regions because people from these areas are absent in the 1000 Genomes
database and have considerable admixture with neighboring populations.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes13081472/s1, Table S1: Numbers of occurrences of ARSA in
different populations. Table S2: Numbers of occurrences of RACA in different populations. Table S3:
Previously annotated ARSA SNP–trait associations, which were found via BioMart data mining tool.
Table S4: Previously annotated RACA SNP–trait associations, which were found via BioMart data
mining tool. Table S5: List of genes associated with ARSA and RACA SNPs for different geographical
regions. Table S6: List of 97 ARSA-associated genes that intersect for three and four geographical
regions. Supplementary File SF1. This is an archived file that contains all programs, supplementary
data files, the Instruction Manual, and electronic lab protocol with all command lines and comments
for described computations.

https://www.mdpi.com/article/10.3390/genes13081472/s1
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