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Abstract: Human activity recognition has been a key study topic in the development of cyber physical
systems and assisted living applications. In particular, inertial sensor based systems have become
increasingly popular because they do not restrict users’ movement and are also relatively simple
to implement compared to other approaches. In this paper, we present a hierarchical classification
framework based on wavelets and adaptive pooling for activity recognition and fall detection
predicting fall direction and severity. To accomplish this, windowed segments were extracted from
each recording of inertial measurements from the SisFall dataset. A combination of wavelet based
feature extraction and adaptive pooling was used before a classification framework was applied to
determine the output class. Furthermore, tests were performed to determine the best observation
window size and the sensor modality to use. Based on the experiments the best window size was
found to be 3 s and the best sensor modality was found to be a combination of accelerometer and
gyroscope measurements. These were used to perform activity recognition and fall detection with
a resulting weighted F1 score of 94.67%. This framework is novel in terms of the approach to the
human activity recognition and fall detection problem as it provides a scheme that is computationally
less intensive while providing promising results and therefore can contribute to edge deployment of
such systems.

Keywords: smart health; Internet of Things (IoT); artificial intelligence; activity recognition; cyber
physical systems; fall detection; direction and severity

1. Introduction

Fall detection is an important task in the care of elderly who are more likely to suffer
from a fall compared to young people and sometimes may even die from it [1]. According
to the World Health Organization [2], falls are the second leading cause of unintentional
injury worldwide and within the US; a fall is experienced every second by people aged
above 65 years old [3]. Moreover, the likelihood of experiencing more falls increases after
the undergoing the first fall event [4]. The ageing population (by 2050, the population of
people aged 60 and above will increase to 2.1 billion according to the United Nations [5])
of the world presents in itself a challenge for providing healthcare services effectively, not
only in terms of the capacity and capability to deliver it to the population but also in terms
of high costs related to fall based injuries (running to the tune of $50 Billion annually [6]).

People can suffer falls due to a number of ailments, such as visual impairments,
cardiovascular diseases, cognitive impairments and and illnesses such as parkinsons,
arthritis, epilepsy, etc. In such situations, a fall detection system (FDS) can be an important
tool in the provision of healthcare to people and have been used for assisting in health
care provision as well [7,8]. The aim of a FDS is to monitor the movement of a person and
determine when a fall has taken place with the aim to alert healthcare personnel or other
caregivers. These systems can be vital in some situations, for, e.g., authors in [9] note that
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fall detection systems are necessary for old people with cognitive impairments who may
not be able to get up after a fall for long durations of time which may result in pressure
sores and other complications.

Development of FDS takes two routes based on the environment they are deployed
in, these two types are context aware systems (CAS) and non-context aware systems (non-
CAS). CAS systems detect falls by sensing the environment as a whole, of which the user is
a part of. Such systems include Ambient sensor based FDS and Vision based FDS. Ambient
sensor based FDS make use of various ambient sensors such as human presence infrared
sensors [10] and other sensors for the environment etc as their sensing modality. On the
other hand Vision based FDS use devices such as video cameras [11] and Kinect [12] as
their sensing equipment. CAS FDS have the limitation that they are only usable in a small
setting, such as a room or a nursing home. This is due to the fact that they are expensive
to deploy and maintain and also due to a fixed deployment, they could possibly restrict
freedom of movement for the user. Moreover, due to the inherent nature of the sensing
scheme, there may be various issues that need to be overcome when using them for fall
detection purposes like occlusion for vision based FDS and spurious sensor triggers for
Ambient FDS.

The other type of fall detection systems are Wearable FDS which fall in the category
of non-CAS FDS. Wearable FDS typically include the use of sensors such as movement
sensors (accelerometers, gyroscopes), pressure sensors [13] or sensors measuring health
related signals (ECG [14], EEG [15], EMG [16]) attached to a body. Data from these sensors
can then be used to determine if a fall has occurred or not. Many times, Wearable FDS
make use of multiple units attached to a body in order to better capture the movement
patterns of a user. In contrast to CAS FDS, Wearable FDS do not restrict movement of
the subjects and therefore are more user friendly. Moreover, most wearable FDS sensors,
especially movement sensors, are inexpensive and are present in many electronics such as
smartphones and smart watches. Such systems are easy to deploy, thus making wearable
FDS development popular for fall detection purposes. Wearable FDS consisting of ac-
celerometers and/or gyroscopes can be deployed using a persons phone or as independent
units attached to the body. These sensors continuously monitor the persons movement
patterns and process the data gathered by the sensors to determine whether a fall has taken
place or not. Data from the sensors is first processed before it can be used, processing might
involve filtering of the signals, extracting sliding windows of observation and possible
feature extraction. Once the signals have been processed, they are passed on to a decision
making system or algorithm. In this regard, machine and deep learning systems have
garnered the most interest of researchers as such algorithms are able to learn the nonlinear
relationships between the various activities or falls to determine the desired outcome.

In this work, we provide a framework for a fall and activity recognition system. The
framework aims to differentiate between various activities of daily living as well as various
types of falls with regard to fall direction and severity aware. To do this, we make use of
data from the SisFall dataset [17] and after suitable pre-processing and feature extraction,
make use of machine learning algorithms to differentiate between different activities of
daily living (ADL) and falls.

This paper is organized as follows, Section 2 provides a discussion of the related
literature, Section 3 discusses the data used in the work, Section 4 elucidates on the
experimental setup with results presented in Section 5 and a discussion provided in
Section 6. Lastly, Section 7 concludes the work.

2. Literature Review

Post fall intelligence is an important research area in the field of fall detection as it
can be useful in determining various post fall injuries [18] and serve as an intelligence
parameter [19] for doctors. Koo et al. [20] present experiments for post fall detection from a
combination of self collected data and the SisFall dataset. They conduct tests using sliding
windows as well as discrete windows from these signals and compute statistical features
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from them. After feature extraction, two different classifiers, the Artificial Neural Network
(ANN) and Support Vector Machine (SVM) are tested with the computed features as well
as raw sensor values. They find that both ANN and SVM are suitable for use in post
fall detection scenarios. Another approach looking at the different phases of a fall has
been presented in [21] where Hsieh et al. use accelerometer sensor data to differentiate
between five phases of a fall, pre-fall, free-fall, impact, resting and recovery and the initial
and end static phases. To do this, they compute various time domain and statistical
features and test five classifiers, SVM, K-Nearest Neighbors (KNN), Naive Bayes (NB),
Decision Trees (DT) and Adaptive Boosting (AdaBoost). For their experimental setup,
the best results were achieved using the KNN classifier. A different take on post fall
intelligence is the determination of direction in falls. Direction aware fall detection has
been performed by Hossain et al. in [22,23] where they include ADLs along with direction
sensitive fall detection using an accelerometer. In their work, they use various statistical
features from the data collected by them along with an SVM classifier to different between
five different classes, ADL, Forward Fall, Backward Fall, Right Fall and Left Fall. More
work on direction aware fall detection has been performed by Lee et al. [24] who use
data from an accelerometer with thresholding, and by Lee. J.K. [25] who makes use of
kalman filters to determine the tilt angles from accelerometer and gyroscope data along
with an SVM and by Tolkiehn et al. [18] using an accelerometer and barometer along with
thresholding. Direction determination within the fall detection has also been a researched
problem in some methodologies proposed in the domain of pre-impact fall detection where
falls are detected inorder to trigger a protection device. Ahn et al. [26] develop a pre-
impact fall detection system using data from the SisFall dataset. They use acceleration,
angular velocity, vertical angle and a ‘traingular feature’ (formulated by them) along with
thresholding to determine directions in the pre-impact part of falls. While direction aware
fall detection is an important determination in terms of post fall intelligence, fall detection
with severity is necessary since it could help provide indications to falls with immediate
recovery or otherwise, as falls without immediate recovery would be more detrimental to
health than a fall with immediate recovery as has been suggested by Palmerini et al. [27].

In [28], Hussain et al. propose a fall detection system that can first determine falls
and then the type of fall using data from the SisFall dataset. They accomplish this in a
hierarchical setup where their system first considers fall detection as a binary problem,
whether a fall has taken place or not, and if a fall has been detected, it classifies between the
various falls in the dataset. Their system is designed to work with 10 s non-overlapping
windows of accelerometer and gyroscope signals. Data from each record are first low
pass filtered before two different types of feature sets, consisting of various time domain
and statistical features, are computed on the data. This is then followed by the machine
learning stage where three different classifiers are tested, KNN, SVM and Random Forests
(RFC). In the fall detection stage, statistical features are computed from ADL and fall
signals and sent to the three classifiers for the preliminary binary classification. After a
fall has been determined to have happened, numerous other statistical and time domain
features are then computed on the data before being sent to the next stage to determine
the type of fall activity taking place. In their experiments, the authors find that KNN
is most effective in differentiating between falls and ADLs where as RFC performs the
best when the different fall activities need to be determined. They achieve an F1 score of
99.75% and 79.95%, respectively, for their setup. This work highlights the usefulness of a
hierarchical approach towards non-binary fall detection. An interesting approach towards
fall detection while considering fall direction and severity has been proposed by Gibson
et al. [29] where the authors use multiple classifiers to vote for any of the considered
classes. They use accelerometers to gather data for ADLs and various fall types and
compute wavelet coefficients from the data using a debauchies level-3 wavelet. First, eight
intermediate classes are formed from the four output classess and five different classifiers
(ANN, KNN, Radial Basis Function Network (RBF), Probabilistic Principal Component
Analysis (PPCA) and Linear Discriminant Analysis (LDA)) are trained which vote for that
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particular event to have taken place. For each event, fusion through majority voting is used
as an indicator for a given event to have happened. This information, for each event, is
then passed on to a second stage that consists of a comparator machine which evaluates
these event indicator results based on a set of rules and with help from a supervisory KNN
multiclass classifier. The authors in this work consider fall detection with direction and
severity with good results, however, they perform their experiments on a self collected
dataset with the different falls being performed from a standing position. This does not
necessarily represent a real world situation where a person might be performing different
activities before undergoing the fall.

Various feature extraction schemes have been used in the area of activity recognition
and fall detection, including, time/frequency domain and statistical features [30] , differ-
ent wavelet transforms [31,32] and even raw sensor signal values being used with deep
learning networks [33]. In [34], Abdu-Aguye and Gomaa present a method combining
wavelet transform and adaptive pooling to perform activity recognition. Spatial Pyramid
Pooling [35] is an adaptive pooling method which was developed to address the issue of
fluctuating input sizes in CNNs for image-based applications, and it entails converting
varying-size convolutional feature maps into fixed-length summarizations. These sum-
marizations, having uniform length can then be passed on to the fully connected parts
of the CNN where a fixed length input is necessary. Given a pooling size pxp, adaptive
pooling works by dividing the input in to pxp pieces while computing the size of each
piece automatically and performing any necessary padding. Once these pieces are created,
a pooling operation is typically performed (max pooling or average pooling for e.g.,) on
each of these pieces to summarize the input into an output of fixed size pxp. This results
in a fixed output length for any size of the input. Abdu-Aguye and Gomaa [34] find that
the combination of adaptive pooling with wavelets as input features for machine learning
algorithms produces results comparable to using a CNN fed with raw sensor signal data.

It can be observed that while fall detection has been looked at in a more in-depth
manner then the case of a binary detection scheme (fall vs. no fall), very little work has been
carried out in the detection of falls with direction and severity. Keeping this in mind, in our
work in [36], fall detection with direction and severity was performed using a combination
of time and frequency domain features and an SVM classifier using data from the SisFall
dataset. However, in that work, fall detection was considered as an isolated task. In this
work, we consider the problem of fall detection with direction and severity in the light
of formal human activity recognition, in that, we aim to differentiate between different
activities of daily living and fall types as a holistic problem. Furtheremore, from a fall
only perspective, we improve on the average F1 score compared to our previous approach.
Lastly, the hierarchical methodology proposed here is tested on a public dataset. The
framework presented here is novel in terms of its approach to the problem, by identifying
and utilizing a feature extraction scheme that is computationally simple and adding to it a
classification structure that simplifies the problem at hand, it provides promising results
for a problem that has not been addressed in great detail in previous research work.

3. Data

The SisFall dataset was released by the Universidad de Antiquia to support research
in the fall detection domain [17]. Their dataset is an extensive repository consisting of
recordings of falls and activity of daily living (ADL) performed by 38 participants. In
total, 19 ADLs and 14 falls were performed with 5 trials for each Fall and ADL except the
activites of walking and jogging. In total, the total number of ADL recordings in the dataset
are 2707 and Falls are 1798. For all recordings in the dataset, measurements were collected
by a sensing unit placed at the waist of the participants consisting of two accelerometers
(ADXL345 from Analog Devices and MMA8451Q from Freescale Semiconductor (Freescale
Semiconductor, Austin, TX, USA)) and one gyroscope (ITG3200 from Texas Instruments
(Texas Instruments, Dallas, TX, USA)) at a sampling rate of 200 Hz.
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In this work, we make use of the SisFall dataset to perform fall detection with direction
and severity and activity of daily living detection since it has been the dataset of choice
in multiple works addressing the fall detection domain [37–39] as it includes recordings
of volunteers from various ages (ages from 19 to 75 years), has diversity in the gender
make up of the participants (19 males and 19 females from a total of 38 volunteers) and
is one of the biggest datasets available in terms of the type of falls and activities being
recorded. Since both accelerometers are placed at the same position and therefore measure
the same movements, data from only one of the accelerometers along with the gyroscope
are considered in this work. In addition, since we aim to perform activity recognition
and fall detection with direction and severity, the labeling of the original dataset has been
modified. This labeling has been shown in Tables 1 and 2. As can be observed from
Table 1, the activities Walking (W), Jogging (J), Sitting (S) and Standing (SB) have been
considered for this work which are typical activities in ADL detection problems. Each of
these labels includes data from multiple original activities, for, e.g., activities with original
labels of walking upstairs and downstairs, walking slowly and walking quickly have been
considered as walking in this work. A similar scheme has been used for the other three
activity labels as well. Some of the activities such as being on one’s back change to lateral
position, wait a moment, and change to one’s back (D14), getting in and out of the car
(D17), stumble while walking (D18), and gently jumping without falling while trying to
reach a high object (D19) have not been considered. The reason for this is that they have
very few samples to be considered as standalone activities (only one type of sub-activity
and also because most of these are not considered in typical ADL detection scenarios).

Table 1. Labeling used for Activities in the SisFall dataset.

SisFall Assigned Assigned
Activity Code Activity Name Activity Label

D01 Walking W
D02 Walking W
D03 Jogging J
D04 Jogging J
D05 Walking W
D06 Walking W
D07 Sit S
D08 Sit S
D09 Sit S
D10 Sit S
D11 Sit S
D12 Sit S
D13 Sit S
D14 - -
D15 Standing SB
D16 Standing SB
D17 - -
D18 - -
D19 - -

The labeling used for the falls present in the SisFall dataset is presented in Table 2. All
the falls in the dataset have been labeled in to two categories, either soft/hard or in to three
categories in terms of direction, forward, backward and lateral. It should be mentioned
that for two falls, F06 and F07, the falls were labeled using video recordings provided as
part of the SisFall dataset. In addition to direction, falls were also labeled separately for
their severity. To do this, all falls which included softening the impact using some support
were labeled as Soft Falls where as those without were labeled as Hard Falls, a similar
approach was used by Gibson et al. [29]. The final labeling for the falls consists of six types
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when direction and severity are combined, these are Forward Soft Falls (FSF), Forward
Hard Falls (FHF), Backward Soft Falls (BSF), Backward Hard Falls (BHF), Lateral Soft Falls
(LSF) and Lateral Hard Falls (LHF).

Table 2. Labeling used for Falls in the SisFall dataset.

SisFall Assigned Fall Name Assigned
Fall Code Direction Only Severity Only Direction + Severity Fall Label

F01 Forward Fall Hard Fall Forward Hard Fall FHF
F02 Backward Fall Hard Fall Backward Hard Fall BHF
F03 Lateral Fall Hard Fall Lateral Hard Fall LHF
F04 Forward Fall Hard Fall Forward Hard Fall FHF
F05 Forward Fall Hard Fall Forward Hard Fall FHF
F06 Forward Fall Soft Fall Forward Soft Fall FSF
F07 Lateral Fall Soft Fall Lateral Soft Fall LSF
F08 Forward Fall Soft Fall Forward Soft Fall FSF
F09 Lateral Fall Soft Fall Lateral Soft Fall LSF
F10 Forward Fall Soft Fall Forward Soft Fall FSF
F11 Backward Fall Soft Fall Backward Soft Fall BSF
F12 Lateral Fall Soft Fall Lateral Soft Fall LSF
F13 Forward Fall Soft Fall Forward Soft Fall FSF
F14 Backward Fall Soft Fall Backward Soft Fall BSF
F15 Lateral Fall Soft Fall Lateral Soft Fall LSF

4. Methodology

The methodology in this work follows the common scheme for a machine learning
based solution to activity recognition and fall detection. The first stage consists of data
preprocessing, followed by feature extraction and then evaluation or classification. Figure 1
shows the methodology for this work with individual parts being elaborated upon in
the proceeding subsections. All preprocessing, feature extraction and classification was
performed in Python. The implementation of the machine learning algorithms used was
from the Scikit-Learn (https://scikit-learn.org/stable/ accessed on 3 October 2021) libary.

4.1. Data Preprocessing

Data preprocessing involves the conversion of the input signals in to a form that is
more suitable for use in the later feature extraction stage. Recordings in the SisFall dataset
vary in length between 12 and 100 s. In order to perform feature extraction in a uniform
manner, it is required that the considered signal be of the same duration, to do this, first we
determine the value of the Signal Magnitude Vector (SMV) [33] for all samples in a given
activity/fall recording. The SMV can be computed as,

SMVj =

√∣∣∣Axj

∣∣∣2 + ∣∣∣Ayj

∣∣∣2 + ∣∣∣Azj

∣∣∣2
where SMVj stands for the SMV value for a given sample j in a activity/fall trial. Once the
SMV values have been determined for all the samples in a recording, the peak value of the
SMV is used as a midpoint to extract a window of duration n seconds around it. Windowed
segments are extracted in this manner from all considered activities in the SisFall dataset
except the activities of D01, D02, D03 and D04 which consist of a single trial per subject
of duration 100 s. In such cases, continuous windowed segments of duration n seconds
are extracted from the recordings. It is also pertinent to mention here that since both
accelerometers are placed at the same position, we only consider one of the accelerometers
along with the gyroscope readings present in the recorded trials. To determine the value of
n as well as the appropriate sensor modality to use for the final system, experiments were
performed on the developed framework and the results have been discussed in Section 5.

https://scikit-learn.org/stable/
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Figure 1. Hierarchical classification scheme for ADL and Fall detection.

4.2. Feature Extraction

Feature extraction involves conversion of input in to a form that can effectively be
used for discriminating between the different classes at the output. In this work, we utilize
haar wavelets along with 4-2-1 1D Spatial Pyramid pooling to extract features from the
windowed segments of activity and fall data. First, for each segment, wavelet coefficients
are extracted using a haar wavelet. Tests were performed with level values of 2, 3, 4,



Sensors 2021, 21, 6653 8 of 14

5 and 7 and it was determined that level-4 produced the best results. Once detail and
approximation coefficients were extracted from the windowed segments, for the set of
coeficients, 4-2-1 Spatial Pyramid pooling is performed as illustrated in Figure 2. Each
coefficient set was divided in to four and two parts and then max pooling was used to
determine the maximum value in these divided parts and the coefficient set as a whole.
These maximum values were then concatenated together to form the seven valued output
from that coefficient set. Furthermore, the results for each coefficient set within each axis
were also concatenated to form the feature vector for a sensor axis measurement. This
operation was performed for each axis of accelerometer and groscope sensor data with the
final feature vector of 210 values consisting of the concatenations of the individual vectors
for each axis. It is hypothesized that this way local as well as global information at each
level of the wavelet coefficients can be captured.

Max Pooling Size = 4

Max Pooling Size = 2

Max Pooling Size = 1

Max pooled Coefficients - 4

Max pooled Coefficients - 2

Max pooled Coefficients - 1

Concatenated cofficients for maxpooled wavelet coefficients

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

n Wavelet coefficients ( n = 12 e.g.)

Max (c1, c2, c3) Max (c4, c5, c6) Max (c7, c8, c9) Max (c10, c11, c12)

Max (c1, c2, c3, c4, c5, c6) Max (c7, c8, c9, c10, c11, c12)

Max (c1, c2, c3, c4, c5, c6,c7, c8, c9, c10, c11, c12)

Figure 2. Example: 4-2-1 1-D Spatial Pyramid Pooling.
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4.3. Classification

A hierarchical classification approach is employed to discriminate between the various
activities and falls considered from the SisFall dataset. Hierarchical classification involves
the division of a complex taxonomic classification problem in to a set of subsets that are
potentially easier to differentiate as the task becomes more localized. Hierarchical classifiers
have been used in multiple different applications [40] where they have been found to
improve upon the performance of many flat classification schemes. The classification
framework used in this work combines hierarchical classification with a vote based system.
The classification problem is divided into three parts, each with its own classifier to indicate
to the subclass of the output. The classifier in part one consists of differentiating whether a
given recording is a fall or one of the four considered ADLs. In order to train this stage,
the activities of Standing, Walking, Sitting and Jogging along with all falls combined in
to one class are passed to the classifier. This dilutes the original ten-class problems in to a
five-class sub problem. The output of this stage is the determination of whether a given
recording is either one of the four ADLs (Standing, Walking, Sitting or Jogging) or a fall. If
a recording has been detected to be a fall, it is sent to the second and third stages.

The second and third stages work in parallel on samples detected as falls from the first
stage in the form of a voting machine. These two stages vote individually on the direction
and severity of the detected fall samples. In order to train them, fall samples were relabeled
to represent direction and severity only and are fed to the classifiers. For the direction, the
classification problem is formulated as a three-class problem of determining fall directions
as being Forward, Backward or Lateral. For the severity classifier, the classification problem
is formulated as a two-class problem of a fall being either Soft or Hard. After a signal has
passed through all necessary stages, the outputs of the individual stages are combined to
indicate to the activity or type of fall being fed at the input.

Four classifiers were tested for each part of the hierarchical scheme, the classifiers
considered were K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Random
Forests (SVM) and eXtreme Gradient Boosting (XGB). Parameter tuning was performed
using gradient search for each classifier over a range of values for each parameter. Exper-
iments were performed for the considered window durations for each activity and the
classifier which provided the best performance overall was chosen. The mean F1 scores
for each output class for each classifier are shown in Figure 3. It can be observed that in
general KNN and SVM perform better compared to the ensemble models, the RFC and
XGB. However, since the KNN slightly outperforms the SVM in eight of the ten considered
classes, we choose KNN as the classifier for this framework.

BHF BSF FHF FSF J LHF LSF S SB W
0

20

40

60

80

100

F1
 S

co
re

 (%
)

Average F1 Scores for each activity

KNN
SVM
RFC
XGB

Figure 3. Average F1 Scores for each activity for the four classifiers.
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5. Results

The data after the feature extraction stage were split in to a train/test partition based
on a 75/25 ratio. As mentioned earlier, the classifiers were trained from a parameter
grid to determine best tuning parameters for maximizing the weighted F1 score while
using five-fold cross validation. We used the weighted F1 score as our training metric
due to the imbalance in the samples of the different classes in the data. Moreover, for
evaluation purposes, we report on the individual F1 scores for each output class and
provide discussions as necessary. For our best case scenario, we also report on the sensitivity,
precision as well as the specificity. The sensitivity/recall or the true positive rate of the
proposed system guages the systems capability to identify the correct class, precision or
positive predictive value indicates to the correctness of the detected values and specificity
or the true negative rate gives an assessment of the system to not miss-classify the class
as any of the other classes (these metrics have been computed on a one vs. all basis).
Furthermore, in order to determine the best values for the observation window and the
most appropriate sensor modality to use, two experiments were conducted with multiple
values/combinations for these two parameters.

An important consideration in working with activity recognition systems is to de-
termine the appropriate observation window size for the analysis of sensor signals to
accomplish the ADL recognition/fall detection task. The size of the observation window
is important as a smaller observation window increases the response time of the activity
recognition/fall detection system and it can also impact the time taken in the computation
of features. In order to find the best observation window size, we perform experiments
using five values, 2, 3, 4, 5 and 6 s. The classification results in terms of the F1 score are
presented in Table 3. For each case, samples of duration equal to half of the observation
window were extracted around the peak value of the SMV. From the table, it can be ob-
served that an observation window of size 3 s produces the best results for six out of the
ten output classes. It only produces poorer results for the classes BHF, BSF and S, SB where
window sizes of 2 s, 6 s and 4 s, respectively, perform better than the 3 s windowing case.
Upon further investigation of this phenomenon using the result of other classifiers, it was
observed that the activities of (BHF and BHF) were best recognized by all the classifiers
with a window size of 2 s (for the case of KNN, there is a small difference between the 2 s
and 6 s case), for the other two activities of S and SB too the F1 score was obtained for the 4
s duration (for the activity S, the difference in performance over windows larger than 4 s is
very small). This could be attributed to the feature aggregation process in the max pooling
operation in the different spatial segments.

Table 3. Performance for different observation window sizes.

Activity Observation Window Size (F1 Score [%])
2 s 3 s 4 s 5 s 6 s

BHF 86.79 83.02 79.25 83.64 85.19
BSF 92.17 90.76 89.08 90.76 93.22
FHF 78.53 80.47 78.32 79.21 78.83
FSF 73.39 77.18 72.5 76.83 76.79

J 97.53 98.27 98.08 98 98.16
LHF 52.83 67.8 62.75 59.26 58.62
LSF 79.69 82.73 77.57 81.46 79.41

S 95.27 96.2 97.6 95.84 95.93
SB 87.29 85.71 91.98 90.61 91.71
W 98.08 98.46 98.12 98.35 98.16

The second experiment in designing the proposed system is the determination of
the best sensor modality to use. Using a single sensor would result in less data, faster
processing and reduced hardware costs compared to the multisensor approach combining
accelerometer and gyroscope. To do this, the classification framework was tested with 3 s
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windowed segments of the combined acceleromter and gyroscope data as well as data of
the accelerometer and gyroscope sensors individually. The results of this experiment are
presented in Table 4. It can be observed that using a combination of both accelerometer
and gyroscope data together produces the best results for eight of the ten output classes.
An accelerometer-only system produces better results for the detection of activity SB and
the fall FHF. The outcome of this experiment agrees with previous work for fall detection
by Waheed et al. [37] on the SisFall dataset.

Table 4. Performance for different sensing modalities.

Activity Sensing Modality (F1 Score [%])
Accelerometer + Gyroscope Accelerometer Gyroscope

BHF 83.02 67.92 82.14
BSF 90.76 85.48 78.18
FHF 80.47 83.33 71.17
FSF 77.18 73.21 63.96

J 98.27 97.79 95.59
LHF 67.8 54.55 55.56
LSF 82.73 76.34 73.21

S 96.2 95.61 91.17
SB 85.71 86.21 76.09
W 98.46 98.24 96.3

Table 5 reports on the best results obtained for the proposed classification framework.
These results were achieved by using windowed segments of 3 s and combined data from
the accelerometer and the gyroscope with a weighted F1 score of 94.67% on the test set.

Table 5. Best Results (Obs. Window: 3 s, Sensing Modality: Acc. + Gyro.).

Activity Precision (%) Sensitivity (Recall) (%) Specificity (%) F1-Score (%)

BHF 95.65 73.33 99.96 83.02
BSF 91.53 90 99.8 90.76
FHF 86.08 75.56 99.57 80.47
FSF 76.86 77.5 98.88 77.18

J 97.87 98.68 99.36 98.27
LHF 68.97 66.67 99.65 67.8
LSF 79.85 85.83 98.96 82.73

S 95 97.44 99.31 96.2
SB 93.75 78.95 99.8 85.71
W 97.95 98.97 98.36 98.46

6. Discussion

From Table 5, the best recognized ADLs are W and J whereas the best recognized
fall is BSF. The worst performing class in ADLs is SB whereas the worst performing fall
is LHF. Upon further inspection of the cause of the bad performance with LHF, looking
at the confusion matrix, it was observed that LHF falls were most commonly confused
with FSF which resulted in a reduction of the classification performance for this class. On
the other hand, in the case of FSF (the second worse performing class), looking at the
confusion matrix, it was observed that FSF was confused with LSF and FHF. Furthermore,
the specificity values indicate that there has been very little mis-identification for each
of the classes. When talking about the activity S, it was observed that samples from this
activity were confused with the activity W which resulted in the sub par performance of
the classifier for its recognition.

To investigate the effectiveness of the proposed scheme, Table 6 provides a comparison
of the proposed method to the one presented in [28]. This is the most similar work to
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the problem being addressed herein in that it presents a hierarchical classification scheme
for different types of falls. In order to incorporate ADL classification in their scheme, a
separate ADL classification stage was added which works in parallel to the already present
fall classifier stage. Furthermore, for this experiment, the data was filtered as in [28] and
windowed with a duration of 3 s before being passed on as input to the two schemes. It
can be observed from Table 6 that the proposed framework provides better recognition for
all of the considered activities of daily living as well as falls. The average F1 scores for the
method of [28] is 87.46% where as for the proposed scheme it is 90.76%. This demonstrates
the effective performance of the proposed scheme in terms of being useful for the problem
of combined ADL recognition and fall detection with severity and direction determination.

Table 6. Comparison of proposed scheme to the work in [28].

Activity F1 Score (%)
Method of [28] Proposed Scheme

BHF 87.72 93.1
BSF 94.02 97.44
FHF 83.06 87.21
FSF 81.15 82.2

J 96.5 98.27
LHF 62.22 73.33
LSF 85.83 87.3

S 96.83 97.13
SB 89.13 92.63
W 98.14 99.05

There are several directions for future work. Given that it was found that a combina-
tion of accelerometer and gyroscope sensor measurements produced the best results in the
proposed setup, one of the approaches that could be useful to improve upon the current
scheme is sensor fusion. Here, data from multiple sensors, possibly non-movement sensors
such as EEG as noted by Wang et al. [41] or ECG measurements, can be fused together to
improve performance of fall detection systems. This would help in developing systems
that provide additional information about a patients health apart from performing fall
detection only. Another addition in this regard would also be the addition of sensor data
from other positions on the body that can capture the different movement patterns in a
different manner and to combine data from various positions.

Another area of work would be to use deep learning methods for this application.
Deep Learning (DL) models such as Convolutional Neural Networks can be used to extract
‘interesting’ features from sensor data that conventional feature extraction methods are
unable to do, thereby having the potential of providing better performance for such tasks
in the classification stage. Recurrent Neural Network could also be used to learn from
the movement patterns generated from the inertial sensors. A limitation to the use of DL
methods for this application currently is the lack of data; however, such limitations could
be mitigated by the use of data augmentation schemes, transfer learning and the use of
cross dataset experimentation. These methodologies could result in improved performance
for the task discussed.

7. Conclusions

Human activity recognition has been an important research area of cyber physical
system development and assisted living applications. In this regard, the usage of inertial
sensor data has been very popular as they do not restrict a users movement and are also
easy to deploy compared to other methods.

Utilizing inertial sensor data, in this paper, a hierarchical classification framework using
wavelets and adaptive pooling has been presented for the purpose of activity recognition and
fall detection considering fall direction and severity. To achieve this, inertial sensor record-
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ings (accelerometer and gyroscope) from the SisFall dataset were utilized and windowed
segments were extracted from each recording. Following this, a level-4 haar wavelet was
used to extract wavelet coefficients from these windowed segments and then 4-2-1 1-D Spatial
Pyramid pooling was used to summarize the output of the wavelet feature coefficients at
each approximation and detail level before the max pooled coefficients were concatenated to
form the final feature vector. A hierarchical classification scheme was then used consisting
of three classification stages, one for determining individual ADLs vs. a generic fall and the
second and third for fall direction and severity, respectively, with both voting together to
determine the severity and direction of a fall. Towards this end, experiments were conducted
to determine the most appropriate size of the observation window as well as sensing modality
used. It was found that for the proposed setup, a window duration of 3 s produced the best
results while using data from both the accelerometer and gyroscope.
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