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Background and Purpose: The mechanism underlying the pathology of neuromyelitis
optica spectrum disorders (NMOSD) remains unclear even though antibodies to the
water channel protein aquaporin-4 (AQP4) on astrocytes play important roles. Our
previous study showed that dysbiosis occurred in the fecal microbiota of NMOSD
patients. In this study, we further investigated whether the intestinal barrier and mucosal
flora balance are also interrupted in NMOSD patients.

Methods: Sigmoid mucosal biopsies were collected by endoscopy from six patients
with NMOSD and compared with samples from five healthy control (HC) individuals.
These samples were processed for electron microscopy and immunohistochemistry
to investigate changes in ultrastructure and in the number and size of intestinal
inflammatory cells. Changes in mucosal flora were also analyzed by high-throughput
16S ribosomal RNA gene amplicon sequencing.

Results: The results from bacterial rRNA gene sequencing showed that bacterial
diversity was decreased, but Streptococcus and Granulicatella were abundant in the
colonic mucosa specimens of NMOSD patients compared to the HC individuals. The
intercellular space between epithelia of the colonic mucosa was wider in NMOSD
patients compared to the HC subjects (p < 0.01), and the expression of tight junction
proteins [occludin, claudin-1 and zonula occludens-1 (ZO-1)] in NMOSD patients
significantly decreased compared to that in the HC subjects. We also found numerous
activated macrophages with many inclusions within the cytoplasm, mast cells with
many particles in their cytoplasm, and enlarged plasma cells with rich developed
rough endoplasmic reticulum in the lamina propria of the mucosa of the patients
with NMOSD. Quantitative analysis showed that the percentages of small CD38+ and
CD138+ cells (plasma cells) were lower, but the percentage of larger plasma cells was
higher in NMOSD patients.
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Conclusion: The present study demonstrated that the intestinal barrier was disrupted
in the patients with NMOSD, accompanied by dysbiosis and inflammatory activation
of the gut. The mucosal microbiota imbalance and inflammatory responses might
allow pathogens to cross the damaged intestinal barrier and participate in pathological
process in NMOSD. However, further study on the pathological mechanism of NMOSD
underlying gut dysbiosis is warranted in the future.

Keywords: neuromyelitis optica spectrum disorders, tight junction, intestinal barrier, mucosa microbiota,
intestinal inflammation

INTRODUCTION

Neuromyelitis optica spectrum disorders (NMOSD) is
recognized as a distinct clinical entity from multiple sclerosis
(MS) based on the disease-specific serum autoantibody
aquaporin-4 (AQP4)-IgG. A recent study showed extensive
homology between gut bacteria and AQP4 protein, implying
molecular mimicry in the pathogenesis of the NMOSD (1).

The brain-gut axis involves multiple complicated connections
among the gut microbiota, intestinal barrier and immune system
in autoimmune diseases (2). A structurally and functionally
intestinal barrier is fundamental to gut health. Any insults
from the external environment including gut microbiota, toxins,
drugs, and undigested food may undermine intestinal integrity
and damage the intestinal barrier by triggering intestinal
inflammation (3, 4). Since tight junction (TJ) proteins are
the major components of the intestinal barrier, pathogens
including bacteria, toxins, microbial products or undigested
food may enter the lamina propria, leading to pathological
consequences after the TJ proteins and epithelial barrier are
breached (3).

Several studies (5, 6) have reported that fecal microbes
may not accurately represent the engraftment colony in the
gastrointestinal tract. The microbiota of the intestinal mucosa
and feces and their relevance to diseases are different. For
example, data from patients with inflammatory bowel diseases
(5) or chronic constipation (6) suggested that evaluating the
mucosal microbiota is better than evaluating the fecal microbiota.
Recently, our group (7, 8) and others (9, 10) reported the
occurrence of fecal microbiota disturbance in NMOSD. However,
the roles of the mucosal microbiota and intestinal barrier in
NMOSD remain unclear.

In the present study, we further investigated pathological
changes in the colonic mucosa, including the intestinal barrier,
mucosal flora and inflammatory response, in NMOSD patients.

MATERIALS AND METHODS

Research Participants
Six Chinese NMOSD patients who fulfilled the criteria of
Wingerchuk (11) and were seropositive for AQP4-IgG were
consecutively enrolled from the Multiple Sclerosis Center.
Five healthy controls (HC) were recruited from the Health
Examination Center of The Third Affiliated Hospital, Sun
Yat-sen University, from July 2019 to October 2019. The

participants in the patient group had no history of intravenous
methylprednisolone therapy or disease-modifying therapies for
6 months. The control group was matched for body mass index
(BMI), age, and sex. Subjects were excluded if they consumed
alcohol or tobacco or had consumed antibiotics or probiotics
within the previous month. Furthermore, pregnant or lactating
females and individuals who suffered from hepatitis, systemic
autoimmune disease, carcinoma and gastrointestinal disease were
also excluded. To reduce the effect of diet on the composition of
the mucosal microbiota, subjects were included if they had an
appropriate fat intake (fat calorie intake was no more than 35%
of total calories) and did not consume peppery food or yogurt for
the last 7 days. The severity of the NMOSD was assessed using the
Expanded Disability Status Scale (EDSS) score, which was divided
into three classes (<3, 3–5, >5). The patient cohort in this study
was independent from our previously published cohorts (7, 8).

The present research was approved by the ethics committee of
The Third Affiliated Hospital of Sun Yat-sen University. Written
informed consent was obtained from the participants.

Mucosal Specimen Collection
Previous studies (12) have reported no significant difference in
the microbiota associated with ileal, cecal and rectal mucosa.
Sigmoid mucosal biopsies were collected via endoscopy in the
present study. A limited, prepped sigmoidoscopy was performed
using a standard adult fibro-colonoscope to 20–25 cm from
the anal verge. Biopsies were taken from pink mucosa without
visible feces at the sigmoid colon approximately 20 cm from the
anal verge and were either snap frozen at −80◦C or processed
with 2.5% glutaric dialdehyde, protein preservation solution
(Kingmed Diagnostics, Guangzhou, China) and 10% formalin
fixation solution in the endoscopy room.

Analysis of Intestinal Microbiota
Bacterial DNA was extracted from colonic mucosal samples
with the QIAamp Power Fecal DNA Kit (Qiagen, Germany)
according to the manufacturer’s instructions. The bacterial DNA
was amplified using barcoded primers that amplified the V3–V4
hypervariable region of the 16S rRNA gene (∼500 bp long). PCR
products were examined on 2% (w/v) agarose gel and further
purified using an E.Z.N.A. Gel Extraction Kit (Omega Biotek).
Construction of sequencing libraries and paired sequencing
(2 × 250 bp) were performed on an Illumina MiSeq platform
at Biomarker Technologies Co., Ltd. (Beijing, China) according
to standard protocols. Custom Perl and Bash scripts were used
to demultiplex the reads and assign barcoded reads to individual
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samples. Reads were retained only when the sequence included a
perfect match to the barcode and the V4 16S rRNA gene primers
and were within the length expected for the V3–V4 variable
region. The raw data were merged using FLASH (13). Sequences
were quality filtered using Trimmomatic (14), and chimera
sequences were removed using the UCHIME algorithm (15).

Transmission Electron Microscopy and
Data Analysis
After washing in phosphate buffered saline, samples were
placed in osmium tetroxide for 2 h. Then, the samples were
dehydrated in a series of ethanol solutions of increasing
concentrations until 100%, infiltrated with propylene oxide,
embedded in pure resin (Epon812, TED PELLA, United States)
and solidified. Localization of the mucosa was achieved under an
Olympus optical microscope (model: BX41, Olympus, Hamburg,
Germany), and then one-micron-thick semi-thin sections were
cut using a Leica ultrathin microtome (model: UC-7, Leica
Microsystems, Wetzlar, Germany). After the tissue of a whole
section was observed, ultrathin sections (50–70 nm) were cut on
the same microtome. The ultrathin sections were stained with
2% uranium dioxide acetate (SPI Supplies, West Chester, PA,
United States) and lead citrate (TED PELLA, United States). The
experiments were performed in duplicate.

Images with higher minification (25,000×) were obtained
under a transmission electron microscope (TEM) (JEM-1400
PLUS, Japan Electron Optics Laboratory Co., Ltd, Japan).
Three to five images were selected from each individual. The
intercellular spaces, including TJs, adherens junctions (AJs) and
desmosomes (des) between two epithelial cells were measured
by ImageJ (National Institutes of Health, United States, Version
1.51k). An intercellular space was defined as the gap from the
border of one epithelium to the border of the adjacent epithelium,
excluding the dense adherent structures. The measurements were
performed by two researchers independently.

Immunofluorescence Staining
Sigmoid colon mucosal specimens were postfixed in protein
preservation fixative (Kingmed Diagnostics, Guangzhou, China)
and then washed twice with protein preservation cleaning
solution for 10 min each. Sections of 4 µm were cut from
frozen mucosa on a cryostat (serial no. 0325; Thermo Fisher
Scientific, Cheshire, United Kingdom) and fixed in 4◦C acetone
for 10 min. A circle was drawn around the sections on a slide
by a Dako pen (code no. S2002; Dako, Glostrup, Denmark)
to prevent the antibody from flowing out. Then, the sections
were incubated for 40 min at 37◦C with primary antibodies
against zonula occludens-1 (ZO-1) (rabbit anti-ZO1 antibody
1:50, Abcam, ab96587), occludin (OCC) (rabbit anti-occludin
antibody 1:50, Abcam, ab235986), and claudin-1 (CLA) (rabbit
anti-claudin-1 antibody 1:50, Abcam, ab15098) separately. After
washing in 0.01 M PBS 3 times for 5 min each, the sections
were incubated with Alexa Fluor-conjugated secondary antibody
(Goat Anti-Rabbit IgG H&L 1:400, Abcam, ab150077). Finally,
the sections were covered with glycerine and a glass coverslip. All
the steps were repeated twice.

Fluorescence images were taken using a Zeiss confocal
microscope (LSM700, Zeiss, Germany) under the same
conditions as the light microscope, and images in different
channels were overlaid using Adobe Photoshop (v. CS3,
Adobe, San Jose, CA, United States). Three to five images
were selected from each specimen for quantitative analysis of
immunofluorescent staining. The fluorescent densities (AODs)
of OCC, CLA, and ZO-1 were measured using ImageJ under the
same conditions by two researchers independently.

Immunohistochemistry
All biopsy samples from the NMOSD patients and HC
subjects were processed for immunohistochemical staining to
detect antigens of CD3, CD20, CD38, CD68, and CD138.
Blocks of colonic mucosa were fixed by formalin, embedded
in paraffin and then cut into 4-µm-thick sections. After
xylene dewaxing, gradient ethanol rehydration and high-pressure
antigen retrieval, tissue sections were stained with the selected
streptavidin–biotin–peroxidase (SP) staining method. Guided
by the Novolink Detection Kit instructions (Leica Novocastra,
Re7280-k, Germany), the following operations were carried
out: all sections were treated with primary antibodies at
4◦C overnight. These antibodies included anti-CD3 and anti-
CD20 antibodies (1:200, from rabbit, Dako Denmark, Glostrup,
Denmark) and anti-CD38 (1:400), anti-CD68 (1:800), and anti-
CD138 (1:600) antibodies (from rabbit, Leica Microsystems,
Deerfield, IL, United States). Then, these sections were incubated
with biotin-conjugated anti-rabbit secondary antibody for 30 min
at 37◦C followed by the enzyme substrate 3′,3-diaminobenzidine
tetrahydrochloride (DAB reagent kit, Re7163, Germany) for color
development. Brown staining of CD3, CD20, CD38, CD68, and
CD138 on the cell membrane was classified as positive staining.
Negative controls were processed in the same manner without
primary antibodies. These experiments were repeated twice.

Images were obtained under an Olympus microscope (model:
BX43, Olympus, Hamburg, Germany) under the same conditions
as the light microscope. Three to five pictures were selected from
each specimen for quantitative measurement.

(1) The density of inflammatory cells: We employed five
antibodies to detect activation of inflammation: CD3,
a marker for T lymphocytes; CD20, a marker for B
lymphocytes; CD38, which is expressed on B lymphocytes
and plasma cells; CD68, a marker for monocytes and
macrophages; and CD138, a marker for plasma cells. We
counted the average number of inflammatory cells in the
lamina propria in five representative high-power fields
(HPFs, 400×), and the results were presented as the average
number of cells/HPF.

(2) The size of inflammatory cells: We randomly selected 30–
50 CD3-, CD20-, CD38-, CD68-, and CD138-positive cells
from each specimen and measured the area of the cells
at HPFs (400×) to assess cell functional status by ImageJ.
Based on the data of the area, we classified these cells into
five levels and performed comparisons among the different
levels of the cells.
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Statistical Analysis
Statistical analysis was performed in SPSS (version 20.0, Armonk,
NY, United States: IBM Corp) and GraphPad Prism 6.0 software
(GraphPad Software Inc., San Diego, CA, United States). After
passing equal variance testing, BMI, intercellular spaces, and
the AODs of CLA, OCC, and ZO-1 were analyzed by the
Mann–Whitney test. The parameters of the average number of
cells/HPF in immunohistochemical staining, the age and BMI of
the subjects, and sizes of cells were analyzed by t-tests. The data
are presented as the mean ± SEM. α-diversity (Shannon-Wiener
diversity index) was calculated based on the rarefied operational
taxonomic units (OTUs). Principal coordinate analysis (PCoA)
was coordinated from the weighted UniFrac distance, and the
linear discriminant analysis (LDA) effect size (LEfSe) pipeline
(16) and Metastats (17) were employed to differentially identify
microbes that distinguished patients from HC subjects. The
effective sequences were binned into OTUs using USEARCH
software with a cut-off of 97% identity in 16S (18). A value
of p < 0.05 was considered statistically significant in the
compared groups.

RESULTS

Information Collected From HC and
NMOSD Subjects
Information regarding the number, sex, age, BMI, AQP4-IgG
status, and disease severity of all subjects is presented in Table 1.

Intestinal Mucosal Dysbiosis in NMOSD
Patients
In the present study, a small piece of colonic mucosa specimen
was obtained from each NMOSD patients to detect changes in
intestinal microbiota using 16S rRNA sequencing. The results
are shown in Figure 1. After applying strict trimming criteria
to exclude low-quality reads, a total of 684,738 reads displaying
acceptable quality were obtained, with an average of 62,249
reads per sample. Taxonomic classification at the phylum level
revealed that the intestinal mucosal bacteria of these specimens

TABLE 1 | Demographic and clinical features of the NMOSD and HC groups.

NMOSD HC p-Value

N 6 5

Female, n (%) 6 (100%) 5 (100%)

Age, years 41.67 ± 14.95 36.40 ± 11.26 0.534

BMI, kg/m2 21.19 ± 3.49 20.95 ± 2.08 0.855

AQP4-IgG, n (%) 6 (100%) –

EDSS score

<3 2 (33.33%)

3–5 1 (16.67%)

>5 3 (50.00%)

NMOSD, neuromyelitis optica spectrum disorders; HC, healthy control; BMI, body
mass index; AQP4, aquaporin-4; EDSS, Expanded Disability Status Scale; IgG,
immunoglobulin G.

mainly consisted of Firmicutes, Bacteroidetes, and Proteobacteria
(Figure 1A). No significant difference in the biodiversity of the
mucosal microbiota was detected by the Shannon index between
in the healthy individuals and NMOSD patients (Supplementary
Figure S1). However, based on the weighted UniFrac distance
and PCoA, the bacterial cluster from HC subjects was
significantly distinguished from that of NMOSD patients
(Figure 1B). PERMONOVA analysis showed that bacterial
diversity was decreased in the NMOSD specimens compared
to controls (Figure 1C, p = 0.001 < 0.01, PERMANOVA).
According to the LEfSe analysis, two bacteria at the genus level,
Granulicatella and Faecalibacterium, were dominant in NMOSD
patients (Figure 1D). Based on the data from the Metastats
analysis on 40 bacteria at the genus level (Table 2), among the
20 bacteria that were increased in NMOSD patients (Table 2,
orders 1–20), including some short chain fatty acids-producing
bacteria (19–22) (Faecalibacterium, Roseburia, Coprococcus,
Ruminococcaceae, Lachnospira), which have protective role in
colonic inflammation, and some proinflammatory bacteria, such
as Granulicatella (23), Streptococcus (24), Proteus (25), and
Desulfovibrio (26). Among the 20 bacteria that were decreased in
NMOSD patients, most are conventional intestinal bacteria, and
many are beneficial bacteria such as Rahnella (27), Lactococcus
(28), Leptotrichia (29) and Turicibacter (30) (Table 2, orders 21–
40). Granulicatella and Streptococcus, two well-studied bacteria,
were significantly increased in NMOSD patients compared
with HC subjects (Figure 1E, p < 0.01 and Figure 1F,
p < 0.05, respectively).

The Width of Intercellular Spaces Was
Increased in the Colonic Mucosa of
NMOSD Patients
Our previous studies have shown a disturbance in the flora
of feces of NMOSD patients (7, 8). In the present study, we
also found colonic mucosa dysbiosis in NMOSD patients. The
harmful bacteria and their toxins may attack the epithelium
of the mucosa and damage the intercellular junctions between
neighboring epithelial cells. Therefore, in the present study,
we employed electron microscopy to investigate morphological
changes in the sigmoid mucosa. Under a TEM, we observed
three types of intercellular junctions between epithelial cells
(Figure 2A). TJs connected two epithelia at the apical region close
to the intestinal lumen and had a narrow gap and relatively little
accumulation of dense cytoplasmic material along this part of the
complex (Figure 2B). AJs had a relatively wide gap and extensive
condensation of cytoplasmic fibrils attaching to either side of
the junctions (Figure 2B). Desmosomes had wider intercellular
spaces than AJs and dense and coarse cytoplasmic fibrils attaching
on either side of the junction (Figure 2C, asterisks). Compared
to the HC, some TJs of the NMOSD patients were separated,
and the dense cytoplasmic materials along either side of these
three types junctions showed obvious fading (Figures 2E,F,
asterisks). The quantitative analysis data demonstrated that the
width of the intercellular space was significantly increased in
the NMOSD (47.78 ± 2.90 nm) patients compared with the HC
(35.72± 2.09 nm) subjects (p < 0.01) (Figure 2D).
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FIGURE 1 | Histogram and scatter diagram showing the distribution characteristics of the intestinal microbiota among the two groups. (A) The distribution
characteristics of the intestinal microbiota of the colonic mucosa originated from the same species at the phylum level. (B) The bacterial cluster from HC individuals
was significantly distinguished from that of NMOSD patients by PCoA analysis. Each point represents the composition of the intestinal microbiota of one participant.
(C) PERMANOVA showed that bacterial diversity was decreased in the NMOSD patients compared to the controls (p = 0.001 < 0.01). (D) LEfSe analysis showed
that Granulicatella and Faecalibacterium were dominant in NMOSD specimens (green). (E) The relative abundance of Granulicatella in participants from the two
groups (NMOSD vs HC; ∗∗p < 0.01, Metastats analysis). (F) Comparison of the relative abundance of Streptococcus among the two groups (NMOSD vs HC;
∗p < 0.05, Metastats analysis).

Protein Expression of Intercellular Junctions
Decreased in the Colonic Mucosa of NMOSD Patients
The OCC, CLA, and ZO-1 proteins are important for the
integrity and permeability of not only TJs but also AJs (31),
and ZO-1 may also be associated with desmosomes (32).
Therefore, we used immunofluorescence staining methods to
investigate the expression of these proteins in different groups.
Photomicrographs showed positive staining for OCC, CLA,
and ZO-1 (Figure 3, green). In the HC group, OCC and
CLA were distributed at the epithelial surface and intercellular
space between epithelia of the colonic mucosa (Figures 3A1,B1,
arrows). However, the expression of these two proteins in the
intercellular space was barely detected, and only weak positive
signals were found in the epithelial surface of the colonic mucosa
(Figures 3A2,B2, arrows) in the NMOSD group. Interestingly,
ZO-1 was expressed only on the epithelial surface and the
intercellular space, even in the HC group (Figure 3C1, arrow),
and weak positive signals were observed in NMOSD patients
(Figure 3C2, arrows). Consistent with the observations under
confocal microscopy, quantitative analyses showed a dramatic
decrease in OCC levels in the NMOSD (0.0854 ± 0.0772)

group compared to the HC group (0.3185 ± 0.0281), both
p < 0.01 (Figure 3A3). The expression of CLA in the NMOSD
(0.2778 ± 0.0471) group was also decreased compared with that
in the HC group (0.4609 ± 0.0353), both p < 0.01 (Figure 3B3).
Similarly, the ZO-1 level in the NMOSD (0.0899± 0.0059) group
was also lower than that in the HC group (0.3271± 0.0270), both
p < 0.01 (Figure 3C3).

Activation of Inflammatory Cells in
NMOSD Patients
When the epithelial barrier is damaged, harmful antigens
and toxins, such as streptococcal toxins (33), may elicit an
inflammatory response from the colonic mucosa. Therefore,
we further investigated changes in immune cells of the lamina
propria of the colonic mucosa in all subsets of the two groups.
Under the TEM, we observed that the normal lymphocytes had
a dentate-like nucleus with abundant dense heterochromatin-
forming aggregates close to the membrane and little cytoplasm
(Figures 4A,B). Macrophages in HC individuals showed a
dentated nucleus with a few inclusions in the cytoplasm
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TABLE 2 | Composition of microbiota genera in the NMOSD and HC groups by Metastats.

Genus Mean (HC) Mean (NMOSD) p-Value

1 Subdoligranulum* 0.003184604 0.020584006 0.002156863

2 Granulicatella 4.39E-06 0.000415129 0.002896359

3 Uncultured_bacterium_f_Lachnospiraceae 0.006679129 0.017050095 0.003753501

4 Coprococcus_1 0.000537436 0.003066943 0.004285714

5 Butyricicoccus 0.000268146 0.002462711 0.004445378

6 Phascolarctobacterium 0.000595199 0.014323617 0.004515406

7 Ruminococcaceae_UCG-003 0.000120348 0.004230241 0.005022409

8 Ruminococcaceae_UCG-002 0.00144715 0.013862003 0.008596639

9 Lachnospira 0.002455323 0.006297456 0.011980392

10 Sutterella 0.002118788 0.018046937 0.012263305

11 Faecalibacterium 0.024730502 0.113679063 0.020190476

12 Streptococcus 0.00195043 0.015309921 0.0212493

13 Proteus 4.11E-05 0.000140499 0.024745098

14 Roseburia 0.007092409 0.022230644 0.028347339

15 Lachnoclostridium 0.003638381 0.008673288 0.03380112

16 Christensenellaceae_R-7_group 0.000370886 0.001205755 0.034526611

17 Lachnospiraceae_UCG-008 0.000969102 0.006802506 0.034935574

18 Desulfovibrio 0.000416844 0.006562565 0.035347339

19 (Eubacterium)_ventriosum_group 6.29E-05 0.000491487 0.040605042

20 Ruminococcaceae_NK4A214_group 0.000519509 0.001508411 0.046557423

21 Staphylococcus 0.00290804 0.001022846 0.00259944

22 Sphingomonas 0.003204459 0.000767466 0.004492997

23 Leuconostoc 0.000862937 5.45E-06 0.01494958

24 Blastococcus 0.000160036 1.16E-05 0.015338936

25 Rahnella 0.000294684 6.37E-05 0.015672269

26 Lactococcus 0.002000652 0.000134881 0.015795518

27 Ruminiclostridium_9 0.001697474 0.000435464 0.015879552

28 Enterorhabdus 0.001494197 0.000124622 0.020246499

29 Leptotrichia 0.000500136 6.95E-06 0.020308123

30 Morganella 0.000476049 3.00E-05 0.022823529

31 Turicibacter 0.003200864 0.00093676 0.02427451

32 Faecalibaculum 0.015936691 0.000464709 0.026495798

33 Uncultured_bacterium_f_Gemmatimonadaceae 0.000439462 3.74E-05 0.029347339

34 Ruminiclostridium_6 0.001248236 1.73E-05 0.029383754

35 Dubosiella 0.033559273 0.001424643 0.036717087

36 Pseudaminobacter 0.000170509 2.82E-05 0.040487395

37 Candidatus_Solibacter 0.000986056 5.76E-05 0.042487395

38 Janthinobacterium 0.000439663 2.09E-05 0.045492997

39 Lachnospiraceae_UCG-006 0.004080315 0.000207736 0.046182073

40 Uncultured_bacterium_o_PLTA13 0.000424525 1.53E-05 0.049397759

*Upper section (1–20): bacteria were increased at the genus level in the NMOSD group. Lower section (21–40): bacteria were decreased at the genus level in
the NMOSD group.

(Figures 4A,C, asterisks). Plasma cells had a spherical nucleus
surrounded by a pale zone (Figures 4A,D, arrows) with
moderate rough endoplasmic reticulum surrounding the nucleus
(Figures 4A,D, asterisks). For NMOSD patients, we found that
plasma cells were larger with well-developed rough endoplasmic
retinaculum in the cytoplasm (Figures 4E,F, asterisks). We found
that many plasma cells were surrounded by macrophages and
were contacted closely by a narrow gap (Figure 4E, arrows).
In addition, we also observed some particles appearing in
the cytoplasm of the plasma cells (Figure 4F, arrows). Some

lymphatic cells were also larger with a larger nucleus (Figure 4G).
Many macrophages were burdened with a large number of
particles of different sizes (Figure 4H, asterisks). In addition, we
found more mast cells, which were armed with larger and dense
granules (Figure 4H, asterisks).

When stimulated by antigens such as bacteria or metabolites,
immune cells will respond by increasing the number of cells
or increasing the sizes of cells to produce more antibodies.
Therefore, we employed immunohistochemistry staining to
detect changes in the density and size of inflammatory cells with
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FIGURE 2 | TEM photos and a histogram showing changes in intercellular spaces of the epithelium. (A) Low-power photos showing the intercellular space of the
epithelium in HC group. (B) High-power photos showing the tight junction (TJ) from square box 1 of panel (A) and the adherens junction (AJ) from square box 2 of
panel (B). (C) High-power photos showing the desmosome (des) with dense and coarse cytoplasmic fibrils attaching on either side of the junction (asterisks).
(E) Low-power photos showing the intercellular space of the epithelium in NMOSD patients. (F) High-power photos showing three types of intercellular junctions in
NMOSD patients from the square box of panel (E). The dense cytoplasmic materials attaching to either side of junctions were faded (asterisks). (D) Quantitative data
show that the intercellular space of these junctions was wider in NMOSD patients than in the HC group (D, **p < 0.01). The scale bar (5 µm) in (E) is equal to that in
(A), and the scale bar (1 µm) in (F) is equal that in (B,C).

five antibodies. As shown in Figure 5, the columns represent
the HC and NMOSD groups, and the five rows represent CD3-
positive cells (T lymphocytes, Figures 5A1,A2), CD20-positive
cells (B lymphocytes, Figures 5B1,B2), CD38-positive cells (B
lymphocytes and plasma cells, Figures 5C1,C2), CD68-positive

cells (monocytes and macrophages, Figures 5C,D1,D2), and
CD138-positive cells (plasma cells, Figures 5E1,E2).

We counted the numbers of these five types of cells on high-
power photos. Unfortunately, no significant difference was found
among subjects in the two groups (Supplementary Figure S2).
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FIGURE 3 | Photomicrograph and histogram showing changes in TJ proteins of the colonic mucosa. Positive immunostaining (arrows, green) for OCC, CLA and
ZO-1 of the sigmoid colonic mucosa in the HC and NMOSD groups is shown in (A1,A2), (B1,B2), and (C1,C2), respectively. The nuclei of the epithelium were
counterstained with DAPI (blue). The results of the quantitative analysis of OCC, CLA, and ZO-1 are shown in (A3, B3, and C3), respectively. *p < 0.05,
****p < 0.0001 compared with the control group. OCC, occludin; CLA, claudin-1; ZO-1, zonula occludens-1; AOD, average optical density. The scale bar (20 µm) in
(C2) is equal to that in (A1,A2), (B1,B2), and (C1).

To obtain more detailed and more accurate information from
these immunostaining-positive cells, we randomly selected
30–50 cells of each type in each group to draw their areas
by ImageJ. From Figures 6, we found a trend where the
mean area of each type of cell increased in NMOSD patients,
but only CD138-positive cells were markedly increased in
the NMOSD group (2225 ± 149 µm2) compared with the
HC group (1817 ± 40 µm2), p < 0.05 (Figures 6A1–E1).
When we separated the cells into different levels based
on the size of the area, we found that the percentage of
small (500–1000 µm2) CD3-positive cells in the NMOSD
(29.0% ± 7.2) group was significantly lower than that in the
HC group (50.6% ± 5.5), p < 0.05, while the percentage

of larger (>2000 µm2) CD3-positive cells in NMOSD
patients (16% ± 11.5) was higher than that in HC subjects
(1.9% ± 1.5), although no significant difference was detected,
p > 0.05 (Figure 6A2). However, the percentages of small
(1000–2000 µm2) CD38-positive cells (23.2.5% ± 3.8) and
CD138-positive cells (41.3% ± 5.5) were markedly lower in
the NMOSD group than in the HC group (41.0% ± 6.8 and
63.5% ± 3.6, respectively), both p < 0.05 (Figures 6C2,E2).
In contrast, the percentages of larger (2000–3000 µm2) CD38-
positive cells in NMOSD (47.5% ± 3.3) vs HC (36.5% ± 3.8)
subjects and of CD138-positive cells in NMOSD (40% ± 1.7)
vs HC (29.1% ± 1.8) subjects were significantly increased,
both p < 0.05. The percentage of the largest (>4000 µm2)
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FIGURE 4 | TEM photos showing changes in the morphology of inflammatory cells in the lamina propria of the colonic mucosa between subjects from two groups.
(A) Different types of cells in the HC subjects included lymphocytes (l), macrophages (mac), and plasma cells (p). (B) High-power photo showing a representative
lymphocyte (l) from panel (A). (C) High-power photo showing a representative macrophage (mac) from panel (A). (D) High-power photo showing a representative
plasma cell (p) from panel (A). (E) Representative larger plasma cells (p) with rich cytoplasm surrounded by two macrophages in an NMOSD specimen.
(F) High-power photo showing the plasma cell (p) from panel (E). (G) A representative larger lymphocyte (l) in an NMOSD specimen. (H) A representative
macrophage (mac) with a larger number of particles and a mast cell (mast) in the colonic mucosa of an NMOSD patient. The scale bar (10 µm) in (F) is equal to that
in (C,D). The scale bar (5 µm) in (G) is equal to that in (B). The scale bar (2 µm) in (H) is equal to that in (A,E).

CD38-positive cells in the NMOSD vs HC group was
13% ± 4.4 vs 1.0% ± 0.6, and the percentage of the largest
CD138-positive cells was 2.3% ± 1.0 vs 0% ± 0, both p < 0.05

(Figures 6C2,E2). However, no significant difference was
found between each size of CD20- and CD68-positive cells
(Figures 6B2,D2).
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FIGURE 5 | Photomicrographs showing the immunohistochemical staining for
inflammatory cell markers using the DAB visualization method. These markers
include CD3 [a marker for T cells, (A1,A2)], CD20 [a marker for B cells,
(B1,B2)], CD38 [markers for activated lymphocytes and plasmocytes,
(C1,C2)], CD68 [a marker for macrophages, (D1,D2)] and CD138 [a marker
for plasmocytes, (E1,E2)]. Positive staining is brown in color (black arrows). All
slides were counterstained with hematoxylin (blue). The scale bar (100 µm) in
(E2) is equal in all photos.

DISCUSSION

To the best of our knowledge, the present study is the
first to investigate the colon mucosal microbiota and the
pathology of the mucosa in patients with NMOSD. Based on
the evidence showing a reduction in microbial diversity but
abundant Streptococcus in the feces of patients with NMOSD
from our previous study (8), we further found that the dominant

Granulicatella and Streptococcus species were also present in
the colonic mucosa of patients with NMOSD in the present
study. Therefore, the evidence from two separate studies showing
that decreased bacterial diversity and dominant Streptococcus
in the feces and colonic mucosa of Chinese patients with
NMOSD appears to be consistent. However, a team from
University of California reported that Clostridium perfringens
and C. perfringens were enriched taxa in patients with NMOSD
and found T helper 17 cells in these patients, which recognize the
immunodominant AQP4 epitope and proliferate in response to
the corresponding C. perfringens ABC-TP peptide, and these two
types bacteria were considered participants in the pathogenesis
of NMOSD (34, 35). Microbiota diversity is regulated by factors
such as host genotype, gender, vaginal or C-section birth, age,
environmental non-food conditions, stressors, drugs, diseases,
and dietary habits (36–38). The precise reason for the difference
in changes in the intestinal microbiota of NMOSD patients
reported by our team and University of California’s team seems
related to dietary habits.

Granulicatella species, along with the genus Abiotrophia,
were originally known as nutritionally variant Streptococci
(NVS), which form part of the normal flora of the oral cavity,
genitourinary tract, and intestinal tract. However, they have
been associated with a variety of invasive infections in humans
such as bacterial endocarditis (39, 40). Streptococci belong a
genus of Gram-positive bacteria that are widely distributed
across the normal flora of humans and animals and are divided
into different species, many of which have the potential to
cause invasive infections resulting from the presence of bacteria
in a normally sterile site, such as pneumonia, meningitis,
and endocarditis (41). Streptococcus and Streptococcal toxins
have been reported to disrupt cytoplasmic integrity, break
down mucocutaneous resistance and cause inflammation (42,
43). Although the effects of Streptococcus on the pathogenesis
of NMOSD have not been uncovered, more Streptococcus
in the colonic mucosa may damage the integrity of the
epithelium. However, other proinflammatory bacteria which are
also abundant in NMOSD in the present study, such as Proteus
and Desulfovibrio, and other toxins such as LPS (44), the immune
system such as Th17 cells (45) and components of the diet (46)
may also participate in the pathological process.

Aquaporin similarity has been found also between food
(vegetables as corn, soybean, spinach, tomato) and brain (47).
Furthermore, the vegetables reported above contain, besides
aquaporin, also lectins. Dietary lectins may be involved in
autoimmune diseases (48) and may regulate inflammation
and the expression of matrix metalloproteinases (MMPs) in
glial cells (49). Thus, lectins could also cooperate in the
inflammatory process.

Epithelial cells join together tightly by different types of
intercellular junctions such as TJs, AJs, and desmosomes (50,
51). Additionally, gap junction proteins such as OCC, CLA,
and ZO-1 are important in maintaining the integrity of the
intestinal epithelium. Defects in ZO-1, OCC, and CLA expression
may lead to abnormal intestinal mucosal barrier permeability by
increasing paracellular permeability (50, 52). In the present study,
we analyzed three types of gap junction proteins (OCC, CLA, and
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FIGURE 6 | Histogram showing changes in the mean size and the proportion of different size of immunological cells. The left column indicates the mean area of
CD3-, CD20-, CD38-, CD68-, and CD138-positive cells (A1–E1), and the right column shows the percentages of different sizes of these cells in the left column
(A2–E2). *p < 0.05, compared with the control group.

ZO-1), and the results showed that the levels of these proteins
were significantly decreased in NMOSD patients. The TEM data
also showed that the intercellular spaces in these patients were
significantly widened, which may be related to a decrease in gap
junction proteins.

When the mucosal barrier is interrupted, potentially
pathogens such as microbes, undigested food, endotoxins can

induce inflammatory responses in the second defense layer,
the lamina propria (53). The lamina propria is armed with
different types of immune cells, such as T and B lymphatic
cells, plasma cells, mast cells, and macrophages. When B
lymphocytes are stimulated by antigens such as viruses or
bacteria and metabolites, they transform into plasma cells to
produce and release immunoglobulins (54). Plasma cells have
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abundant cytoplasm with rich rough endoplasmic reticulum
and immunoglobulins. Lymphocytes and plasma cells become
larger when they are reactivated by producing more antibodies
(55). In the present study, although we did not find a difference
in the numbers of these cells, we found that the percentages
of larger CD38- and CD138-positive cells (plasma cells)
increased, suggesting that the number of active plasma cells
is increased in the colonic mucosa of NMOSD patients. The
TEM data also demonstrated that more larger plasma cells
with abundant rough endoplasmic reticulum in the cytoplasm
were present in the patients with NMOSD. In addition,
the population of large CD68-positive cells (macrophages)
with many inclusions also increased, indicating a process of
phagocytosis of macrophages and inflammation in the lamina
propria. Macrophages and T helper cells participate in the
antigen-presenting process from which B lymphocytes are
activated and transform into plasma cells (56). In addition, we
also found many mast cells with a large number of particles
in their cytoplasm in the colonic mucosa of the NMOSD
patients. According to recent studies, mast cells are key
factors in brain inflammation and NMOSD. These cells can
migrate to the CNS through blood vessels and reside on the
abluminal side of vessels where they can communicate with
neurons, glial cells, and endothelial cells (57). Mast cells have
been reported to release a large amount of proinflammatory
molecules such as tumor-necrosis factor alpha (TNFα) and
interleukins 1β, 4, 5, 6, and 8 (IL-1β, IL4, IL5, IL6, and IL8)
(58–60). These molecules not only damage TJs but also induce
systemic proinflammatory immune responses (61). However,
the precise effect of mast cells on the pathogenesis of NMOSD
is still unclear.

Approximately 100 trillion bacteria are present in the intestine
along with abundant fungi and viruses, and the intestinal
immune system is constantly exposed to microbial antigens,
which may serve as stimuli that prolong inflammatory responses
(4). Under normal circumstances, translocating pathogens will
be endocytosed within the lamina propria and mesenteric
lymph nodes (33). However, if the host mucosal immune
system is compromised, these defense mechanisms may fail,
thus permitting the evasion and survival of bacteria at
distant, extraintestinal sites (62, 63). Perturbed gut integrity
and permeability may allow pathogens translocate into the
circulation, which can increase the host’s susceptibility to various
types of diseases by inducing chronic or acute inflammatory
responses (3). The persistence of gut-derived molecules and cells
in the proximity of the BBB may cause it breakdown, and other
elements escaping from the inflamed gut can also impair the
integrity of the BBB, such as Th17 (64). Several studies have
shown increased BBB permeability in most NMOSD patients (65,
66), and breakdown of the BBB is closely linked to damage to the
gut barrier (4, 67, 68).

A recent study reported a case with refractory NMOSD who
demonstrated a massive enhancement of cytotoxic behavior in
lymphocytes, either in peripheral blood and cerebrospinal fluid
(69). Considering the results of the present study and others,
destructions of the excessive inflammation of the gut might
contribute to the pathology of the NMOSD. Further studies are

necessary to accurately reveal the mechanism of the NMOSD
underlying intestinal dysbiosis.

Several limitations existed in the present study. First, the
number of patients with NMOSD was small. Based on the low
incidence of the NMOSD (70), obtaining more colonic mucosa
specimens from patients with NMOSD is difficult. We clarified
that specimen collection is an invasive procedure with risks of
intestinal bleeding and leakage and ensured that the patients
were willing to have a piece of colonic mucosa removed for
the present study. Second, although we analyzed changes in the
expression of gap junction proteins and the intercellular space
by morphological methods, alterations of the molecules and
functions of gap junctions must be detected by other methods
such as western blotting and the lactulose mannitol test to
determine whether the integrity of intercellular junctions is
interrupted. Third, the present study could not explain the causal
relationship between intestinal dysbiosis and intestinal barrier
disruption in the NMOSD. Therefore, a well-designed study
should be carried on in the future.

CONCLUSION

In conclusion, the present study demonstrated that the intestinal
barrier was disrupted in the patients with NMOSD, accompanied
by dysbiosis and inflammatory activation of the gut. The mucosal
microbiota imbalance and inflammatory responses might cause
pathogens to cross the damaged intestinal barrier and participate
in pathological process in NMOSD. However, further study on
the pathological mechanism of NMOSD underlying gut dysbiosis
is warranted in the future.
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