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ABSTRACT While the basic mechanisms of flavivirus entry and fusion are under-
stood, little is known about the postfusion events that precede RNA replication, such
as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-
defective yellow fever virus (YFV) entry reporter, YFVΔSK/Nluc, to quantitively
monitor the translation of incoming, virus particle-delivered genomes. We vali-
dated that YFVΔSK/Nluc gene expression can be neutralized by YFV-specific anti-
sera and requires known flavivirus entry pathways and cellular factors, including
clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E
glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial
round of YFV translation was shown to require cellular ubiquitylation, consistent
with recent findings that dengue virus capsid protein must be ubiquitylated in order
for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV ge-
nomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that un-
folds and extracts ubiquitylated client proteins from large complexes. RNA transfec-
tion and washout experiments showed that VCP/p97 functions at a postfusion,
pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flavi-
viruses in mammalian cells and by YFV in mosquito cells. Together, these data sup-
port a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocap-
sids during a postfusion step in virus entry.

IMPORTANCE Flaviviruses are an important group of RNA viruses that cause signifi-
cant human disease. The mechanisms by which flavivirus nucleocapsids are disas-
sembled during virus entry remain unclear. Here, we used a yellow fever virus entry
reporter, which expresses a sensitive reporter enzyme but does not replicate, to
show that nucleocapsid disassembly requires the cellular protein-disaggregating en-
zyme valosin-containing protein, also known as p97.

KEYWORDS flavivirus, nucleocapsid, uncoating, viral entry

Flaviviruses are a large group of positive-strand RNA viruses classified as a genus,
Flavivirus, within the family Flaviviridae, including several medically important,

arthropod-borne human pathogens such as dengue virus (DENV), Japanese encepha-
litis virus, West Nile virus (WNV), yellow fever virus (YFV), and Zika virus (ZIKV) (1).
Infectious virions are small (�50 nm diameter), lipid-enveloped particles that display
180 copies of the envelope (E) glycoprotein and a small transmembrane protein, M, on
their surfaces, surrounding an inner nucleocapsid composed of the viral capsid protein
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and an unsegmented RNA genome of �11 kb (2, 3). While the surface of flavivirus
particles is relatively well-defined, nucleocapsid symmetry has been difficult to discern
by cryo-electron microscopy (cryo-EM) (2, 4). Recent single-particle cryo-EM analysis
and icosahedral averaging suggest that Zika virus nucleocapsid is composed of 20
trimers of dimeric capsid protein, loosely held together under the envelope by lateral
interactions involving the capsid �5 helix (5). This is surprising, since �5 serves as a
signal peptide for translocation of prM into the endoplasmic reticulum (ER) and must
be proteolytically removed by the viral NS2B-3 serine protease in order for prM signal
peptidase cleavage to occur, which is required for virus assembly (6–8). These results
suggest that additional capsid protein dimers lacking �5 helix may be buried within the
RNA core.

Flavivirus infection initiates through interaction of the viral E glycoprotein with one
or more host cell attachment factors that serve to concentrate the virions on cell
surface, as well as virus entry receptors that have only been partially identified (9). Virus
internalization occurs through clathrin- and dynamin-dependent receptor-mediated
endocytosis (10). As internalized virus particles pass through endosomes they encoun-
ter low pH, which triggers rearrangement of the E glycoprotein, leading to fusion and
release of viral nucleocapsids into the cytoplasm of infected cells (Fig. 1A).

Once in the cytoplasm, flavivirus nucleocapsids are presumably disassembled to

FIG 1 The Nluc reporter virus is a sensitive tool to monitor early events of flavivirus infection. (A) Early steps in the flavivirus
life cycle, showing entry, uncoating, translation, and RNA replication. (B) Genome representation and polyprotein
processing of YFV-17D, YFV-17D/Nluc, and YFVΔSK/Nluc reporter viruses used in this study. Circles represent signal
peptidase cleavage sites within the YFV polyprotein; filled arrowheads represent YFV NS2B-3 serine protease cleavage sites;
the open arrowhead represents a furin cleavage site; the question mark represents cleavage site by an unidentified cellular
protease; filled and open stars represent the FMDV 2A translational skipping site and ubiquitin C-terminal hydrolase
cleavage site, respectively. (C) Representative wells from YFV-17D and YFV-17D/Nluc plaque assays developed over 5 days
with a 0.3% Avicel CL-611 overlay. (D) Time course of Nluc expression after YFV-17D/Nluc infection (MOI of 0.3) of BHK-21
cells. These results are representative of five experiments conducted over different transfection conditions and time scales.
(E) Results of a 24-h endpoint dilution assay performed in 6-fold replicate. Wells were scored as positive (green) or negative
(orange) based on whether they were �2� (pink rectangle) away from the mean of uninfected controls (dotted red line);
the numbers at the top of the graph represent the number of positive wells at each dilution. This experiment was
performed three times with similar results. (F) Representative time course of Nluc expression after YFV-ΔSK/Nluc infection
(MOI of 0.1) of BHK-21 or BHK-NS1 cells. This experiment was performed three times, each with three technical replicates.
(G) Representative time course of Nluc expression after YFV-ΔSK/Nluc infection (MOI of 0.1) of untreated or CHX-treated
BHK-21 cells. This experiment was performed three times, each with three technical replicates. Error bars represent
standard deviations from the mean.
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release the viral genome, which must be translated in order to initiate replication. The
viral genome encodes a single open reading frame, which is translated to produce a
polyprotein that is processed by viral and cellular proteases to yield three structural
proteins— capsid (C), pre-M (prM), and E—as well as seven nonstructural (NS) proteins:
NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 (Fig. 1B). NS1 is a secreted glycoprotein
that is required for RNA replication; it forms dimers that remain peripherally associated
with the inner leaflet of the ER membrane or on the cell surface, as well as secreted
hexameric lipoprotein particles that induce strong humoral responses and contribute
to flavivirus pathogenesis (3, 11). NS2A, NS2B, NS4A, and NS4B are polytopic membrane
proteins required for RNA replication. NS2B and NS3 form a membrane-anchored
enzyme complex with serine protease and RNA helicase activities essential for viral
polyprotein processing and RNA replication (3, 12). NS5 is the viral RNA-dependent RNA
polymerase and RNA capping enzyme (3, 13, 14). Once translated, the NS proteins
presumably recruit the viral genome out of translation and into an RNA replication
complex.

Little is known about the process of flavivirus nucleocapsid disassembly. Nucleo-
capsids obtained by solubilizing WNV particles with nonionic detergent are partially
accessible for translation (i.e., a subset of viral proteins can be translated in in vitro
translation reactions), suggesting that nucleocapsids may spontaneously uncoat (15).
On the other hand, intact nucleocapsids can be isolated from detergent-solubilized
tick-borne encephalitis virus particles (16); these nucleocapsids dissociate in high salt
(0.5 M sodium chloride). In cell culture, however, DENV capsid protein must be
ubiquitylated in order for nucleocapsid uncoating and genome translation to occur
(17), suggesting that uncoating is an active process in vivo.

Here, we describe a sensitive, conditionally replication-defective YFV reporter virus
designed to probe the early events of the flavivirus life cycle. We validate the specificity
of this reporter to monitor YFV entry and prereplication events, confirm that YFV entry
requires ubiquitylation, and then used this tool to examine the hypothesis that YFV
nucleocapsids are disassembled by valosin-containing protein (VCP), also known
as p97.

VCP/p97 is a conserved and abundant eukaryotic AAA� ATPase that uses the
energy released by ATP hydrolysis to unfold ubiquitylated proteins and extract them
from large macromolecular complexes (18, 19). VCP/p97 forms hexameric double-ring
structures with a central pore (20, 21); each subunit contains an N-terminal regulatory
domain and two RecA-like ATPase domains. VCP/p97 plays an essential role in protein
homeostasis and genome stability. It is therefore an attractive target for anticancer
therapies and several potent and specific VCP/p97 inhibitors have been developed (22).
We show here that VCP/p97 is required for a postfusion, prereplication event during
YFV entry.

RESULTS
YFV reporter viruses are sensitive tools to monitor early events of flavivirus

infection. A key challenge to studying the early life cycle events of flaviviruses is in
detecting the translation of incoming, virion-released genomes. While viruses can be
engineered to express sensitive reporter genes, signals produced by translation of the
incoming viral genome are soon overwhelmed by translation of genomes produced by
RNA replication. Therefore, in order to specifically study early, prereplication events in
the life cycle of flaviviruses, we sought to uncouple translation from RNA replication by
constructing a YFV strain 17D (YFV-17D) reporter that is conditionally defective for RNA
replication. The YFV-17D mutant YFVΔSK, which contains a large, in-frame deletion
within the essential NS1 gene, is incapable of initiating RNA replication but can be
complemented in trans (23). Thus, in the absence of NS1, a YFVΔSK-based reporter virus
should allow viral entry, fusion, uncoating, and primary translation of the incoming
genome to be monitored (Fig. 1A).

First, we constructed a full-length, infectious YFV-17D reporter virus that expresses
the nanoluciferase (Nluc) enzyme, based on previously described flavivirus reporter
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designs (24–26). We chose Nluc because of its smaller size (19.1 kDa; 171 codons),
enhanced stability, and exquisite sensitivity compared to other luciferases (27). A
cassette encoding Nluc, the foot-and-mouth disease virus 2A translational-skipping
peptide (NFDLLKLAGDVESNPG–P; where “–” signifies the unformed peptide bond), and
a ubiquitin monomer (MQIFV. . .LRGG|; where “|” signifies cleavage by a ubiquitin
C-terminal hydrolase) was inserted in frame into the YFV-17D infectious clone after the
first 25 codons of the YFV-17D C gene, which contains the essential 5= RNA cyclization
sequence (28, 29), followed by the entire YFV polyprotein coding sequence, to generate
YFV17D/Nluc (Fig. 1B). After transfection into BHK-21 cells, YFV-17D/Nluc RNA tran-
scripts replicated and gave rise to infectious virus with peak titers similar to wild-type
YFV-17D (�1 � 107 PFU/ml at 48 h posttransfection) but had a small plaque phenotype
(Fig. 1C). Similar replication impairments have been reported with other flavivirus
reporter constructs (26). Nluc expression was stably maintained for at least three serial
virus passages in BHK-21 cells; we did not specifically address the long-term stability of
the Nluc insert. Based on prior reports of flavivirus insert instability, we expect that Nluc
expression will be lost with passage and therefore limited our experiments to early
passage virus stocks. Importantly, YFV-17D/Nluc was able to infect and replicate in BHK
cells, as observed by the robust accumulation of Nluc activity over time (Fig. 1D).
Robust Nluc expression was also observed upon YFV-17D/Nluc infection of other
established cell lines, including HEK 293, HeLa, Huh-7.5, SW-13, and primary mouse
fibroblasts (data not shown). Furthermore, Nluc expression levels directly correlated
with the amount of input virus in an endpoint dilution assay (Fig. 1E); notably, some
replicates became Nluc-negative at higher dilutions, indicating that an endpoint had
been reached (i.e., some replicate wells received no virus, while other wells received
one or a few viruses). Nluc activity was 10- to 100-fold higher in positive wells around
the endpoint, which likely received only a single virus particle, than negative wells
(Fig. 1E). Based on this, we were able to calculate a 50% tissue culture infectious dose
(TCID50) of 3.54 � 104 TCID50/ml, which was similar to the plaque infectivity titers
(3.25 � 104 PFU/ml) of this same early-harvest (18 h posttransfection), low-titer stock.
We consistently noted that virus stocks harvested after cytopathic effects became
evident contained significant Nluc activity, presumably due to enzyme release into the
conditioned medium by cell lysis. Thus, early virus harvests provided optimal signal/
noise ratio without requiring extensive washing during virus inoculation (see Materials
and Methods for detailed information). Taken together, these data show that YFV-17D/
Nluc is a sensitive reporter virus for measuring YFV-17D replication and gene expression
at both early and late times postinfection.

Next, we generated a conditionally replication-defective construct, YFVΔSK/Nluc
(Fig. 1B), containing a large in-frame deletion within the essential NS1 gene (23). Upon
transfection of RNA transcripts into BHK-21 cells that express YFV NS1 (BHK-NS1),
YFVΔSK/Nluc replicated, expressed Nluc, and produced infectious virus. YFVΔSK/Nluc
virus infected BHK-NS1 cells and expressed robust Nluc activity (Fig. 1F, blue circles);
however, infection of parental BHK-21 cells, which do not express NS1, led to modest
but significant levels of Nluc expression (Fig. 1F, green circles). To confirm that the Nluc
activity observed in BHK-21 cells that lack NS1 expression was due to the entry and
translation of YFVΔSK/Nluc, we performed an additional time course in the presence or
absence of cycloheximide (CHX), a potent inhibitor of translation. Nluc expression was
detectable as early as 30 min postinfection, increased �10-fold higher than in CHX-
treated cells by 90 min postinfection, plateaued by 7 h postinfection, and that Nluc
activity persisted for 24 h postinfection (Fig. 1G). Given the tight requirement for NS1
in flavivirus RNA replication, these results demonstrate that YFVΔSK/Nluc is a sensitive
reporter to measure the translation of incoming viral genomes at early times postin-
fection.

Nluc reporter viruses mimic authentic flavivirus infection and Nluc activity
correlates with cellular entry. To further validate the utility of YFVΔSK/Nluc for
monitoring early stages of virus infection, we sought to determine whether it exhibited
known features of flavivirus entry and replication. First, we sought to determine
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whether Nluc expression was sensitive to YFV-specific neutralizing antibodies. As
shown in Fig. 2A, Nluc expression from both YFV-17D/Nluc and YFVΔSK/Nluc was
neutralized by serum from an IFNAR1�/� mouse immunized with YFV-17D, while
nonimmune control serum did not neutralize Nluc expression. Similarly, serum from a
human YFV-17D vaccinee neutralized both reporter viruses, while pooled human serum
did not (Fig. 2B). Together, these data confirm that Nluc expression is dependent on
infectivity of the YFV reporter viruses.
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FIG 2 Nluc reporter viruses recapitulate authentic flavivirus infection. (A) Nluc expression after 24 h infection with
YFV-17D/Nluc (MOI of 0.3; left panel) or YFVΔSK/Nluc (MOI of 0.1; right panel) pretreated with YFV-immune or control
mouse sera in BHK cells. (B) Nluc expression after 24 h infection with YFV-17D/Nluc (MOI of 0.3; left panel) or YFVΔSK/Nluc
(MOI of 0.1; right panel) pretreated with YFV-immune or pooled control human sera. (C) Nluc expression at 5 h
postinfection with YFVΔSK/Nluc (MOI of 0.1) in cells treated with Pistop2, a potent and specific inhibitor of clathrin-
mediated endocytosis. (D) Nluc expression at 5 h postinfection with YFVΔSK/Nluc (MOI of 0.1) of cells treated with
Dynasore, a potent and specific inhibitor of dynamin. (E) Nluc expression from YFVΔSK/Nluc infection (MOI of 0.1) of cells
treated with NH4Cl, which buffers the endosomal compartment. (F) Nluc expression at 5 h postinfection with YFVΔSK/Nluc
(MOI of 0.1) of cells treated with Bafilomycin A, an inhibitor of endosomal acidification. (G) Nluc expression after 24 h
infection with YFVΔSK/Nluc (MOI of 0.1) treated with K784-9103, a potent and specific inhibitor of flavivirus fusion. (H) Nluc
expression after infection of wild-type (WT) U2OS or LY6E knockout (KO) U2OS cells with YFV/Nluc (MOI of 0.1) for 24 h
(left panel) or YFVΔSK/Nluc (MOI of 0.1) for 6 h (right panel). (I) Nluc expression in HeLa cells transfected with nontargeting
control (NTC) or RPLP1-specific siRNAs for 24 h and then infected with YFV/Nluc (MOI of 0.1) for 24 h (left panel) or
YFVΔSK/Nluc (MOI of 0.1) for 6 h (right panel). This experiment was repeated twice, each in quadruplicate. (J) Nluc
expression after 24 h infection with YFV-17D/Nluc (MOI of 0.3; left panel) or YFVΔSK/Nluc (MOI of 0.1; right panel) in cells
treated with BDAA, a potent and specific inhibitor of YFV RNA replication. In all experiments, carrier control treatments are
indicated by green dotted lines and the limit of Nluc detection (in parallel CHX-treated cells) by red dotted lines. All data
are representative of experiments performed three times, in triplicate except for panel H, which was performed in
quadruplicate. Error bars represent standard deviations from the mean. Statistical significance was calculated by using
one-way analysis of variance (ANOVA; ****, P � 0.0001; ***, P � 0.001).
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Flaviviruses enter target cells via receptor-mediated endocytosis, which requires
clathrin and dynamin, and delivery to endosomes, where viral fusion is induced by the
low pH of this compartment (30). Consistent with this viral entry pathway, expression
of Nluc by YFVΔSK/Nluc was sensitive to Pitstop2, an inhibitor of clathrin-coated pit
formation (Fig. 2C), and to Dynasore, an inhibitor of dynamin (Fig. 2D). Furthermore,
expression of Nluc by YFVΔSK/Nluc was sensitive to ammonium chloride (NH4Cl), a
weak base that buffers endolysosomal compartments (Fig. 2E), and to bafilomycin A1
(BafA1), an inhibitor of the vacuolar H�-ATPase pump (Fig. 2F). As shown in Fig. 2G,
YFV-mediated Nluc expression was sensitive to K784-9103, a small-molecule that binds
to DENV E protein and inhibits membrane fusion of DENV and other flaviviruses (31).
Furthermore, YFV-mediated Nluc expression was reduced by genetic ablation of LY6E
(Fig. 2H), a host factor that facilitates internalization of flaviviruses and other viruses (32,
33), or by RNAi-mediated knockdown of RPLP1 (Fig. 2I), a ribosomal protein required for
efficient flavivirus translation (34). These results confirm that YFV/Nluc and YFVΔSK/
Nluc gene expression are dependent on clathrin, dynamin, LY6E-mediated trafficking,
endosomal acidification, and YFV E-mediated fusion, consistent with the known path-
ways of flavivirus entry.

We also examined the effects of benzodiazepine acetic acid (BDAA), a low micro-
molar inhibitor of YFV RNA replication that targets NS4B (35). In contrast to the
entry-specific inhibitors used above, BDAA potently inhibited Nluc expression by
YFV-17D/Nluc but had no effect on Nluc expression by YFΔSK/Nluc (Fig. 2J), confirming
that YFΔSK/Nluc is a sensitive reporter of prereplication events in the YFV life cycle.

Ubiquitylation and valosin-containing protein (VCP/p97) are essential for early
stages of YFV infection. Since DENV genome uncoating requires ubiquitylation,
presumably of the incoming capsid protein (17), we next examined whether early YFV
gene expression also requires ubiquitylation. As shown in Fig. 3A, expression of Nluc
activity during YFVΔSK/Nluc infection was blocked by Pyr-41, a potent, specific, and
irreversible inhibitor of the ubiquitin-activating enzyme E1 (36), confirming that ubiq-
uitylation is required for an early, prereplication event in the YFV life cycle. To clarify the
stage in entry where ubiquitylation is required, we bypassed the viral entry process by
directly transfecting YFVΔSK/Nluc RNA into BHK cells. As shown in Fig. 3B, Pyr-41 did
not inhibit Nluc expression after RNA transfection. These results show that ubiquityla-
tion is required for an early step in YFV entry, upstream of genome release (i.e.,
uncoating), consistent with the finding that ubiquitylation is required for the disassem-
bly of the DENV nucleocapsid (17).

These results suggested that ubiquitin can tag incoming nucleocapsids for subse-
quent uncoating by an unidentified host factor. The eukaryotic AAA� ATPase VCP/p97
utilizes energy released from ATP hydrolysis to unfold ubiquitylated client proteins and
extract them from larger complexes (18). We therefore tested the hypothesis that
VCP/p97 promotes disassembly of the YFV nucleocapsid. As VCP/p97 is an abundant
cellular protein, efficient knockdown takes several days to achieve a loss-of-function
phenotype, which can cause pleiotropic effects on cells (37). Therefore, in order to
specifically examine the role of VCP/p97 in YFV entry we chose two small molecules,
DBeQ (an ATP competitor) and NMS-873 (an allosteric inhibitor), which work through
different mechanisms of action to potently and specifically inhibit VCP/p97 in a matter
of minutes, rather than days (38, 39). DBeQ and NMS-873 potently inhibited Nluc
expression after infection with YFVΔSK/Nluc virus particles (Fig. 3A) but did not inhibit
Nluc expression after transfection of YFVΔSK/Nluc RNA (Fig. 3B), indicating that VCP/
p97 is necessary for YFV entry, prior to the delivery and translation of incoming YFV
genomes.

To clarify the step at which VCP/p97 functions during YFV entry, we conducted a
washout experiment. As shown in Fig. 3C, DBeQ inhibition of YFVΔSK/Nluc entry could
be reversed by drug washout at 1 h postinfection. Moreover, DBeQ washout bypassed
the sensitivity to BafA1, indicating that VCP/p97 functions at a postfusion step of YFV
entry. We were unable to perform the converse experiment, washout of BafA1, followed
by DBeQ treatment, because BafA1 washout was highly inefficient, consistent with the
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low nanomolar dissociation constant of this compound (40). Importantly, Pyr-41, DBeQ,
NMS-873, and CHX treatments were not toxic under the concentrations and time scales
used in our studies (Fig. 3D), indicating that their abilities to block viral gene expression
were not simply due to cellular toxicity. Moreover, the expression of a dominant
negative allele confirmed that VCP/p97 is required for early YFV gene expression
(Fig. 3E). Taken together, these data suggest that VCP/p97 functions at a postfusion,
prereplication step in the YFV life cycle.

VCP/p97 is required for early events in the flavivirus life cycle. To determine
whether ubiquitylation and VCP/p97 are also required for postreplication viral gene
expression, we examined Nluc expression by the replication-competent YFV-17D/Nluc.
As shown in Fig. 4A and B, Pyr-41 and DBeQ potently inhibited Nluc expression by 18
h postinfection with YFV-17D/Nluc, but not after 18 h posttransfection of YFV-17D/Nluc
RNA. Since robust expression of Nluc activity at late times of infection (�8 h) depends
on YFV-17D/Nluc replication (compare Fig. 1D, F, and G), these data suggest that
ubiquitylation and VCP/p97 are specifically required for early events in the YFV life
cycle.

We next examined whether other flaviviruses depend on ubiquitylation and VCP/97
activity. As shown in Fig. 4C, Pyr-41, DBeQ, and CHX all potently inhibited detectable
expression of NS1 by 24 h postinfection with the Kunjin strain of WNV (WNVKUN) or
Cambodian FSS 13025 strain of ZIKV. These data suggest that multiple flaviviruses
depend on cellular ubiquitylation and VCP/p97 activity.

Finally, we examined whether VCP/p97 activity was also required for early YFV gene
expression in mosquito cells. Sequence alignment showed that the Aedes albopictus

D
M

S
O

P
yr

-4
1

D
B

eQ

N
M

S
-8

73

C
H

X

3

4

5

****

R
LU

  L
og

10

infectionA

D
M

S
O

P
yr

-4
1

D
B

eQ

N
M

S
-8

73

C
H

X

2

3

4

5

6

7 n.s.

**

n.s.

R
LU

  L
og

10

transfection (20 ng)B

D

D
M

S
O

T
X

-1
00

P
yr

-4
1

D
B

eQ
N

M
S

-8
73

C
H

X

D
M

S
O

T
X

-1
00

P
yr

-4
1

D
B

eQ
N

M
S

-8
73

C
H

X

0

20

40

60

80

100
6h 24h 

%
 d

ea
d 

ce
lls

E

R
LU

  L
og

10

3

4

5

**

n.s.
Dominant negative

- -+ +
WT DN

Dox:

n.s.

R
LU

  L
og

10

DBeQ washout

2

3

4

**

**

washout

A B C D E

DMSO DMSO

DBeQDBeQ

DMSODBeQ

BafA1DBeQ

BafA1BafA1

0 54321 6 h

wash, replace media

add virus & compound

A:

B:

C:

D:

E:

C

R
LU

  L
og

10

n.s.

**

D
M

S
O

P
yr

-4
1

D
B

eQ

N
M

S
-8

73

C
H

X

0

1

2

3

4

R
LU

  L
og

10

transfection (2 ng)

D
M

S
O

P
yr

-4
1

D
B

eQ

N
M

S
-8

73

C
H

X

transfection (0.2 ng)

VCP/p97 allele

1

2

3

4

5

6

**

FIG 3 VCP/p97 is essential for an early, postfusion stage of YFVΔSK/Nluc virus infection. (A) Nluc expression at 5 h
postinfection with YFVΔSK/Nluc (MOI of 0.1) of BHK cells treated with Pyr-41 (50 �M), DBeQ (10 �M), NMS-873
(300 nM), or CHX (100 �g/ml). This experiment was performed in triplicate and is representative of five independent
experiments; error bars represent SD from the mean. (B) Nluc expression at 5 h posttransfection with 20 ng (left
panel), 2 ng (middle panel), or 0.2 ng (right panel) YFVΔSK/Nluc RNA in BHK cells treated with the indicated
compounds, as described above. This entire experiment was performed twice. (C) Nluc expression at 6 h
postinfection with YFVΔSK/Nluc (MOI of 0.1) in BHK cells continuously treated with DMSO carrier control, DBeQ, or
BafA1, as well as cells treated with DMSO or DBeQ and subjected to washout conditions, as indicated in the left
panel and detailed in Materials and Methods. This experiment was performed three times, each in triplicate, with
similar results. (D) Drug toxicity was quantified by plotting the percentage of dead cells against various inhibitor
or control treatments, as above, at the indicated time points. Statistical significance was calculated by using
ordinary one-way ANOVA (****, P � 0.0001; ***, P � 0.001; **, P � 0.01; *, P � 0.05; ns, not significant). This
experiment was repeated twice with similar results. (E) Nluc expression at 6 h postinfection of Flp-In T-Rex-293 cells
induced to express a WT or dominant negative (DN) allele of VCP/p97 for 24 h prior to infection. This experiment
is representative of three independent experiments, each performed in triplicate.

VCP/p97 ATPase Is Essential for Flavivirus Uncoating ®

March/April 2020 Volume 11 Issue 2 e00467-20 mbio.asm.org 7

https://mbio.asm.org


and Aedes aegypti TER94 genes share 99.75% identity to one another and 84.89%
identity to human VCP/p97 (see Fig. S1A to C in the supplemental material), including
conserved ATPase active-site residues and residues involved in binding to allosteric
inhibitors (39). Consistent with these observations, we found that NMS-873 inhibited
YFVΔSK/Nluc gene expression in C6/36 Aedes albopictus cells; however, this inhibition
was bypassed by transfecting YFVΔSK/Nluc RNA into these cells (Fig. 4D). These data
suggest that the mosquito homolog of VCP/p97, TER94, also functions at an early step
in flavivirus entry.

DISCUSSION

The processes of flavivirus internalization and fusion were originally characterized by
using biochemical and cell biological approaches with high MOIs of radiolabeled virus
particles, revealing a requirement for endocytosis and endosomal acidification (41, 42).
While working with infectious, radiolabeled virus particles may be inconvenient, the use
of high MOIs is potentially more problematic, since aggregates of virus particles can
influence the apparent mechanisms of viral entry (43). More recently, the entry of
individual, fluorescently labeled flavivirus particles has been visualized at low MOIs
through live cell imaging (30, 44–46). An important caveat to this approach is that
flavivirus preparations typically have relatively low specific infectivities (44, 45, 47), so
it is difficult to know whether a given particle under observation is on a pathway
toward productive infection.

Given these considerations, we chose to pursue a function-based approach to study
the productive entry of a recombinant YFV that expresses a reporter enzyme only after
viral entry and translation. Several flavivirus reporter systems have been developed,
mainly for high-throughput screening of viral replication (17, 26, 48–55). In one
remarkable study, Byk et al. adapted a Renilla luciferase-expressing DENV reporter virus
to show that the incoming DENV capsid protein must be ubiquitylated prior to viral
gene expression (17). However, an important consideration of this experimental design
is that flavivirus-encoded reporter genes are continuously expressed, making it difficult
to rigorously conclude that reporter activity was translated from an incoming viral
genome versus viral RNAs produced by replication, i.e., because both viral entry and
RNA replication can contribute to reporter gene expression, the translation of incoming
genomes could only be inferred based on the kinetics of when reporter gene expres-
sion first became observable. Byk et al. attempted to control for this concern by using
CHX to inhibit translation (17); however, CHX inhibits viral gene expression irrespective
of whether the genome was delivered by a virus particle or newly synthesized by RNA
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replication. A further consideration is that reporter enzymes differ in their specific
activities; thus, enzymes with low specific activity require higher MOIs to achieve similar
sensitivity of early translation events. In this regard, it is notable that Byk et al. did not
report the MOIs used in their DENV entry studies; however, several of their experiments
used MOIs sufficiently high to allow incoming capsid protein to be detected by Western
blotting (17). Despite these minor technical caveats, Byk et al. clearly demonstrated that
incoming DENV capsid protein is degraded in a ubiquitin-dependent process and that
ubiquitylation is needed before viral gene expression can be detected.

Given these considerations, we sought to build a sensitive YFV reporter specific for
detecting translation of incoming viral genomes. First, we used the Nluc reporter gene,
which exhibits �100-fold greater specific activity over firefly and Renilla luciferases (56).
Second, we created a conditionally replication-defective reporter by incorporating a
large, in-frame deletion in the essential NS1 gene, which can be supplied in trans (23,
57). The NS1 glycoprotein, which is expressed within the secretory pathway, contributes
to the cytosolic process of RNA replication via interaction with the polytopic NS4A and
NS4B membrane proteins, likely within the NS4A-2K-NS4B polyprotein intermediate
(58–60). NS1 also has distinct membrane alteration properties (59, 61), which likely
contribute to replication complex assembly. In the absence of NS1 expression, flavivirus
infections are halted prior to replication complex formation and the initial round of RNA
synthesis (23, 59, 62, 63). Consistent with this, robust Nluc expression by YFV-17D/Nluc
was sensitive to a YFV-specific RNA replication inhibitor, BDAA, while the modest Nluc
expression by YFVΔSK/Nluc was not. Thus, the YFVΔSK/Nluc virus faithfully reports on
early, postfusion, prereplication events in the flavivirus life cycle.

Our experimental approach should be generally applicable to other flaviviruses. It is
notable that two groups previously described NS1 deletion reporter virus systems for
WNV and Omsk hemorrhagic fever virus (55, 64). These constructs were originally
designed to reduce biosafety risks for high-throughput screening; our data suggest that
these constructs should also be useful in dissecting early, prereplication events in the
life cycle of these flaviviruses. Further improvements to our design are also possible; for
instance, smaller tags, such as a split Nluc reporter (53), could improve viral titers or
allow postfusion events to be monitored prior to viral genome translation.

We validated that YFVΔSK/Nluc gene expression was neutralized by YFV-specific
antibodies and was dependent on several known pathways of flavivirus entry, including
clathrin- and dynamin-mediated endocytosis (10, 30, 65–67), endosomal acidification
(45, 66–69), E protein-dependent fusion (31), and dependence on LY6E (32, 33) and
RPLP1 (34).

We then applied our YFV reporter system to address the role of ubiquitylation and
protein homeostasis in flavivirus entry, which has been controversial. As part of a
genome-wide RNAi screen, Krishnan et al. first reported that knockdown of ubiquitin
ligase CBLL1 inhibited internalization of WNV particles into HeLa cells and that WNV
entry was sensitive to proteasome inhibitors (70). However, these findings were called
into question by Fernandez-Garcia et al., who found that the entry of WNV, YFV, and
DENV was insensitive to rigorously validated knockdown of CBLL1 or by proteasome
inhibitors (71). Furthermore, while JEV entry is also inhibited by proteasome inhibitors
(72), these compounds can decrease the cellular pools of free ubiquitin (73–75), so the
role of ubiquitylation versus proteasome activity in flavivirus entry has been unclear.
Byk et al. brought clarity to this issue by demonstrating that ubiquitylation is required
for DENV capsid disassembly (17). Furthermore, proteasome activity is dispensable for
DENV entry but is responsible for the turnover of incoming capsid protein, presumably
after disassembly (17).

Our studies confirm that ubiquitylation is required for flavivirus entry, although the
relevant substrate(s) are unknown. Given that incoming DENV capsid protein is turned
over in a proteasome-dependent manner and that inhibition of proteasome activity
leads to the accumulation of a slightly higher molecular weight form of capsid protein
(17), it is likely that flavivirus capsid proteins are directly ubiquitylated. It is not yet clear
how nucleocapsids are targeted for ubiquitylation, nor whether there is a preferred site
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on capsid protein for this modification. In this regard, DENV mutants lacking lysine
residues in the capsid protein were able to infect and translate their genomes normally
(17), suggesting that the capsid protein may be ubiquitylated at the N terminus or other
noncanonical residue(s) (76). Future work would be needed to identify of the relevant
E3 ligase(s) and the type(s) of ubiquitin linkage that modify flavivirus capsid proteins.

VCP/p97 functions to unfold and extract proteins from macromolecular complexes
in a ubiquitin- and ATP-dependent manner (18). For instance, VCP/p97 dissociates
ubiquitylated I�B� from NF-�B, activating this transcription factor (77). VCP/p97 con-
tributes to ER-associated degradation by extruding misfolded proteins from the secre-
tory pathway for subsequent delivery to the proteasome (78). Similarly, VCP/p97
contributes to ribosome-associated quality control by extracting misfolded nascent
polypeptides from the translation apparatus (79, 80). VCP/p97 has additional roles in
extracting client substrates from chromatin, mitochondria, and other large macromo-
lecular complexes. It is worth noting that VCP/p97 has a weak affinity for ubiquitin and
relies on a large array of cofactors, which typically encode enzymatic activities to
facilitate VCP/p97 substrate processing, or adaptor molecules, which simply link VCP/
p97 to client substrates. Each of these adaptors and cofactors carry binding surfaces
that recognize VCP/p97 and ubiquitin, respectively (81, 82). Thus, VCP/p97 contributes
to diverse cellular functions based this modular cofactor- and adaptor-mediated tar-
geting strategy.

Based on our finding that VCP/p97 activity is required for an early, postfusion event
prior to the translation and replication of incoming YFV genomes, we propose a model
wherein VCP/p97 functions to disassemble ubiquitylated nucleocapsids (Fig. 5). As
mentioned above, direct evidence for ubiquitylation of incoming flavivirus capsid
protein is currently lacking, although capsid is degraded by the proteasome in a
ubiquitin-dependent manner. Although we have illustrated free nucleocapsids within
the cytosol, we cannot exclude the possibility that fusion is tightly coupled to capsid
ubiquitylation and disassembly, such that nucleocapsids may be ubiquitylated and
disassembled as they are exposed to the cytosol. Consistent with our model, VCP/p97
activity was previously shown to be important for WNV, JEV, and DENV infection,
although specific role(s) for VCP/p97 in virus entry were not determined (53, 83).
Similarly, VCP/p97 is also important for an early step, upstream of N-protein degrada-
tion, during the entry of infectious bronchitis virus, a coronavirus (84). VCP/p97 also
contributes to productive trafficking of NRAMP2, a cellular receptor for the entry of
Sindbis virus, an alphavirus (85). Thus, VCP/p97 appears to play a general role in the
entry of enveloped RNA viruses and may also contribute to RNA replication of alpha-
viruses (86) and hepaciviruses (87, 88). Given these findings, it will be interesting to
determine whether VCP/p97 inhibitors have therapeutic potential in viral infections.

MATERIALS AND METHODS
Cell lines and plasmids. Baby hamster kidney (BHK-21), clone 15 cells, BHK-21 cells stably expressing

YFV-NS1 (BHK-NS1), HeLa cells, WT U2OS cells, and LY6E-knockout U2OS cells were maintained in
Dulbecco minimal essential medium (DMEM; Life Technologies, Inc., Gaithersburg, MD) supplemented

FIG 5 Revised model for the early, prereplication events in flavivirus infection (modified from Fig. 1A). After fusion,
the nucleocapsid is exposed to the cytosol, where capsid protein (green circles) is presumably ubiquitinated (red
hexagons), leading to VCP/p97-dependent nucleocapsid disassembly and release of the viral genome prior to
translation. Inhibitors used in this study are indicated. The dotted line indicates the range where VCP/p97 functions
in flavivirus entry.
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with 10% heat-inactivated fetal bovine serum (FBS; Omega Scientific) and 1 mM nonessential amino acids
(here referred to as complete medium) at 37°C and 5% CO2. Flp-In T-REx-293 cells were purchased from
Invitrogen and maintained at 37°C and 5% CO2 in complete medium containing 100 �g/ml zeocin and
15 �g/ml blasticidin. C6/36 cells were maintained at 30°C and 5% CO2 in MEM containing 10% FBS and
1 mM nonessential amino acids.

The construction and maintenance of pCC1/YF17D and pYF-17D/5=C25Venus2AUbi have been
described (24, 25). Plasmid pYF17D/Nluc was constructed by replacing the Venus coding region of
pYF-17D/5=C25Venus2AUbi with that of the Nluc gene (Promega, Madison, WI) by using standard
molecular biology techniques and verified by restriction digestion and sequencing. Briefly, the SrfI–NsiI
region of pYF17D/5=C25Venus2AUbi was subcloned into a shuttle vector, pSL1180, generating the
pSL1180/S17DN intermediate. The Nluc coding region was PCR amplified with the primers YO-3008
(5=-ggg ccc GAG CTC ATG GTC TTC ACA CTC GAA GAT TTC GTT G-3=) and YO-3009 (5=-ggg ccc acc ggt
CGC CAG AAT GCG TTC GCA CAG CCG CCA GC-3=) and Q5 polymerase (NEB) and then cloned into the
SacI and AgeI sites of pSL1180/S17DN, resulting in replacement of Venus with Nluc. The SrfI-NsiI
fragment was then subcloned back into pCC1/YF-17D to generate pYF17D/Nluc. The construction and
use of pYFΔSK, as well as pSINrep21-NS1, were described previously (23, 62). To generate pYFΔSK/Nluc,
the 7221-bp NsiI-ClaI fragment of pACNR/YFΔSK was subcloned into pYFV17D/Nluc cut with these same
enzymes.

To generate Flp-In T-Rex-293 cells expressing WT VCP/p97 or a dominant negative mutant (K251Q/
K524Q) form of VCP/97, the VCP/p97 gene was amplified from pcDNA3.1(�)/p97-WT or pcDNA3.1(�)/
p97-QQ (89), kindly provided by Christian Schlieker (Yale University), by using the primers YO-3508
(5=-CCA GCC TCC GGA CTC TAG CGT TTA AAC TTA GCC ACC ATG GCT TCT GGA GCC GATT-3=) and
YO-3509 (5=-TGA TGA TGA CCT GTA TGG CTA AGT ACC GAG CTC GGA TCC ACT AGT CCA GT-3=) and
cloning the fragment into HindIII-cut pcDNA5/FRT/TO (Invitrogen) by using Gibson assembly (NEB). The
resulting vectors were cotransfected into Flp-In T-Rex-293 cells with pOG44 (at a 1:9 mass ratio), and
stable cells were selected in complete medium containing 50 �g/ml hygromycin and 15 �g/ml blasti-
cidin. Cells were induced to express VCP/p97 by adding 3 �g/ml doxycycline to complete medium
for 24 h.

Transfections and virus stocks. Small scale RNA transfections were performed by using TransIT
mRNA transfection reagent (Mirus Bio) according to manufacturer’s recommendations. BHK-NS1 stable
cells were regenerated as previously described (23). Briefly, 1 �g of pSINrep21/YFV NS1 plasmid DNA was
transfected into BHK-21 clone 15 cells by using 8 �l of TransIT LT1 reagent (Mirus Bio, Wisconsin, MD) and
low-serum Opti-MEM (Life Technologies). Transfected cells were then selected for 1 week in complete
growth medium supplemented with 5 �g/ml puromycin. Reporter virus RNAs were transcribed from
XhoI-linearized plasmid templates pYF17D/Nluc and pYFΔSK/Nluc by using SP6 RNA polymerase in the
presence of the ARCA synthetic cap analog (New England Biolabs, Ipswich, MA). Primary stocks of
reporter virus were generated by electroporation of BHK-21 clone 15 or BHK-NS1 cells with YFV RNA
transcripts, as previously described (23). At 36 h postelectroporation, conditioned media containing
primary YFV-17D/Nluc or YFVΔSK/Nluc stocks were harvested and clarified by centrifugation at 3,000 � g
at 4°C for 10 min to remove cell debris.

Pilot experiments showed that primary stocks of YFV-17D/Nluc virus harvested at late time points
(�36 h posttransfection) contained high levels of Nluc released into the conditioned cell culture media,
which correlated with the onset of virus-induced cytopathic effects. Therefore, to help minimize
background, primary stocks of Nluc-expressing virus were dialyzed via ultrafiltration with Centricon
plus-80 (containing 100-kDa nominal molecular weight cutoff polyethersulfone filters) to remove con-
taminating background Nluc activity. Furthermore, secondary virus stocks with minimal Nluc background
were harvested at early (�24 h) times postinfection, albeit with reduced titers. Specifically, primary virus
stocks were passaged on several 15-cm dishes of �70% confluent monolayers of BHK-21 or BHK-NS1
cells; after 1 h of incubation at 37°C, the inoculum was removed, washed twice with complete DMEM and
twice with phosphate-buffered saline (PBS), and then incubated in the presence of complete DMEM
containing 2% FBS. Conditioned cell culture media were harvested �18 h postinoculation, clarified as
before, and stored in 1-ml aliquots at – 80°C. These early harvest virus stocks had very low contaminating
Nluc activity that was effectively removed by washing infected cells three times with PBS.

Virus infectivity. Infectivity measurements were determined by using plaque assays or endpoint
dilution assays. Plaque assays were performed as previously described (90). For endpoint dilution assays
with Nluc viruses, virus stocks were serially diluted in half-log (�10) intervals in DMEM containing 2%
FBS and nonessential amino acids; each dilution was then added to BHK cells seeded in 96-well plates.
At 24 h postinfection, cells were washed twice with complete DMEM and once with PBS, and the Nluc
activity was measured in all wells. Wells were scored positive if the Nluc activity was �2� from the mean
of uninfected controls. Tissue culture infectious dose 50% endpoint (TCID50) values were calculated by
using the method of Reed and Muench method, as previously described (58).

Nluc activity. Nluc activity was measured by using the Nano-Glo luciferase assay (Promega). At the
indicated times in the assay, cells grown in 96-well plates were gently washed twice with complete
DMEM and once with PBS and then lysed with 20 �l of Nano-Glo luciferase assay buffer containing the
substrate. The Nluc activity was measured from cell lysates within 10 min of lysis (or substrate addition)
by transferring lysate into white OptiPlate 96-well plates (Perkin-Elmer, Waltham, MA) and measured in
a Berthold Centro XS3 LB 960 luminescent plate reader with readings integrated over 0.2 s.

Inhibitors and treatments. Ammonium chloride, BafA1, cycloheximide, and DBeQ were purchased
from Millipore-Sigma (Burlington, MA). Pitstop2 and Dynasore were purchased from Abcam, Cambridge,
MA. Pyr-41 was purchased from MedChemExpress (Monmouth Junction, NJ). NMS-873 was purchased
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from Tocris (Minneapolis, MN). Except where noted, all drugs were added to cells 1 h prior to infection
or RNA transfection at the following concentrations: Pyr-41 (50 �M), DBeQ (10 �M), NMS-873 (300 nM),
and CHX (100 �g/ml) and maintained in the cell culture medium throughout the experiments. The DENV
fusion inhibitor K784-9103 was purchased from ChemDiv (San Diego, CA), and its structure and purity
were confirmed by tandem liquid chromatography-mass spectrometry. Inhibition of E-mediated fusion
was performed as previously described (31). Briefly, reporter viruses were incubated in medium con-
taining the indicated concentrations of K784-9103 and then mixed in a rotary shaker for 30 min at room
temperature to allow inhibitor to bind to virus particles before adding to cells.

DBeQ washout experiments were performed by adding 0.1% dimethyl sulfoxide (DMSO), 10 �M
DBeQ, or 50 nM BafA1 with YFVΔSK/Nluc virus (i.e., no preincubation of cells). At 1 h postinfection, all
cells were washed twice with complete medium and twice with PBS and then returned to media
containing 0.1% (vol/vol) DMSO, 10 �M DBeQ, or 50 nM BafA1, as indicated. Samples were collected 6 h
later.

RPLP1 was transiently knocked down in HeLa cells by reverse transfection of ON-TARGETplus Human
RPLP1 SMARTPool small interfering RNA (siRNA; Dharmacon catalog no. L-011135-00-0005) or AllStars
Negative Control siRNA (Qiagen catalog no. 1027280) as a negative control. Briefly, siRNA transfection
mixtures were assembled with Lipofectamine RNAiMAX (Invitrogen) and plated in 96-well plates before
seeding HeLa cells. After 48 h postseeding, the cells were used for infection experiments.

Virus neutralization assay. C57BL/6J IFNAR�/� mice (91) were kindly provided by Sergei Kotenko,
Rutgers University. Mice were bred in the Laboratory Animal Resource Center of Princeton University. All
animal experiments were performed in accordance to protocol number 1930, which was reviewed and
approved by the Institutional Animal Care and Use Committee (IACUC) of Princeton University. One
female, 6-month-old mouse was infected intravenously with 1 � 107 PFU of YFV-17D. At 18 days
postinfection, the mouse was boosted intravenously with 1 � 107 PFU of YFV-17D. Serum was collected
7 days after this booster injection. Serum from an uninfected female C57BL/6J IFNAR�/� littermate (6
months old) was collected in parallel for use as a negative control. The YFV-immune human serum was
obtained from a deidentified donor through the American Red Cross. Pooled human sera was purchased
from Thermo-Fisher (Waltham, MA) for use as a negative control. For virus neutralization experiments,
mouse and human sera were diluted into reporter virus stocks, and samples were incubated for 30 min
at room temperature with tumbling. At the end of the incubation, samples were centrifuged briefly and
50-�l samples were added to three wells of BHK cells grown in 96-well plates. The Nluc expression was
measured after 5 h of infection.

Cytotoxicity assay. Cells were seeded in 96-well plates and incubated with inhibitors at their
respective experimental concentrations (indicated above) along with the membrane-impermeable nu-
clear dye Cytotox Green (Essen BioScience, Inc. Ann Arbor, MI) and cell-permeable Hoechst stain (Sigma).
Cytotoxicity was measured on an ImageXpress Pico (Molecular Devices) by quantifying the fraction of
Cytotox Green-positive, permeable cells among total cells.

Immunostaining and FACS analysis. WNVKUN and ZIKV NS1 were detected by immunostaining with
6B8-2D8, a flavivirus NS1 cross-reactive monoclonal antibody, originally raised against DENV-4 NS1
(kindly provided by Marie Flamand, Institut Pasteur). Briefly, cells were washed twice with PBS and
treated with Accumax (Innovative Cell Technologies, Inc., San Diego, CA) to gently dissociate cells for
fluorescence-activated cell sorting (FACS) analysis. Dissociated cells were directly fixed in paraformalde-
hyde solution (2% [wt/vol] final) for 30 min at room temperature. Fixed cells were permeabilized with
0.2% saponin for �30 min on a rotating chamber, followed by two washes with PBS. Cells were incubated
overnight with a 1:3,000 dilution of NS1-specific antibody 6B8-2D8 in PBS containing 2% FBS, washed
with PBS, and incubated with 1:1500 dilution of an anti-mouse secondary antibody conjugated to Alexa
680 fluorescent dye. The specificity of labeling was confirmed by parallel incubation with the dye-
conjugated secondary antibody in the absence of primary antibody and by performing the complete
staining procedure on uninfected cells. At the end of incubation, the cells were washed twice, resus-
pended in PBS, and subjected to FACS analysis to quantify the percentage of NS1-positive cells by using
the far-red channel.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 0.1 MB.
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