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Flexible needle insertion procedures are common for minimally-invasive surgeries for diagnosing and treating prostate cancer.
Bevel-tip needles provide physicians the capability to steer the needle during long insertions to avoid vital anatomical structures
in the patient and reduce post-operative patient discomfort. To provide needle placement feedback to the physician, sensors are
embedded into needles for determining the real-time 3D shape of the needle during operation without needing to visualize the needle
intra-operatively. Through expansive research in fiber optics, a plethora of bio-compatible, MRI-compatible, optical shape-sensors
have been developed to provide real-time shape feedback, such as single-core and multicore fiber Bragg gratings. In this paper, we
directly compare single-core fiber-based and multicore fiber-based needle shape-sensing through identically constructed, four-active
area sensorized bevel-tip needles inserted into phantom and ex-vivo tissue on the same experimental platform. In this work, we
found that for shape-sensing in phantom tissue, the two needles performed identically with a p-value of 0.164 > 0.05, but in ex-
vivo real tissue, the single-core fiber sensorized needle significantly outperformed the multicore fiber configuration with a p-value of
0.0005 < 0.05. This paper also presents the experimental platform and method for directly comparing these optical shape sensors
for the needle shape-sensing task, as well as provides direction, insight and required considerations for future work in constructively
optimizing sensorized needles.
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1. Introduction

Bevel-tip needle insertion procedures are pervasive surgical
techniques for minimally-invasive surgeries, including but
not limited to biopsy, brachytherapy, and prostate cryoab-
lation.1–3 Bevel-tip needles enable needle steering, leverag-
ing the asymmetric force distribution applied to the tip of
the needle during needle insertion. Due to randomness ob-
served in surgeries such as tissue obstruction, movement of
patient, or practitioner error a needle may deviate from its
intended trajectory. From these challenges, corrections to
the needle’s trajectory are typically performed from repet-
itive reinsertions into the patient, angulating the needle
to better reach the needle’s intended target. These reinser-
tions cause unnecessary tissue damage to the patient, dam-
aging nearby sensitive anatomical structures and resulting
in post-operative patient discomfort.4 Thus, guidance so-

lutions are imperative to mitigate needle insertion error,
providing real-time feedback to the needle’s location in the
patient, minimizing risk and improving patient outcomes.5

Conventional methods for surgical guidance include real-
time imaging modalities such as ultrasound imaging6–10

and MRI11–13 for tracking the needle’s trajectory during
the needle insertion. CT is another modality for imaging
and tracking the needle’s trajectory, however is not usu-
ally real-time and requires high doses of radiation to be
delivered to the patient.14–16 An alternative approach uti-
lizes needles embedded with fiber-Bragg grating (FBG) sen-
sors.7,17–22 FBG fibers are optical sensors capable of detect-
ing locally induced strain derived from Bragg’s law using
peak backscattered optical wavelength at the sensing loca-
tions along the fiber, denoted as active areas (AAs). Using
the local curvature estimates from the FBGs along the nee-
dle, the needle’s shape can be accurately estimated without
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direct observation of the needle using an imaging modality.
Furthermore, FBG sensors are MRI-compatible, allowing
for shape-sensing to be used in conjunction with the afore-
mentioned imaging modalities.7,23–25

Currently, standardized FBG-sensorized bevel-tip nee-
dles are not readily found on the market, thus requiring
for these devices to be built by individuals according to
their own requirements. Without a standardized needle,
optimizing the needle’s hardware design becomes an im-
portant topic of research for the development of any FBG
shape-sensing needles. Previous works into the optimiza-
tion of sensorized needle construction have ranged from sen-
sor placement to experiments leveraging fiber imperfections
for improving shape-sensing accuracy.18,26–31 These efforts
typically propose a single needle hardware design and dis-
cuss the optimization methods of such design in comparison
with other works.

Through the advancement of optical sensor fabrica-
tion technology, several novel variants of FBG sensor have
emerged, providing researchers different options for choos-
ing shape sensors. In this work, we fabricated two nee-
dles with identical form factors and similar sensor struc-
ture but used two different variants of FBG sensors: one
using single-core FBGs (SCFs) and the other with a mul-
ticore FBG (MCF).32,33 Other ongoing research in opti-
cal shape-sensors include using distributed FBGs and ad-
vanced signal processing methods in SCFs and MCFs for
3D shape-sensing methods, improving upon discrete FBG
placement, however typically require specialized interroga-
tors for processing distributed FBG signals.34–37 Given all
of the research to develop novel shape sensors, there exists a
gap in current state-of-art evaluating these directly to each
other for needle shape-sensing. Considerations needed for
sensorized needles for shape estimation require to be cost-
effective, real-time, bio-compatible, and reliable. Therefore,
the need for direct comparisons of these sensing modali-
ties is imperative to determine the optimal construction of
shape-sensing needles.

In this work, we provide a baseline evaluation com-
parison of two identically configured needles, one embed-
ded with SCFs and the other with an MCF, for the nee-
dle shape-sensing task through needle insertions into phan-
tom and ex-vivo tissue. Furthermore, this work develops an
evaluation platform for direct comparison of future sensing
modalities for needle shape-sensing and provides direction
for future research in constructive optimization for MCF-
based needle shape-sensing. For three-dimensional SCF
shape-sensing, at least two channels non-180◦ increments
of each other are required within one cross-section.38 We
incorporated a third channel in our SCF needle design to
enable temperature-invariant shape sensing. The two nee-
dles realize an identical channel orientation, with the three
channels lying on the same circle and 120◦ apart from one
another, but at varying radial distances from the needle’s
central axis. There exists a central core in the MCF nee-
dle lying along the needle’s central axis, typically used for
temperature compensation.39 The novelty of this work in-
cludes a direct performance comparison of SCF-sensorized

and MCF-sensorized needles in phantom and ex-vivo tis-
sue, a presentation of possible sources of errors for using
SCFs and MCFs as needle shape sensors, and identifica-
tion of future research directions in optimally constructing
MCF-sensorized needles for shape-sensing.

2. Needle Construction

We fabricated two MRI-compatible identical 18G (OD ∼
1.3 mm) needles that are 200 mm in length (KIM18/20,
ITP GmbH, Bochum, Germany), but fabricated one with
three SCF sensors and the other with an MCF sensor. Each
of the sensors had four FBG AAs, identically located at
points along the needle, as shown in Fig. 1a.

(a) FBG placement

(b) SCF (c) MCF

Fig. 1: The sensor configuration for the two 18G sensorized
needles used in this work. (a) The FBG placements and
AA numbering along both the SCF and MCF needles. (b)
and (c) are the cross-sections of the SCF and MCF needles,
respectively. The blue points mark the FBG active areas in
(a) and the fiber optic cables containing FBG active areas
in (b) and (c).

2.1. Three-Channel Single-Core Fiber Needle

For the SCF needle, there are three single-core fibers (80-
micron cladding diameter, Technica Optical Components
LLC, Atlanta, GA) embedded at 120◦ increments from each
other, illustrated in Fig. 1b. The fibers were glued to a niti-
nol inner stylet’s grooves with a bio-compatible adhesive
(Loctite AA 3322, Henkel, Rocky Hill, CT). Glue was ap-
plied and cured in 3-4 mm increments along the needle for
each of the three SCFs to ensure proper adhesion of the
sensors to the needle. The entire SCF needle construction
process took longer than four hours to complete and was
followed with an overnight cure. Since the most bending
that will naturally occur with the bevel-tip needle aligns in
the direction of the bevel, we ensured that one of the SCFs
embedded in the needle align directly in the direction of the
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bevel, to maximize strain experienced in one of these fibers
and ensuring that the other two fibers experience strain.

2.2. Multicore Fiber Needle

Fig. 2: Cross-section of the multicore fiber containing seven
cores, six outer cores and a central core. In this work, we
use the even cores and the central core.

The MCF needle required only a single fiber-optic ca-
ble attached with a fanout. The MCF sensor (125-micron
cladding diameter, Fujikura America, Sunnyvale, CA) had
seven channels embedded into a single fiber-optic cable,
one central core channel at the center of the cable and six
outer channels in a hexagonal pattern around the central
core, shown in Fig. 2. In this experiment, we used the even
cores and the central core for shape-sensing where our de-
cision was informed by [40]. Different from the SCF needle,
the MCF needle had an additional inner stylet to increase
the strain transfer from the needle’s outer stylet, illustrated
in Fig. 1c. The additional inner stylet was imperative since
the single fiber-optic cable was placed close to the needle’s
central axis, which reduced the amount of strain induced
for the same curvature, resulting in lower sensor sensitivity.
The MCF sensor was mounted to the needle by gluing one
end of the cable to the base of the needle, ensuring the sen-
sor was placed coaxially with the needle. Similarly to the
SCF needle, two channels were placed in the natural bend-
ing plane of the needle, aligned with the needle’s bevel-tip
for the same reasons listed in Sec. 2.1.

3. Models and Methods

3.1. FBG Sensor Model

FBG sensors are capable of detecting curvature through
strain measurements from shifts in the sensor’s Bragg wave-
length, λB . Due to the periodicity of the grating in the fiber,
the unstrained Bragg wavelength, λB,0, will shift from a
change in strain, ∆ϵ, and temperature ∆T according to

∆λB

λB,0
= Sϵ∆ϵ+ ST∆T, (1)

where Sϵ and ST are the strain and temperature sensitivity
coefficients of the grating, respectively.

Applying Euler-Bernoulli beam theory, we have that
the strain measured in the fiber, ϵ, is proportional to the
curvature of the beam, κ, by

ϵ = κy (2)

where y is the distance from the neutral bending plane of
the beam.

After eliminating any temperature change effects for
Eq. (1) using the method described in Sec. 3.2, from com-
bining Eqs. (1) and (2) a direct linear proportionality be-
tween the shift in FBG’s Bragg wavelength and the curva-
ture of the rod is observed by

κ =
1

λB,0Sϵy
·∆λB = c ·∆λB , (3)

where c is a constant of proportionality. Combining three-
channels in different directions and Eq. (3) of the rod’s
cross-section, we derive a linear relationship between the
curvature induced in the rod’s AA, κ = (κx, κy)

T , and the
wavelength shifts of the three different channels in the AA,
∆λB = (∆λB,1,∆λB,2,∆λB,3)

T , as

κ = C ·∆λB (4)

where C ∈ R2×3 is defined as the constant calibration ma-
trix of the AA.

3.2. Temperature Compensation

As mentioned in Eq. (1), the Bragg wavelength shift is
temperature-dependent.41,42 In order to directly compute
strain, a method to remove the effect of temperature from
the sensor measurements is warranted. Using the method
presented in [40], we present the temperature compensation
method here.

Given that the channels corresponding to an AA are
close to each other, we make the assumption that they will
experience the same temperature at any point of time. Fur-
thermore, since the fibers are identical, their temperature
coefficients are assumed to be equivalent. Therefore, wave-
length shifts induced in the AA from temperature changes
are equivalent between all of the channels in an AA. There-
fore, we remove the temperature’s effect on the wavelength
shift by deducting the common mode of the channels’ wave-
length shifts within an AA.40,42

3.3. Shape Reconstruction Model

Using our sensor-based Lie-group theoretic model,28,43,44

we describe the local curvature (ω1 and ω2 along the local
x- and y-axes, respectively) and torsion (ω3 along the local
z-axis) of the needle as
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Fig. 3: The local body-fixed frame of the needle relative to
its central axis.

ω(s) = [ω1 ω2 ω3]
T
=

(
RT (s)dR(s)

ds

)∨
(5)

where R(s) : R → SO(3) denotes the orientation of the
needle’s local body-fixed frame, parameterized along the
needle’s arclength.

The arclength is denoted by s ∈ [0, L] for an insertion
with insertion depth L. The (·)∨ : R3 → so(3) operation
defines a function mapping a 3D real-valued vector to the
Lie algebra of SO(3), so(3), a set of 3× 3 skew-symmetric
matrices where RT dR

ds ∈ so(3).45

For single-layered tissue with a non-rotating insertion
of a bevel-tip needle, the needle is modelled as an inexten-
sible elastic rod under uniformly distributed loads.44 Nat-
urally, the bevel-tip needle deflects towards the bevel di-
rection, the local yz-plane, as show in Fig. 3. Reducing the
natural beam mechanics of a uniformly distributed load,
we can define an intrinsic curvature that the needle expe-
riences along the needle’s arclength as κ0(s), where

κ0(s) = κc

(
1− s

L

)2

. (6)

Here, κc is the intrinsic curvature coefficient, combining
the effects of the mechanics of the needle-tissue interac-
tion, to be determined using FBG sensor measurements.
Ideally, the needle will deflect in the needle’s natural bend-
ing plane of the needle, in the direction of the needle’s
bevel-tip. Given this, we denote the 3D intrinsic curva-
ture, ω0(s) : R → R3, parameterized along the needle’s
arclength, as

ω0(s) = κ0(s) · (1 0 0)
T
, (7)

using Eq. (6).
The intrinsic curvature defined in Eq. (7) provides a

reference for the needle deformation to follow. Using this,
we can define the elastic potential energy of the rod as

V =

∫
L

0

1

2
(ω − ω0)

T
B (ω − ω0) ds, (8)

where ω(s) : R → R3, is the local needle deformation pa-
rameterized along the needle and B is the needle’s stiff-
ness matrix. Minimizing Eq. (8) yields the differential equa-
tion,46,47

d

ds
[B (ω − ω0)] + ω ×B (ω − ω0) = 0 (9)

to be solved in conjuction with (5) to determine the body-
fixed local deformation, ω(s), and needle orientation, R(s).
Finally, the needle shape, r(s) : R → R3, is computed by in-
tegrating the body-fixed needle orientation along the length
of the needle by

r(s) =

∫ s

0

R(σ)e3 dσ, (10)

where e3 = (0 0 1)
T

Incorporating the FBG sensor measurements of cur-
vature, we can optimize the measured curvature with the
model’s determined curvature from the solution of Eq. (9),
by optimizing the model’s parameters including the initial
angular deformation at the insertion point, ωinit, and κc,
collectively denoted as η, using the cost function

C(η) =
m∑
j=1

{(
ωm
j,1 − ω1(sj)

)2
+

(
ωm
j,2 − ω2(sj)

)2}
(11)

where ωm
j,1 and ωm

j,2 denote the FBG’s curvature measure-
ments from the m-th AA. We solve the optimization prob-
lem using the interior-point nonlinear optimization algo-
rithm.48

3.4. Ground Truth Reconstruction: CT and
Stereo

Two methods were used for generating ground truth needle
shapes for phantom and real-tissue insertion experiments.
For phantom insertion experiments, the phantom tissue
used was transparent and a stereo reconstruction algorithm
referred to in [44] was used for 3D needle reconstruction,
referenced to have reconstruction errors of 0.16± 0.06 mm.

In real tissue, ground truth was generated from CT im-
ages after each insertion depth is achieved. Since real tissue
is not transparent like the phantom tissue, stereo camera
visualization is not viable, requiring for another visualiza-
tion scheme. A 3D CT scan was used to visualize fiducials
and needle inserted into tissue. The fiducials are used to
register the needle’s coordinate frame with the CT coor-
dinate frame. Fiducials are segmented and localized in the
CT image using the k-means algorithm.49 After the fidu-
cials locations in CT were determined, a point cloud reg-
istration was used to determine the CT coordinate frame
relative to the needle’s frame. This registration was used
to compare the CT-reconstructed needle shape with nee-
dle shape-sensing results. Then, the needle was segmented
from the CT scan using simple thresholding and interpo-
lated with second order, 3D B-splines. The interpolation
allowed for determining a curve of the needle shape with
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the discrete slices attained from the CT scan. Second order
3D B-splines were used for their robust ability to fit com-
plex curves.50 CT reconstruction errors were found to be
within 0.14± 0.03 mm using this method.

4. Experimental Setup

The two sensorized needles underwent characterization and
calibration as seen in [40]. After characterization and cal-
ibration, needle insertions were performed in gel phantom
and real meat for each of the needles.

4.1. Characterization

In order to ensure proper construction of the of the needles
in Sec. 2, we deflected each needle’s tip in increments of
1.5 mm to 15 mm at three different loading angles. Proper
construction of the needles would be indicated by a lin-
ear relationship between the needle tip’s deflection distance
and the wavelength shift observed from the straight config-
uration. Characterization was performed as referenced in
[40,51]. The needles were deflected using a robotic platform
similar to the one in Sec. 4.4 for accurate measurements of
the tip deflection.

4.2. Calibration and Validation

Fig. 4: Experimental setup for calibrating FBG-sensorized
needles with constant curvature jigs. FBG sensor data was
collected using interrogator when the sensorized needle was
inserted into the tubes embedded into the constant curva-
ture grooves.

After a successful characterization, the FBG-
sensorized needles were calibrated with constant curvature
jigs in order to determine the relationship referenced in
Eq. (4). We designed jigs with constant curvature grooves
of varying known curvatures, embedded with larger needle
sheaths for the insertion of the sensorized needle. The con-
stant curvature groove ranged from 0.5 1/m to 4.0 1/m in
value, where the jig is shown in Fig. 4. A straight groove

was added to the jigs in order to establish a baseline of
unstrained wavelength from all of the FBG sensors for the
calculation of wavelength shifts. Five insertion trials per
curved groove at four different needle orientations (0◦, 90◦,
180◦, and 270◦) were performed to remove any experimen-
tal noise from the insertions and to calibrate the sensors for
2D curvature estimation. Curvatures were distributed into
a calibration and validation dataset in order to validate
the proper calibration of the needle, using the validation
dataset. For each of the grooves, wavelength shifts were av-
eraged over the five trials to establish which was then used
for a linear regression between the 2D curvature experi-
enced by the needle (in the needle’s frame) to the averaged
wavelength shift experienced by the FBG sensors per AA.
At the end of the calibration, calibration matrices were de-
rived for each of the AAs, used for 2D curvature estimates
at each of the AA locations along the needle. Finally, using
the derived calibration matrices, reliability weightings for
all of the active areas were determined as performed in [44]
through a linear least squares optimization of the weighted
mean-squared error of curvatures across the active areas in
order to optimally weight the curvature information pro-
vided to the sensor-based shape-sensing method, as FBG
sensors are observed to perform differently along the nee-
dle.

4.3. Needle Insertion Robotic Platform

For both gel phantom and ex-vivo tissue insertion experi-
ments, the same robotic insertion platform was used. The
only difference between the two experiments was the modal-
ity for ground truth needle shape generation. To hold the
tissue subject in-place, an acrylic box of dimensions allow-
ing for 130 mm insertion depths was used during needle in-
sertion experiments. For gathering FBG sensor data from
either sensorized needle, an optical interrogator (HYPER-
ION si155, Luna Inc., Virginia, United States) was used
to collect 200 FBG wavelength samples, for each insertion
depth per trial. Unstrained wavelengths are collected prior
to the start of each insertion experiment to establish a base-
line for calculating wavelength shifts. Needle insertion was
performed using a 4-degree of freedom (DoF) robotic inser-
tion platform integrated into a ROS 2 system.52 The 4-DoF
robotic insertion platform was identical to the one in [44].
The robotic insertion platform was attached with a man-
ual rotation stage containing a custom 3D-printed needle
holder.

The ROS 2 system contained custom-written packages
for handling the ground truth stereo vision, for phantom in-
sertion experiments; FBG interrogator nodes; needle shape-
sensing; and robotic control. A custom user interface was
developed for robotic platform control and RQT was used
for needle visualization. The ROS bagging system was used
for recording data to be post-processed after each experi-
ment.
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Fig. 5: Robotic insertion experimental setup for ex-vivo needle insertions. Needle insertion was performed using a needle
insertion robot with 4 DoFs, controlled with a ROS 2 system. FBG sensor feedback was streamed over the ROS 2 network,
where real-time needle shape-sensing results were provided. The needle’s shape was visualized using a Loop-X CT scanner.

4.4. Phantom Insertions

For SCF needle insertion into gel phantom, experimental
results were used from [44] since the SCF needle configura-
tions were identical between that work and this one, as well
as similar calibration performance, as described in Sec. 5.2.
The MCF needle was inserted into soft gel for five trials at
insertion depths of 30, 60, 90, and 120 mm.

The homogeneous gel phantom was constructed ac-
cording to [44]. Plastic (MF-Manufacturing Company,
Texas, United States) melted and formed into a mold for
creating the phantom tissue.

4.5. Ex-vivo Tissue Insertions

Needle insertion into ex-vivo tissue was performed for both
the SCF and MCF needles for insertion depths of 65 and
125 mm. The SCF needle was inserted into pork tissue for
three trials and the MCF needle was inserted into beef tis-
sue for 5 trials. Nine registration fiducials were attached
to the acrylic box to identify the coordinate system of the
CT scanner. A CT scanner (Loop-X, Brainlab, Munich,
Germany) visualized the needle inserted into tissue as well
as fiducials attached to the acrylic box, holding the tissue,
shown in Fig. 5. Each CT image was a collection of 2D slices
with pixel spacings of 0.447 mm/pixel, and each slice thick-
ness was 0.667 mm, with a field of view with dimensions
approximately of 20 cm × 25 cm × 23 cm. Needle insertion
trials were limited to the CT scanner’s available number of

3D scans prior to overheating, hence the fewer number of
performed insertion trials than in phantom tissue.

5. Results

We used several metrics to compare the ground truth nee-
dle shape, rgt, to the sensed needle shape, r, that are dis-
cretized by their arclength si, i = 1, ..., N . They are listed
below:

Tip Error (TE): the location error from the tip of
the needle.

TE = ∥rgt(L)− r(L)∥ (12)

Root-Mean Square Error (RMSE): the overall
RMS error of the needle shape.

RMSE =

√√√√ 1

N

N∑
i=1

∥rgt(si)− r(si)∥2 (13)

In-Plane Error (IPE): the error measured in the
natural bending plane of the needle.

IPE =
1

N

N∑
i=1

∥(0 1 1) · (rgt(si)− r(si))∥ (14)

Out-of-Plane Error (OPE): the error measured in
the plane orthogonal to the natural bending plane of the
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needle.

OPE =
1

N

N∑
i=1

∥(1 0 1) · (rgt(si)− r(si))∥ (15)

Max Error (MAX): the maximum error measured
along the needle.

MAX = max
i

(∥rgt(si)− r(si)∥) (16)

Note that · here denotes matrix multiplication.

5.1. Characterization

(a) SCF needle

(b) MCF needle

Fig. 6: Characterization results from [40] for the SCF and
MCF needle over a loading distance of 15 mm in 1.5 mm
increments.

Characterization results presented were from [40]. The
SCF needle presented a linear relationship with the loading
of the needle’s tip, in all of the channels. We also observed
that AA1, furthest from the needle tip, was strained the
most with the largest wavelength shifts, while AA4, closest

to the needle tip, was strained the least with the smallest
wavelength shifts. The characterization results indicated a
proper construction enabling a proper calibration of these
sensors.

The MCF needle demonstrated a linear relationship
within a small-loading regime and afterwards reached a
second regime where there was a jump into different lin-
ear regime. Particularly seen in AA1, we observed a shift
in the slope of the wavelength response to the loading dis-
tance. There was also a jump where AA1 became the most
activated. Similar to the SCF, in the first linear regime
AA4, furthest from the tip, experienced the most strain
induced in the FBGs, while AA1, experienced the least.
The MCF needle in this construction experienced a large
amount of non-linearity, increasing in non-linearity as the
FBG sensor approached the tip. Notably, the scale of the
signal response experienced by the MCF FBGs was much
smaller than the ones induced in the SCF. This feature
could indicate a potential low signal-to-noise ratio (SNR)
for the MCF, potentientially attributing to the non-linear
behavior observed by the MCF characterization.

5.2. Calibration and Validation

To justify using the SCF needle shape-sensing results from
[44], we use a t-test to compare that needle’s calibration
with this work’s. Using a two-tailed t-test to compare SCF
from [44] and this work yielded presented in Table 1: AA1
— |t| = 0.31 < 1, AA2 — |t| = 0.56 < 1, AA3 —
|t| = 0.62 < 1, AA4 — |t| = 0.26 < 1, found to be insignif-
icant, concluding that the SCF needles perform similarly.

Table 1: Calibration curvature error statistics, mean and
standard deviation, comparing the SCF and MCF needles
from this work and [44] for each active area.

AA
Curvature Error (1/m)

[44] SCF This SCF MCF

1 0.16± 0.11 0.21± 0.12 0.35± 0.27
2 0.15± 0.11 0.08± 0.06 0.50± 0.34
3 0.34± 0.24 0.15± 0.10 0.31± 0.28
4 0.47± 0.39 0.36± 0.16 0.55± 0.44

A notable feature found in Table 1 is that the curva-
ture estimation error was much higher and less precise in
the MCF needle than the SCF needle. This indicates an
issue when trying to reconstruct the shape as the calibra-
tion was not as reliable. The increased error from the MCF
could be attributed to the low SNR found in Fig. 7d.

5.3. Phantom Insertions

Insertion experiment results are presented for the soft-
tissue single-layer C-shape insertion for the MCF-
sensorized needle for insertion depths of 30, 60, 90, and
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(a) SCF in phantom (b) MCF in phantom

(c) SCF in real tissue (d) MCF in real tissue

Fig. 7: Shape-sensing error statistics for the SCF and MCF needles in phantom, (a) and (b), real, (c) and (d), tissue.
Ground truth needle shapes were measured from stereo and 3D CT reconstruction for the phantom and real tissue inser-
tions, respectively.

120 mm, and from [44] for the SCF needle at comparable
insertion depths of 35, 65, 95, and 125 mm. Demonstrated
in Figs. 7a and 7b, we see that all shape-sensing errors for
both the SCF- and MCF-sensorized needles were within 1
mm, with average errors within 0.5 mm. When looking at
the error contributions between the IPE and OPE to the
total RMSE, we observed equal contributions, indicating
uniform performance of the SCF and MCF sensors in the
needles in gel phantom. Notably in Fig. 7b as compared to
Fig. 7a, the MCF needle at the maximum insertion depth
had a spike for shape-sensing error, as compared to the
SCF needle where shape-sensing error remained compa-
rable. Both the SCF and MCF needle overall performed
comparably with each other, yielding errors that were well
within each other’s range. When performing a p-test be-
tween the SCF and MCF shape-sensing results in phantom
tissue, we get a p = 0.164 > 0.05 for the RMSE, indi-
cating insignificant discrepancy between the two needles’
performances. Overall shape-sensing errors for these inser-

tion depths were 0.35 ± 0.12 mm and 0.19 ± 0.09 mm for
the SCF needle and MCF needle, respectively.

5.4. Ex-vivo Tissue Insertions

Insertion experiments in ex-vivo tissue are reported for the
SCF and MCF needle insertions for insertion depths of 65
and 125 mm. The SCF needle presented similar results in
real tissue as compared to in phantom tissue. All errors
were within 1 mm, with average shape-sensing errors hov-
ering around 0.5 mm. Furthermore, we see that the shape-
sensing errors remained consistent between varying inser-
tion depths. We observed large insertion errors, up to 2.5
mm, for the MCF needle, on the other hand. Particularly,
this error spiked for smaller insertion depths, when only
two AAs were inserted into the tissue. At full insertion
depth, the MCF needle performed similarly to its perfor-
mance in phantom tissue with larger averages. However,
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we observed a large error at the tip from the MCF nee-
dle at all insertion depths, ranging up to 2 mm for both
insertion depths. p-value between SCF and MCF yield for
RMSE: p = 0.0005 < 0.05, which indicated a significant
discrepancy. Overall shape-sensing errors at these insertion
depths were 0.64 ± 0.31 mm and 1.33 ± 0.65 mm for the
SCF needle and MCF needle, respectively.

6. Discussion

For phantom insertions, we observed that both the SCF-
and MCF-sensorized needles perform similarly. As men-
tioned in Sec. 5.3, the calculated p-value indicated insignif-
icant discrepancy between the shape-sensing error distribu-
tions for these insertions. Furthermore, average errors were
within 0.5 mm with the exception of the MCF needle at
125 mm insertion depth. At 125 mm insertion depth of the
MCF, we observed a jump in the maximum error measured
in the FBG-based shape-sensing. This could be attributed
to the noise found in AA4. Upon inserting from 125 mm
from 95 mm, AA4 was inserted into the tissue and then was
used for shape-sensing. As found in Fig. 8, AA1 and AA4
experienced large amounts of sensor noise affecting the cur-
vature reconstruction of the needle. This was largely due to
the strain induced in these fibers was not large enough in
order to strain. Furthermore, the construction of the MCF
needle was embedded with the MCF by gluing the base of
the needle to the sensor, holding the sensor as taut as pos-
sible. However, AA4 was located at the middle of the 200
mm length needle, where the sensor experienced significant
slack, therefore reducing the needle’s strain transfer to this
sensor. As seen in Fig. 8, AA4’s curvature estimation was
found to be entirely noisy and was deemed unreliable for
needle shape estimation. Due to this sensor noise, AA4 of
the MCF was manually given a minimal reliability weight
in order to remove it from needle shape estimation. Due
to loose tolerances in the constant curvature jig, noise and
error are experienced when calibrating the FBG sensors
closest to the tip of the needle. Therefore, the noise seen in
Fig. 8 was largely contributed to calibration errors. These
tolerances could potentially be mitigated through tighten-
ing the tolerances of the constant curvature jig. However
by reducing the inner diameter of the tubes used to cali-
brate the needles, it becomes very difficult to insert the sen-
sorized needle into the jig. With this difficulty, large forces
and manipulation are required to insert the needle into the
jig, increasing the risk of breaking the needle and embed-
ded sensors. Furthermore, a finite element model could be
used to estimate what the experienced curvature by incor-
porating the estimated tolerances of the embedded sensors
in the MCF, however we leave this as a future work.

As seen in Fig. 9, the MCF needle has the largest
shape-sensing error when the needle was deflected less. All
of the shape-sensing errors were found to be when the max-
imum deflection was less than 6 mm, primarily seen in the
real-tissue insertion experiment. The average maximum de-
flection observed over all of the MCF needle insertion trials

Fig. 9: The relationship between the needle’s sensed max-
imum deflection to shape-sensing error (RMSE) found for
the SCF and MCF sensors embedded into flexible needles
over all insertion depths.

for the maximal insertion depth in soft-tissue gel phantom
was 18.1 ± 2.1 mm, while in real tissue was 2.4 ± 1.4 mm.
The larger shape-sensing errors were expected to occur at
smaller deflections of the needle since the embedded MCF
sensors in this construction suffered from low SNR. Thus,
when the needle was deflected less, the FBGs experienced
less strain, exasperating the SNR issue and finally deteri-
orating shape-sensing performance. Compared to the SCF
needle, while maximum deflections were similar to those
found in the MCF needle in ex-vivo tissue, the configuration
of the fibers in this needle did not suffer from the low SNR
problem found in the MCF needle’s configuration. Since the
fibers in the SCF needle were embedded radially further
from the needle’s central axis, the strain transferred to the
SCF from needle bending was much larger than found in the
MCF, as the MCF was co-axially mounted with its needle.
This is justified by looking at the needle’s characterization
results found in Sec. 5.1, as the SCF needle experienced
larger and more linear signal responses over all of the AAs,
as compared to the MCF. Furthermore, since adhesive was
uniformly applied to the fibers in the SCF needle, the fibers
were consistently joined to the needle, while in the MCF
needle, there was only one mounting point, causing for the
extra noise found from AA4 in the MCF needle.

From this study, we find that single-core fibers and
multicore fibers have distinct advantages and disadvantages
for needle shape-sensing. Using SCFs, we found that con-
trolling the direct placement of each of the sensing benefited
needle shape-sensing performance since strain transfer is
able to be maximized by placing the sensors further from
the needle’s central axis. Since needles are typically not
bent in large curvatures like endoscopes or catheters, fine
realization of curvatures for small curvatures is imperative
for proper shape-sensing performance. Thus, since MCF
FBGs are constrained by their closer placement within
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Fig. 8: The x- (top) and y-curvature (bottom) sensed in the MCF needle’s AAs over time during a static insertion depth
of 125 mm in ex-vivo tissue. The sensor noise in AA1 and AA4 dominate the signal’s output and contribute to large error
in the measured curvature.

the sensing array, the FBGs across the array experiences
a limited variation of strain transfer. This limited varia-
tion of strain transfer over the MCF’s cross-section war-
rants a lack of fine estimation of needle curvature, espe-
cially when the MCF is co-axially mounted with the nee-
dle, as the MCF is minimally strained in this configura-
tion. However, using the MCF’s central core with a co-
axially mounted MCF, temperature compensation is able
to be performed since the MCF’s central core undergoes no
strain, while in SCF fibers, the temperature compensation
method presented in Sec. 3.2 works empirically. Further-
more, given that the MCF is mounted with seven FBGs,
the MCF sensor configuration is able to determine its own
shape without relying upon mechanical models. However,
this would require a more dense placement of FBGs along
the sensor or distributed FBGs, hence the necessity of us-
ing the shape-sensing model presented in this paper. For
SCFs, a medium is required to attach multiple fibers to
enable 3D shape-sensing, as the SCFs alone are unable to
determine their own shape. Thus, SCF calibration is on a
per-needle basis, while MCFs can be interchanged between
needles given that the MCF location is constrained me-
chanically to a single cable. Embedding SCFs into needles
is also more intensive and laborous task with many points
of failure, while MCF embeddings has a single point of fail-
ure. While embedding SCFs, we have encountered issues
with improper adhesion to the needle as the SCF needs
full adhesion to the needle, as well as potential twisting
of SCFs inside the inner stylet’s grooves. However, given
that the MCFs are only mounted at the base of the needle,
strain transfer at points closer to the center of the needle
degrade due to slack of the sensor inside the needle, as seen

in Fig. 8. Finally, fiber adhesion degrades over many uses of
the needle, and since SCF embedded needles rely heavily on
proper adhesion of the fibers, SCFs will need to be re-glued
to the needle and the needle will need to be recalibrated
for research purposes. In contrast, as MCF embedded nee-
dles degrade, the only requirement to fix the needle is to
re-apply glue to at one, accessible point on the needle and
does not require recalibration since the FBG locations in-
side the MCF relative to each other is fixed. In practice,
these needles will be treated as a disposable consumable,
where they will be discarded once the needle deviates from
its specified calibration. Therefore, the cost of MCFs be-
come a larger concern to their viability, however, with only
one point of failure, it is likely the MCF-sensorized nee-
dles will fail after more insertions than the SCF-sensorized
needles.

For our current usage of MCFs in this comparative
study, we found better shape-sensing reliability with SCFs.
Nonetheless, we still find MCF-based needle shape-sensing
as an important research for continued study, thus we pro-
vide points of potential improvement that could be used for
better using MCFs in needles. Firstly, using a higher reso-
lution interrogator to better resolve MCF signals for small
curvature estimation would mitigate the encountered SNR
issue. An off-axis placement of the MCFs could be used
to increase strain transfer to the FBGs, further addressing
the MCF’s low SNR. In this study, we only used four of the
MCF’s channels, the central core and three outer cores, due
to hardware limitations of our four-channel interrogator. To
use all of the cores with standard market interrogators, an
interrogator with at least eight channels are required which
greatly increases the cost of using these sensors in needle
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shape-sensing, thus we proceeded with our four-channel in-
terrogator to directly compare their shape-sensing perfor-
mance in a cost-effective manner. Better MCF performance
could be attained through using all of the MCF’s outer
cores, which may also balance the low SNR through using
redundant sensors. Moreover, methods to address inherent
twist in the MCFs were not used in this study in order to di-
rectly compare the raw shape-sensing performance of these
sensors, though these methods may increase the MCF’s per-
formance to realize the needle’s 3D shape.

7. Conclusion

This paper provides a baseline evaluation of SCFs and
MCFs performance for needle shape-sensing through iden-
tical experiments, establishes a method for evaluating fu-
ture optical sensors for needle shape-sensing, and provides
points of improvement for integrating MCFs into nee-
dles for shape-sensing tasks. We configured these sensors
identically in identical needles in order to provide a di-
rect comparison of raw shape-sensing capabilities in nee-
dles, with similar costs to fabricate and use these needles.
We realized mean accuracies for SCF-based needle shape-
sensing of 0.35±0.13 mm and 0.64±0.31 mm for phantom
and ex-vivo tissues, respectively. MCF-based needle shape-
sensing performance was found to have average accuracies
of 0.19±0.09 mm and 1.33±0.65 mm for phantom and ex-
vivo tissues, respectively. We found that MCF-based shape-
sensing in phantom tissue, where the needle incurred the
largest deflection, performed similarly to the SCF-based
configuration with a p-value of 0.164 > 0.5, but in ex-
vivo tissue the MCF needle performed drastically worse
than the SCF needle with a p-value of 0.0005 < 0.5 due
to low SNR found in the MCF. Points of improvement for
MCF-based needle shape-sensing are provided in this pa-
per to mitigate the low SNR issue found in MCF-embedded
needles. Limitations of this work include using only four out
of the seven channels in the MCF needle, the smaller sam-
ple size of experimental insertions in ex-vivo tissue, and the
lack of testing MCF twist compensation methods in order
to directly compare raw capabilities of the SCF and MCF
sensor for a baseline evaluation. Future work includes ex-
tending this study to the utilization of all MCF channels
for needle curvature estimation, evaluation of distributed
sensing modalities as compared to discrete sensing, and
implementing and testing the points of improvement for
MCF-based needle shape-sensing presented in this paper
for MCF constructive optimization.
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