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Abstract

Background: Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies.
Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional
activation during imagination and execution after learning. However, little is known about the functional connectivity
associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis
attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME)
shared parallel alterations of functional connectivity after MI learning.

Methodology/Principal Findings: Graph theory analysis, which is widely used in functional connectivity exploration, was
performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of
consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional
connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The
connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the
experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe
occurred in the supplementary motor area for both tasks.

Conclusions/Significance: These computational results may provide the following insights: (1) The establishment of motor
schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2)
The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in
post-test implicates the dissociation between motor learning and task performing. These findings and explanations further
revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor
function rehabilitation and motor skill learning deserves more attention and further investigation.
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Introduction

Motor learning, including motor execution (ME) learning and

motor imagery (MI) learning has attracted increased attention

among the motor function rehabilitation and motor skill learning

research communities [1,2]. Neuroimaging techniques such as

functional magnetic resonance imaging (fMRI) and positron

emission tomography (PET) have been used to investigate neural

substrates underlying motor learning, especially motor sequence

learning on MI/ME tasks [3–5].

Investigations revealed that executing and imagining move-

ments possessed similar neural substrates [6,7]. Lotze and his

colleagues indicated that MI and ME shared activation in some

brain areas, including the primary motor cortex (M1), supple-

mentary motor area (SMA), premotor area (PMA), posterior

parietal lobe (PPL) and cerebellar area. These areas were activated

with the striatum and thalamus in MI/ME learning [4,8,9]. With

the learning procedure, the functional similarity between MI and

ME could be increased in these brain areas [10]. Moreover, it was

suggested that MI/ME learning could induce parallel alteration in

regional activation for both MI and ME tasks [11,12]. Our

previous study has further confirmed this finding at the functional

activation level [13].

Brain areas often contribute to tasks with functional interactions

between each other [14,15]. Recently, the merits of functional

connectivity analysis have encouraged more and more explora-

tions, including current researches on the functional interactions

associated with motor sequence learning [16,17]. These studies,

which mainly investigated ME learning with ME tasks, indicated

that the interregional connectivity in ME tasks was attenuated

after ME learning. Sun and his colleagues revealed the attenuated

coupling between the SMA, PMA and M1 during executing

sequential movement after ME learning. Coynel et al. reported

that the functional integration among pre-SMA, PMA, PPL, and
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some subcortical regions decreased after ME learning. In

functional connectivity analysis, the uses of correlation, coherence,

beta series correlation, hierarchical integration and graph theory

have all shown to be effective [16–20]. Among these methods,

graph theory is specifically used to characterize the interactions

among multiple brain regions and evaluate the information

received by one particular brain region from other regions.

However, potential problems may exist in interpreting results

obtained by this method, especially in stimulus driven tasks. For

example, the stimulus-locked response, which indicates the

simultaneous response in different brain regions caused by external

driven stimuli but not the intrinsic task, has been illustrated in a

recent study [21,22].

As mentioned above, studies of MI/ME learning have revealed

the similarity of ME and MI tasks at the functional activation level.

Furthermore, investigations have probed into the alteration of

functional connectivity of ME learning with ME tasks. However,

little is known about the functional connectivity associated with MI

learning, especially whether a MI task shared parallel alteration of

functional connectivity with a ME task after MI learning.

To address these issues, an exploratory investigation was

performed at the functional connectivity level. The MI learning

involving both imagination and execution tasks was examined by

fMRI. We improved the graph theory method by removing the

stimulus-locked response to investigate the intrinsic task-related

functional connectivity in the critical areas for MI/ME tasks.

According to previous researches on motor learning, we hypoth-

esized that MI learning could induce a decrease in functional

connectivity for ME/MI tasks and that the alteration might be

similar with respect to ME and MI tasks. These hypotheses were

tested and the results showed that parallel decreases of functional

connectivity occurred in both tasks after learning.

Methods

Ethics Statement
The human fMRI experiment conducted in this study was

approved by the Institutional Review Board of Beijing Normal

University (BNU) Imaging Center for Brain Research, National

Key Laboratory of Cognitive Neuroscience. All of the subjects

gave written informed consent according to the guidelines set by

the MRI Center of Beijing Normal University.

Participants
Fourteen right hand-dominant subjects (seven males, mean age:

2262 years) participated in the learning, and another twelve right

hand-dominant subjects (five males, mean age 2462 years) were

recruited as control group. Participants with histories of neuro-

logical disorders, psychiatric disorders, experience with typewrit-

ers, or any experience learning to play musical instruments were

excluded. All participants passed Edinburgh Handedness Inven-

tory, Movement Imagery Questionnaire [23] and Vividness of

Movement Imagery Questionnaires [24]. According to these

questionnaires, we requested the participants to understand what

is kinesthetic imagery, and to employ this imagery strategy during

the whole experimental procedure.

Experimental Procedure
The overall procedure of the experiment, which has been

reported in our recent study [13], included familiar exercises, a

pre-test, a MI learning period (experimental group)/a no-learning

period (control group), and a post-test.

Outside of the scanner, all the participants were instructed that

from their index to little finger, each of the four fingers of their

right hand represented a single digit number: one, two, three, and

four. Next, they were instructed to tap their right index finger with

a metronome at 4 Hz to learn the rhythm required in the

following scan session, after which they tapped 1-2-3-4 at 4 Hz for

30 s epoch. After that, they tapped the set sequence 4-2-3-1-3-4-2

at 4 Hz for 30 s epoch, and imagined tapping the set sequence at

4 Hz for 30 s epoch. These familiarization exercises were

necessary for preventing confusion in each scan session and still

preserved the novelty of the tasks. After finishing these exercises,

the participants were prepared for pre-test in the scanner.

In pre-test, two scanning sessions, including motor execution

and imagery, were completed. The two 4.5-min sessions (execu-

tion and imagery) were separated by a 5-min inter-session rest

period. Each session consisted of four 30-s epochs of executing/

imagining the motor sequence, interspersed with five 30-s rest

blocks. The assignment of scan orders was counterbalanced across

subjects. In each scanning session, a sequential finger movement

task was adopted, and the press sequence was 4–2–3–1–3–4–2.

Subjects attempted to execute or imagine the set sequence with the

right hand at a self-paced rate of 4 Hz when PUSH was displayed

on the screen, and then relaxed when REST was displayed on the

screen. The participants were kept in the scanner during the whole

procedure of the pre-test and the task instruction given to each

participant was, ‘‘You will attend two sessions of tasks including

motor execution and motor imagery. The type of the task will be

displayed on the screen before the task starting. If the task is motor

execution, you need to tap 4-2-3-1-3-4-2 with your right hand

fingers as fast as the rate which you have just learned outside the

scanner, and if the task is motor imagery, you need to imagine

tapping 4-2-3-1-3-4-2 with your right hand fingers as fast as the

pace which you have just learned outside the scanner.’’ The

descriptions of the task type, which were displayed to the subject

via a mirror mounted on the head coil, were presented visually on

a semi-transparent screen at the end of the scanner bore. Cushions

inside the head coil were used to reduce head movement. The

sequence tapping was performed with a four-button response pad,

and the response pad was connected to a computer running the E-

prime program (Psychology Software Tools, PA, USA) to record

the responses. After test, participants should provide qualitative

description of performing in order to controlling the imagery. The

contents of the qualitative description was patterned from

Movement Imagery Questionnaire [23] and included seven rating

levels (1, Very Hard to feel; 2, Hard to feel; 3, Somewhat hard to

feel; 4, Neutral (not easy not hard); 5, Somewhat easy to feel; 6,

Easy to feel; 7, Very easy to feel). Each Participant should rate the

levels reliably, and no participants rated the level lower than 5.

During the learning period, 14 motor imagery practice sessions

were performed over 14 consecutive days to guarantee sufficient

learning. In the control group, participants did not attend any

learning during the 14 days. In the experimental group,

participants were trained under the inspection of the experiment-

er, and their right hand was covered by a cardboard box to

prevent visual feedback. Participants also should provide the

similar qualitative description of performing after finishing every

learning session as pre-test. During the whole learning periods, no

participants rated the level lower than 5. We further calculated the

mean rating for each participant over 14 days and then, checked

the mean rating as well as the standard deviation over 14

participants, the results (14 participants, Mean rating: 5.960.7)

ensured that the participants performed the motor imagery

learning adequately. The following instruction was provided to

the participants in each learning session, ‘‘You will attend the

motor imagery learning. The learning includes two sections,

metronome-pacing, and self-pacing. The metronome-pacing will
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last for 15 min, and you should imagine tapping 4-2-3-1-3-4-2

with your right hand fingers repeatedly as fast as the pace of the

metronome. Then, you will attend the self-pacing section, and

imagine tapping 4-2-3-1-3-4-2 with your right hand fingers

repeatedly as fast as the pace controlled by yourself. This section

will also last for 15 min.’’ Each learning session consisted of two

sections. One section, lasting for 15 min, was paced by the

metronome, and the other, also lasting for 15 min, was paced by

participants themselves. Each section consisted of repetitive cycles

of rest (30 s), and imagery practice (30 s). At the first two practice

days, participants were paced at 2 Hz according to the behavioral

results of the pre-test. This requirement was found to be important

in a previous study, and helped to ensure that participants could

focus on establishing a representation of the sequence order [10].

From the third day onward, the frequency of pacing was increased

to 4 Hz to encourage participants to improve the tapping rate.

Following the last learning session, all of the participants were

tested again in the scanner. The requirement for the tapping rate

was also 4 Hz, and the procedure and instructions of post-test

were identical to the pre-test.

fMRI Data Acquisition
Brain scans were performed at the MRI Center of Beijing

Normal University using a 3.0-T Siemens whole-body MRI

scanner. A single-shot T2*-weighted gradient-echo, EPI sequence

was used for functional imaging acquisition, with the parameters:

TR/TE/flip angle = 3000 ms/40 ms/90u, acquisition ma-

trix = 64664; field of view (FOV) = 240 mm; and slice thick-

ness = 5 mm with no inter-slice gap. Thirty-two axial slices parallel

to the AC-PC line were obtained in an interleaved order to cover

the entire cerebrum and cerebellum.

Data Processing
The study was performed based on the processed data of our

previous research. The functional images were first realigned,

spatially normalized into standard stereotaxic space (EPI template

provided by the Montreal Neurologic Institute, MNI), re-sliced to

36364 mm voxels, and smoothed with an 86868 full-width at

half maximum (FWHM) Gaussian kernel using SPM8 software

(Statistical Parametric Mapping; http://www.fil.ion.ucl.ac.uk/

spm). The first five images in each series were removed from

further analysis. Using rest as the baseline, general linear model

(GLM) analysis was applied to each subject’s data processed by a

high-frequency filter and global scaling with SPM8. Then, task-

related t-contrast images were calculated using the t-statistic for

each subject.

A two-way within-subjects ANOVA test, treating subjects as a

random factor, was performed respectively within experimental

group and control group. The ANOVA model of experiment

group used learning (pre-test and post-test; between-subjects; and

fixed effect), task (motor execution and motor imagery; within-

subjects; and fixed effect) as the main factors to assess regional

activities for ME/MI task in the pre- and post-test sessions. An

identical ANOVA model was employed for the control group to

examine regional activities for ME/MI task in the pre- and post-

test after the no-learning period.

Selection of Regions of Interest (ROIs)
Considering the structural and functional alignments, we

defined regions of interest (ROIs) according to results of group-

level and individual-level analysis. The SMA, M1, PMA,

cerebellum, striatum, PPL, and thalamus are suggested as the

critical regions in motor sequence learning [4,9,13]. Therefore

we paid close attention to these regions in this study. However,

the recruiting of M1 is still controversial in MI tasks, and we

did not find any activities in the right M1 at the reduced

threshold of p,0.05 for MI tasks. Therefore, we finally focused

on 13 ROIs for the ME task and 12 ROIs for the MI task

(excluding the right M1). The ROIs were defined according to

the procedures of previous studies [20,25]. We first defined 10-

mm-radius spheres around the maxima of the focused brain

regions based on the group’s t-contrast maps. The coordinates

of these group ROIs are shown in (see details in Tables S1, S2,

S3, S4). Thereafter, individual ROIs were further defined within

these group ROIs as follows. Taking a given group ROI as a

mask, the voxel with the maximum t-value within this mask was

picked up as the individual peak voxel. Then a 6-mm-radius

sphere around this peak voxel was taken as an individual ROI.

After that, for each subject, the averaged time series was

extracted from each individual ROI of both pre and post MI/

ME tasks in the experimental and control groups for further

functional connectivity analyses.

Functional Connectivity Analyses
In this study, the graph theory method, which possesses

advantages in describing the functional connectivity of multiple

brain regions, was used to examine the MI/ME task before and

after MI learning [20].

For the graph theory method, the ROIs are denoted by nodes in

a graph, and the links between the nodes indicate the functional

interaction between them. The interregional connectivity between

the node i and the node j is defined as

gij~e{jdij ,

where j is a real positive constant measuring how the strength of

the functional interaction decreases with the distance between the

two nodes, and we set it equal to 2 for this study as the previous

studies [20,26]. dij represents the distance between the two nodes,

calculated as follows:

dij~ 1{cij

� ��
1zcij

� �
:

Considering the influence of a stimulus-locked response in the task

state, cij in our study represents the partial correlation coefficient

of two averaged time series,

cij~ rij{ri0rj0

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ri0

2ð Þ 1{rj0
2

� �q
,

where rij denotes the Pearson correlation coefficient between the

two time series of node i and node j. rk0 is the Pearson correlation

coefficient between the time series of node k and the reference

function which is modeled by the stimulus presentation paradigm

in our study.

To measure the connectivity degree Ci of a node i in a graph,

we define the sum of all the interregional connectivity between i

and all other nodes as Ci~
Pn
j~1

gij . It illustrates the total functional

interaction information that node i receives from other nodes.
Thus, the node with larger C is more functionally connected to

other nodes.

Ci is further normalized as Ci~Ci

,Pn
j~1

Cj . Two-way ANOVA

repeated measures were carried out for examining the C of each

Functional Connectivity in Motor Imagery Learning
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ROI in MI/ME tasks. The ANOVA model for each ROI used

learning (pre-test and post-test; within-subjects) and group

(experimental group and control group; between-subjects) as the

main factors. First, the C of ROIs showing an interaction effect

between learning and group were detected. Then, differences

between the pre- and post-tests for each group and differences

between the pre-tests for the two groups were further examined.

These differences were Bonferroni-corrected within the analysis

model for each ROI. Ci is a measurement of the connectivity

degree of node i among multiple nodes; namely, it measures the

total interregional connectivity between node i and all the other

nodes. Moreover, it is necessary to further investigate the specific

link related to node i in the alteration of Ci. Thus, as to the nodes

which were significantly altered in C, further exploration on the

interregional connectivity between two nodes was carried out.

Specifically, for each node i, the interregional connectivity

gij~e{jdij for each j=i was analyzed statistically by paired t-

test between pre- and post- MI/ME tasks and further corrected

with Bonferroni method.

Behavior and Behavior-Connectivity Analyses
Completed button pressing was electronically recorded for the

four 30-s epochs of the execution task inside the MRI scanner

during the pre- and post-test scanning session. The mean

execution rate and errors were calculated for each test. Differences

in the mean execution rate and number of errors between pre-test

and post-test conditions have been analyzed for both the

experimental and control groups using a paired t-test.

The relationship between the improvement in motor behavior

and the changes in functional connectivity was further investigated

in the execution task of the experimental group. The connectivity

degree (�CC) and the interregional connectivity (g) which were

significantly altered after learning were involved in the following

analysis. Based on the behavioral and functional connectivity

results, the linear regression approach was employed to evaluate

the correlations between the connectivity degree or interregional

connectivity and the tapping rate of the execution task in the pre-

and post-tests, respectively.

Results

Alterations of Connectivity Degree
In the ME task, a significant interaction effect between learning

and group was found in the right PPL (rPPL) (F = 6.480, p,0.05,

see Table S5). Figure 1A shows that MI learning has altered the

connectivity degree of the rPPL for the experimental group but not

for the control group (Figure 2A and 2B). In the experimental

group, a significant decrease in �CC was detected in the rPPL

(F = 12.247, corrected p,0.005, Figure 1B). Such an alteration

could be observed in each subject, indicating a consistency of

Figure 1. The connectivity degree �CC of pre-tests and post-tests for all ROIs in the motor execution task of the
experimental group. (A) The surface visualization of all 13 ROIs with node sizes indicating their relative value of �CC. Red indicates that �CC of the
ROIs were significantly altered after motor imagery learning, while blue indicates that �CC of the ROIs were not significantly altered after motor imagery
learning. (B) �CC of pre-tests and post-tests for all ROIs (* represents the significant alterations, corrected p,0.05).
doi:10.1371/journal.pone.0036052.g001
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alteration existed across all subjects (see Figure S1A). Furthermore,

there was no difference between the experimental and control

groups for the rPPL at pre-test (baseline condition) (F = 0.702,

p.0.05). Other ROIs also showed trends toward alteration after

learning for the experimental group, though they were not

significant. The trends toward increases in �CC occurred in ROIs of

the bilateral PMA (rPMA and lPMA), bilateral M1 (rM1 and lM1),

bilateral thalamus (rThal and lThal) and bilateral cerebellum

(rCere and lCere), and the trends toward decreases in �CC were

detected in the SMA, bilateral PPL (rPPL and lPPL) and bilateral

striatum (rStria and lStria) (Figure 1B).

In the MI task, a significant interaction effect between learning

and group was also detected in the rPPL (F = 5.574, p,0.05, see

Table S5). Figure 3A shows that the connectivity degree of the

rPPL was altered by learning for the experimental group but not

for the control group (Figure 4A and 4B). A significant decrease in
�CC was observed in the rPPL (F = 10.076, corrected p,0.005,

Figure 3B). Such alteration occurred in most subjects (13/14) (See

Figure S1B). No difference between the two groups was found for

the rPPL at pre-test (baseline condition) (F = 0.851, p.0.05). The

trends toward alteration were also found in other ROIs, though

they were not significant. �CC of several ROIs including the bilateral

PMA, left M1, left striatum, bilateral thalamus and left cerebellum

showed trends toward increases after MI learning, whereas �CC of

the other ROIs including the SMA, bilateral PPL, right striatum

and right cerebellum showed trends toward decreases after MI

learning (Figure 3B).

Alterations of Interregional Connectivity
The interregional connectivity (g) between the rPPL and other

ROIs was measured in further analysis. For the ME task of the

experimental group, the g between the rPPL and SMA as well as the g
between the rPPL and bilateral striatum were attenuated after MI

learning at a significant level (Figure 5A). The decrease in the g
between the rPPL and SMA was significant (Figure 5B; T

(13) = 6.611, corrected p,0.001) and consistent across all subjects

at the individual level (see details in Figure S2A). The g between the

rPPLand the left/right striatumsignificantly decreasedafter learning

(Figure 5B; left striatum: T (13) = 5.263, corrected p,0.005; right

striatum: T (13) = 4.672, corrected p,0.01). Such alterations were

also consistent across all subjects (see details in Figure S2A). As for the

MI task, the g between the rPPL and most other ROIs were

moderately altered after MI learning except the g between the rPPL

and SMA (Figure 6A). The decrease in the g between the rPPL and

SMA was significant after MI learning (Figure 6B; T (13) = 5.895,

corrected p,0.001). Such alteration was consistent across all subjects

at the individual level (see details in Figure S2B).

Behavior Results
In the experimental group, the participants performed the

sequence tapping at the mean execution rate of 2.0 Hz in pre-test

Figure 2. The connectivity degree �CC of pre-tests and post-tests for all ROIs in the motor execution task of the control
group. (A) The surface visualization of all 13 ROIs with node sizes indicating their relative value of �CC. Blue indicates that �CC of the ROIs were not
significantly altered after motor imagery learning. (B) �CC of pre-tests and post-tests for all ROIs.
doi:10.1371/journal.pone.0036052.g002
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scanning (Figure 7A). The solid line in Figure 7A illustrates that

the mean execution rate of the experimental group was

significantly faster in the post-test than the pre-test (T

(13) = 9.27, p,0.001), however the rate did not reach the required

rate of 4 Hz. In addition, the difference in the number of errors

between the pre- and post-test sessions was not significant (T

(13) = 0.42, p.0.05; solid line in Figure 7B).

In the control group, the dashed line in Figure 7A indicates that

the mean execution rate of the participants moderately increased

from 2.1 Hz, seen in the pre-test phase to 2.3 Hz in the post-test

(T (11) = 3.35, p,0.05). As to the execution rate, the extent of the

changes from pre-test to post-test for the control group was

0.2 Hz, which is significantly less than the result of 1.4 Hz for the

experimental group (T = 7.79, p,0.001). The number of errors

observed during the post-test vs. the pre-test was also not

significant for the experimental group (T (11) = 0.76, p.0.05;

dashed line in Figure 7B).

In the experimental group, there is no significant result to

indicate that the alterations in connectivity degree (�CC) or

interregional connectivity (g) were associated with the improve-

ment in tapping rate. The connectivity degree of the rPPL was not

correlated with the tapping rate of the ME task in the pre-/post-

tests, although the significant alteration of connectivity degree was

found in the rPPL for both tasks after learning (see details in

Table 1). Similarly, the interregional connectivity between the

rPPL and SMA or striatum was significantly decreased after

learning in ME tasks for the experimental group, but the

interregional connectivity did not have correlations with the

tapping rate in the pre-/post-tests (for detailed results, see Table 1).

Discussion

Using graph theory, the present study investigated the functional

connectivity of MI learning on both MI and ME tasks. After MI

learning, parallel alterations were detected in both MI and ME tasks.

Importantly, such alterations were specific to the experimental group

but not to the control group, indicating that such alterations of

functional connectivity were induced by MI learning, not by other

effects. MI and ME tasks showed similar significant decreases of

connectivitydegree in therPPLafter learning.Furtherexplorationon

interregional connectivity between the rPPL and other ROIs

revealed that significant alterations induced by MI learning occurred

in the SMA for both tasks.

Parallel Alterations of Connectivity Degree
The investigation of connectivity degree was performed among

the ROIs including the M1, PMA, PPL, SMA, cerebellum,

thalamus, and striatum. These areas have been suggested to be

critical regions in executing and imagining sequential movement

[4,8,9]. Although these ROIs were defined according to the

maximal t-value voxel in the analysis, the anatomical specificity of

the motor cortical areas was also taken into our considerations.

Figure 3. The connectivity degree �CC of pre-tests and post-tests for all ROIs in the motor imagery task of the experimental
group. (A) The surface visualization of all 12 ROIs with node sizes indicating their relative value of �CC. Red indicates that �CC of the ROIs were
significantly altered after motor imagery learning, while blue indicates that �CC of the ROIs were not significantly altered after motor imagery learning.
(B) �CC of pre-tests and post-tests for all ROIs (* represents the significant alterations, corrected p,0.05).
doi:10.1371/journal.pone.0036052.g003

Functional Connectivity in Motor Imagery Learning
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The role and activation of M1 were still controversial in MI tasks

[27,28]. In our study, the left M1 was activated during motor

imagery in the pre- and post-tests of the experimental/control

groups, and no activity was detected in the right M1 during the

whole process. One possible explanation for this issue was that the

left motor cortex initiated a movement regardless of which hand

was used [29], thus, the differences in functional activities between

the left M1 and right M1 may result from the laterality effect of

motor imagery. Accordingly, the right M1 was not involved in the

analysis on the MI task. Many studies have indicated that PMA

was involved two sections, dorsal and ventral areas [30,31]. The

two areas were recruited in different circuits as described by tracer

studies in primates. Dorsal PMA mainly receives inputs from

superior parietal lobe, while ventral PMA receives inputs form

inferior lobe [32,33]. The PPL, in our study, was specifically in

superior parietal lobe, and then the ROI of PMA was exactly

located in dorsal PMA for all conditions. The SMA was

anatomically and functionally divided into pre and proper parts

by some studies [34–36]. However, such conclusions were mainly

proposed from the experiments of actual execution, and the SMA

has been suggested to possess functional distinctions between

motor execution and imagery [35]. In our study, the pre-SMA and

SMA-proper were not activated independently in execution/

imagery tasks of the experimental or control groups, and the peak

activation voxels were mainly on the anatomical edge between the

two parts of the SMA in all conditions. Therefore, we did not

assume the functional distinction in the pre-SMA and SMA-

proper during investigating MI learning, and the two parts of the

SMA were considered as a whole ROI in the relevant analysis.

In the experimental group, MI learning induced a decrease in

functional connectivity during execution/imagination. Such

results were consistent with the findings of previous studies on

ME learning [16,17]. In our study, the ME and MI tasks shared

parallel significant decreases of connectivity degree in the rPPL

after MI learning. Specifically, the effects were found in the right

superior parietal lobe (Brodmann area 7) for both tasks. This area

is generally considered to be a part of the motor system, which was

suggested to be associated with many functions in cognitive tasks,

such as visuomotor transformations, attention, sensory-motor

integration and spatial coding [37–41]. The experiment in the

current study mainly involved internal guided learning with motor

imagery, and the ROIs we focused were mainly associated with

motor functions. Thus, sensory-motor integration and spatial

coding may be possible explanations for the effects in the PPL for

both tasks.

In general, the motor schema was established with motor

learning process from novelty to automaticity [42,43]. At the

novelty phase, sensory-motor information was processed by several

regions, such as the SMA, PMA, M1 and striatum [44,45]. Such

information could be further integrated in the PPL to generate

internal movement images and encode the spatial locations of

movement as motor schema [46–49]. The movements were

gradually automated with this process. After MI learning, the

motor schema was established and then the rPPL may play a role

Figure 4. The connectivity degree �CC of pre-tests and post-tests for all ROIs in the motor imagery task of the control
group. (A) The surface visualization of all 12 ROIs with node sizes indicating their relative value of �CC. Blue indicates that �CC of the ROIs were not
significantly altered after motor imagery learning. (B) �CC of pre-tests and post-tests for all ROIs.
doi:10.1371/journal.pone.0036052.g004

Functional Connectivity in Motor Imagery Learning

PLoS ONE | www.plosone.org 7 May 2012 | Volume 7 | Issue 5 | e36052



in storing and retrieving motor schema [50,51]. Thus, the decrease

in connectivity degree of the rPPL was probably due to the

established motor schema [50]. Although trends towards decrease

of connectivity degree were also observed in the lPPL, such

alterations did not reach a significant level. These results were

potentially related to the experiment design, which requested the

participants to execute/imagine a finger tapping task with their

right hands. It was interesting to note that the significant decrease

of connectivity degree in the PPL induced by MI learning was

parallel in the MI and ME tasks, which also supported the

importance of the PPL especially the superior parietal lobe in MI

learning [52]. Such effects in the PPL for both tasks potentially

indicated that the motor schema could be established without

motor output and may be not specific to mental imagination or

real execution. However, these interpretations still require targeted

investigations. Moreover, the connectivity degree is a measure-

ment of the changes relative to the total connectivity of all the

ROIs, which ignores the interregional connectivity between ROIs.

The decreases in connectivity degree implicate the potential

functional dissociation between the rPPL and other ROIs for both

the MI and ME tasks after learning. Thus, we further assessed the

interregional connectivity between the rPPL and other ROIs in

this study to clarify this issue.

Parallel Alterations of Interregional Connectivity
A parallel decrease of interregional connectivity between the

rPPL and SMA was detected in both MI and ME tasks after MI

learning. The SMA, as a crucial region in the motor cortex, was

implicated in establishing the motor schema during motor learning

[4,53]. Strong relationships between the PPL (specifically superior

parietal lobe) and SMA have been identified in MI tasks [54].

Thus, the interregional connectivity between the SMA and PPL

may be crucial in learning during the novelty phase. After

learning, the tasks were performed automatically with the

established motor schema, and then the rPPL may play a role in

the maintenance and retrieving of the motor schema, while the

SMA may be more associated with motor control [34,50,51]. The

significantly decreased interregional connectivity between the

rPPL and SMA indicated attenuated functional interaction

between the two regions. Therefore, these results further

implicated the potential dissociation between motor learning and

task performing. In the ME task, significant decreases were also

detected in interregional connectivity between the rPPL and

bilateral striatum after MI learning. Studies employing ME tasks

have indicated that the striatum received sensory-motor informa-

tion and may be further involved in the establishment of motor

schema for ME learning [45,55,56]. These decreases observed in

the ME task therefore suggested that the establishment of motor

Figure 5. The interregional connectivity g between the rPPL and other ROIs of pre-tests and post-tests in the motor
execution task of the experimental group. (A) The surface visualization of all 13 ROIs with line width indicating the relative value of g. Red
indicates the g were significantly altered after motor imagery learning, while blue indicates the g were not significantly altered after motor imagery
learning. (B) The g of pre-tests and post-tests between the rPPL and other ROIs (* represents the significant alterations, corrected p,0.05).
doi:10.1371/journal.pone.0036052.g005
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schema was more related to the striatum in ME tasks than in MI

tasks. Moreover, the ROIs of striatum in our study were exactly

located in the putamen for all conditions. The putamen was

associated with motor functions, such as behavior control in motor

tasks [57,58]. Thus, these decreases in interregional connectivity

between the rPPL and putamen for ME tasks in the post-test also

implied the dissociation between motor learning and task

performing. This finding combining with the decreases of

interregional connectivity in rPPL-SMA during execution tasks

after learning then supported the view that the SMA may mediate

the execution of learned sequential movements with the putamen

after learning [59]. Furthermore, recent studies have revealed that

the PPL and SMA are recruited in different functional circuits of

motor function. The SMA is a key node in the frontal-motor

Figure 6. The interregional connectivity g between the rPPL and other ROIs of pre-tests and post-tests in the motor
imagery task of the experimental group. (A) The surface visualization of all 12 ROIs with line width indicating the relative value of g. Red
indicates the g were significantly altered after motor imagery learning, while blue indicates the g were not significantly altered after motor imagery
learning. (B) The g of pre-tests and post-tests between the rPPL and other ROIs (* represents the significant alterations, corrected p,0.05).
doi:10.1371/journal.pone.0036052.g006

Figure 7. Mean button press rate (A) and mean number of errors (B) for pre-tests and post-tests of the experimental group and the
control group.
doi:10.1371/journal.pone.0036052.g007
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circuit, and the PPL is a critical region in the parietal-premotor

circuit which was suggested to contain the learned contents [60–

62]. Then, the decreased interregional connectivity potentially

indicated an attenuated functional interaction between the

parietal-premotor circuit and the frontal-motor circuit after MI

learning. Such issues will be further examined in our future

studies.

Behavior-Connectivity
In the experimental group, significant behavioral improvements

in the tapping rate and a slight decrease in the number of errors

were observed during execution tasks after learning, however,

there were not any significant relationships between tapping rate

and functional connectivity (including connectivity degree and

interregional connectivity). There were two potential explanations

for such results. One was the limited number of participants, and

another was that functional connectivity may not be associated

with motor behavior directly. Interestingly, our previous study

showed that tapping rate was significantly correlated with the

activity (beta-value) of the right PMA, whether in the pre-test or

post-test [13]. Thus, motor behavior was probably related to the

activities of specific brain regions, and the changes in connectivity

were more likely associated with senior processes of motor

learning, e.g. establishing motor schema.

Summary and Limitations
We summarize by suggesting that MI learning could induce

parallel alterations of functional connectivity during executing and

imaging. In this process, the attenuated connectivity degree of the

rPPL implicates the prominent role of the PPL in establishing the

motor schema. The decreased interregional connectivity between

the rPPL and SMA potentially suggested the dissociation between

motor learning and task performing in post-tests. These alterations

at the functional connectivity level were parallel in both tasks,

implicating the value of MI learning in motor function rehabil-

itation as well as motor skill learning. However, there exist several

limitations in the current study. Our research, as an exploratory

investigation, was more focused on the intrinsic task-related

connectivity for motor execution/imagery before/after MI learn-

ing. Thus, graph theory was improved by removing the stimulus-

locked response according to the previous study [21]. These

removed responses was correlated with the stimulus presentation

paradigm, and therefore some worthy results in functional

connectivity might be missed by doing so, if the task-related

functional connectivity possesses computational correlation with

the stimulus presentation paradigm. Moreover, increasing the

number of participants and focusing on specific ROIs may provide

further convincing results besides the present study. In any case,

MI learning, as an important part of motor learning, is worthy of

further investigations at different levels.
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Table 1. The correlation between the tapping rate and �CC or g
for the experimental group.

Condition pre-/post-test r F(1, 12) p

�CC

rPPL pre-test 0.077 0.071 0.794

rPPL post-test 0.058 0.041 0.843

g

rPPL-SMA pre-test 0.327 1.434 0.254

rPPL-SMA post-test 20.190 0.450 0.515

rPPL-rStria pre-test 0.102 0.127 0.728

rPPL-rStria post-test 0.031 0.011 0.917

rPPL-lStria pre-test 20.069 0.058 0.814

rPPL-lStria post-test 0.035 0.015 0.906

Note. Abbreviations: rPPL–right posterior parietal lobe; SMA–supplementary
motor area; rStria–right Striatum; lStria–left Striatum.
doi:10.1371/journal.pone.0036052.t001
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