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Abstract

Overexploitation of common-pool resources, resulting from uncooperative harvest behavior, is a major problem in many
social-ecological systems. Feedbacks between user behavior and resource productivity induce non-linear dynamics in the
harvest and the resource stock that complicate the understanding and the prediction of the co-evolutionary system. With
an adaptive model constrained by data from a behavioral economic experiment, we show that users’ expectations of future
pay-offs vary as a result of the previous harvest experience, the time-horizon, and the ability to communicate. In our model,
harvest behavior is a trait that adjusts to continuously changing potential returns according to a trade-off between the
users’ current harvest and the discounted future productivity of the resource. Given a maximum discount factor, which
quantifies the users’ perception of future pay-offs, the temporal dynamics of harvest behavior and ecological resource can
be predicted. Our results reveal a non-linear relation between the previous harvest and current discount rates, which is most
sensitive around a reference harvest level. While higher than expected returns resulting from cooperative harvesting in the
past increase the importance of future resource productivity and foster sustainability, harvests below the reference level
lead to a downward spiral of increasing overexploitation and disappointing returns.
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Introduction

Many social-ecological systems (SESs) that comprise a common

pool resource (CPR) face the problem of overexploitation, because

it is very costly, albeit not impossible, to exclude users from

subtracting resource units [1–6]. Resource appropriation in such

SESs often produces benefits for the individual, while all share the

costs. This gives users an obvious incentive to maximize their

harvest, thus, preventing cooperation and sustainability [7]. There

is, however, compelling evidence both from economic experiments

[8–11] and from real systems [12–15] that under certain

conditions users may overcome the egoistic temptation of

maximizing individual profits.

The decision to forgo part of a possible harvest from a

renewable CPR is, particularly at low resource levels, an

investment into future productivity at the cost of reduced short-

term returns [16]. Because such an investment into the future

always comes with uncertainties and because of the human

preference for proximate returns, users discount potential future

pay-offs [11,17,18]. According to the standard discounted utility

model, rational users integrate all current and expected future

returns after discounting them at a constant rate [17]. If

discounted future benefits are large enough, users are willing to

forego current benefits and cooperate [8,10,19].

Users of CPRs face highly uncertain decisions for two reasons.

First, many ecological systems are characterized by high intrinsic

variability, which complicates predictability [20]. Second, har-

vesting itself affects the stock and eventually the productivity of the

resource. By this means, the harvest behavior may also influence

the weight users assign to future resource productivity giving rise to

a trade-off between the harvest behavior and the expected future

returns [21]. The key to sustainability in many real SES is

therefore to enhance the certainty of receiving the future benefits

of cooperation, a goal achieved best by creating an institutional

environment that is capable of accounting for the specific

characteristics of the system under consideration [21–23]. Change,

whether social or ecological, may, however, overstrain also robust

institutions, when it is too rapid for successful adaptation [24].

Studies of real resource-user systems often disregard these close

links between harvest behavior, resource dynamics, and future

certainty and focus on either ecological or social aspects. The two

sub-systems are described on different levels of detail, which

hinders an integrated understanding of their coupled dynamics

[25,26]. Moreover, observational or experimental data from CPR

systems usually cover only a short period of time or comprise many

confounding factors and hence do not allow observing and

understanding temporal changes. The quantitative relationship

and the feedbacks between resource productivity and user

behavior remain largely unknown. Consequently, regime shifts

or collapses observed in overexploited ecological resources are still

not fully understood [27,28].

A novel approach for understanding the combined dynamics of

a CPR and the users is to reduce the number of confounding
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factors by studying the system under controlled laboratory

conditions. In a recent study, Janssen et al. [9] presented such a

computer-based laboratory experiment, in which a group of five

users could harvest continuously from a renewable CPR. Each

group played six consecutive rounds of 240s with a change of the

treatment after the third round. In three of the six rounds neither

communication nor punishment were possible (a treatment labeled

as NCP), while in the other three rounds users could coordinate

resource extraction using either communication (C), punishment

(P), or a combination of both (CP).

Although the composition of each group was fixed and all

properties of the game except the treatments were identical, the

experimental results revealed a great variability of harvest

behaviors within rounds, between rounds with the same treatment,

as well as between different treatments. Users realized highest total

harvests (Htot) when they cooperated and allowed the CPR to

grow and to produce more resource units at the beginning of a

round. Communication, punishment (albeit to a lesser extend),

and the total harvest realized in previous rounds influenced the

harvest behavior of the users and their returns [9].

We combine here Janssen et al.’s experimental data with an

adaptive model to identify the main drivers of the co-evolution of

the users’ harvest behavior and the CPR. Our model is based on a

mechanistic trade-off between the current harvest and the discount

factor of future productivity. The trade-off accounts for the effect

of resource exploitation on the certainty of future returns and

reflects the central decision users face while harvesting from a

renewable resource with a density-dependent growth. While

maximizing the current harvest reduces the certainty of future

returns, because the resource stock may decline significantly or

even collapse as a consequence of intensive exploitation, lower

current harvests enhance the chances of higher productivities and

hence higher returns in the future.

Our model simulates a renewable CPR (R, Equation 1) with a

fixed number of users (C), who realize a harvest (H , Equation 9)

by adopting a variable harvest strategy. We define the harvest

strategy as a continuous behavioral trait (x, Equation 5) that

determines the harvest rate of the users. x adapts to changes in 1)

the current harvest opportunity and 2) the discounted future

productivity, which we consider to be equivalent to the potential

future returns. The CPR grows at a density-dependent logistic

growth rate (rr, Equation 2) and users subtract variable amounts of

resource units according to a Monod-type harvest rate (rh,

Equation 3). Changes in x alter rh via the half-saturation constant

(KS , Equation 4), but also affect the discounted future productivity

of the resource (rf , Equation 7).

More precisely, harvesting becomes less intense with increasing

x, while the discount factor for future productivity (w, Equation 8)

rises. The discount factor w, which is a function of the time

horizon and the harvest trait, can vary between 0 and the

maximum discount factor (w?). The parameter w? sets an upper

limit for the weight of future productivity and represents the

maximum level of certainty that is sustained by the social system,

i.e. by the rules of the game, the institutions, and the experiences

of the users. It is constant on short time-scales, because rules and

institutions usually change slower than the fastest processes in

ecological or social systems [24], but may vary between

simulations accounting for different institutional environments or

different harvest experiences.

Users maximize the net present value, which is the sum of the

current pay-off and all discounted future pay-offs for given

maximum discount factor and CPR level. Following adaptation

models of continuous traits [29–32], the temporal change of the

harvest trait x is proportional to the gradient of the fitness function

F , which is the sum of current and discounted future pay-offs

(rhzrf ) and the costs for optional punishment (rp, Equation 6). By

adjusting x, users change their harvest behavior to increase their

fitness.

In behavioral economic experiments, user behavior is measured

as cooperation. Cooperation is typically expressed as a dimen-

sionless number between 0 and 1 and determined by the user’s

investment relative to a potential maximum value. Following this

approach, we define the average cooperation of the group ( ) by

the normalized foregone harvest (Equation 10), which is the

amount of resource units that the users decide not to harvest

divided by the maximum possible harvest.

In our model, users are not resolved as indidivuals. By contrast,

the group of users is considered as a single adaptive entity, and the

state variables of the model describe the dynamics of average

group properties. The model hence corresponds to the typical

resolution of observational data from real SESs and does not

require detailed assumptions on the behavior of each individual in

the system.

While Janssen et al. [9] focused on the statistical analysis of

outcomes in terms of total harvest, our aim is to find a mechanistic

explanation for the dynamics of the coupled system and the

observed differences between rounds. Our major assumption is

that the observed variability in harvest behavior and cooperation

of users is caused by a trade-off between the current harvest and

the discounted future productivity, which is mainly driven by

differing maximum discount factors between rounds. Therefore,

we 1) constrain the proposed trade-off by experimental data [9], 2)

study the influence of the social environment, which is represented

by a single parameter (the maximum discount factor w?), on the

co-evolution of the user-CPR system, and 3) assess the effect of

previous experience on the users’ perception of future certainty.

Results and Discussion

Trade-off between Harvest Behavior and Future
Expectations

The expected future pay-offs of the CPR users were not

measured directly during the experiments of Janssen et al. [9]. We

instead use the relative resource productivity P? as a qualitative

indication of the group’s expectations to constrain our model. P? is

defined as the cumulated resource productivity from the current

time to the end of the experiment normalized to the resource level

at the beginning of each round. In other words, P? expresses the

future productivity as a fraction of the initial resource level.

Correspondingly, the inverse of the half-saturation constant K s{1,

calculated from the experimental time-series of the harvest rate, is

proportional to the resource affinity and used here equivalently. A

high affinity value (or a low KS ) indicates aggressive harvesting

already at low resource levels, while at low resource affinities users

reach near maximum harvest rates only at high resource levels.

We discover a strong trade-off between P? and K s{1 and a

high variability of these two variables in the experimental data

(Figure 1C). More specifically, in the experiment, relative resource

productivities significantly exceeding 1:0 only occur at low

resource affinities (K{1
S v0:005N{1). In contrast, high resource

affinities (K{1
S w0:005N{1) lead to large current harvests, while

limiting the production of new resource units to values of P?
v0:5.

Similar to known relationships in real SESs (cf. Figure 2 in [26]),

this trade-off is highly non-linear and introduces a tipping point to

the system that clearly separates the effects of sustainable use from

overexploitation. Users, thus, face the decision of increasing either

short-term benefits or the long-term resource productivity [33].

Adaptive Behaviour in Common Pool Resource Systems
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We calibrated our model to match the distribution of the

experimental data and adjusted only the parameter w? between

rounds (Figure 1A and B). The model trajectories reveal the

continuous change of user behavior over the course of the different

rounds (Figure 1C). Starting from low affinities all model

simulations end with P?~0 and K s{1~0:02N{1, which

represents the highest possible harvest rate and the complete

exhaustion of the resource at the end of all rounds. While all

rounds end similarly, they differ in the trajectories that lead to the

exhaustion of the resource. When communication is possible

(NCP-C 4–6, C-NCP 1–3), maximum P? values are considerably

higher than in NCP-rounds with no prior experience of

communication (NCP-C 1–3). In contrast, users increase the

resource affinity in NCP-C 1–3 right from the start (cf. Figure 1A

and C) and by doing so avert high resource productivities.

Effect of Different w? on the Temporal Dynamics of the User-
CPR System

The different values of the maximum discount factor w? can be

attributed to the changes in the social environment of the users,

because the simulated rounds differ only by the available

treatments and the history of previous round, whereas the

resource characteristics and the composition of the groups of

users were identical.

If the future is irrelevant to users and future returns are

disregarded (w?~0, Figure 2A and D), cooperation levels

deteriorate within the first 30s of the simulation. In this case, the

Figure 1. Trade-off between consumer’s resource affinity and the productivity of a renewable resource. A–B, Resource level in six
rounds of a computer-based laboratory game with five users and different treatments (dotted lines indicate experimental data [9]). While in the first
three rounds of A neither communication nor punishment was possible (NCP-C 1–3), users could communicate in subsequent rounds (NCP-C 4–6). In
the treatment C-NCP (A), three rounds with communication (C-NCP 1–3) were followed by three NCP rounds (C-NCP 4–6). Set-ups of model runs
(dashed and solid lines in A and B, respectively) only differ in the the maximum discount factor w? (see Equation 8, NCP-C: [4.4, 1.9, 1.4, 11.7, 32.5,
20.4], C-NCP: [18.0, 20.4, 29.3, 16.5, 17.3, 17.0] ). C, Phase plot of the users’ resource affinity, here defined as the inverse of the half-saturation constant
KS (see Equations 3 and 4), and the relative resource productivity P? , defined as the resource productivity from the current point of time to the end
of a round normalized to the initial resource level. The shaded area shows the density distribution of the experimental data from the two treatments
shown in A and B. Solid lines indicate the trade-off between resource affinity and potential future harvest from the resource system in corresponding
model results.
doi:10.1371/journal.pone.0052763.g001
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current harvest rate significantly exceeds the growth rate of the

CPR and the unsustainable use leads to a collapse within the first

100s and to a poor total harvest (Htotv300N, Figure 3A).

Increasing the importance of the future, that is increasing w?,

results in higher cooperation over longer periods of time and slows

down (Figure 2B and E) or even reverses overexploitation

(Figure 2C and F). Towards the end of all simulations, however,

w declines with the remaining time of the experiment causing an

erosion of cooperation that eventually triggers the collapse of the

resource (Figure 2A–C), because there is no potential future

productivity to account for in a finite game.

Users continuously adjust their harvest strategy according to

changing present harvest opportunities and expected future pay-

offs. Therefore, cooperation and sustainable harvesting become

rational when the discounted total harvest for one strategy is

higher than for other strategies [34]. By treating resource users as

an adaptive entity, our model unveils their great behavioral

variability and the smooth transition from a sustainable to

unsustainable resource use. These results support studies [35] that

question stable norms of cooperation derived from ‘‘one-shot’’

field experiments [36–39]. The observed behavioral variability

among CPR users with identical cultural background corroborates

our assumption that users adapt their harvest behavior to the

properties of the social and ecological environment [13,35,40].

Relation between the Maximum Discount Factor and the
Total Harvest

The harvest behavior of CPR users and hence the outcome of

the artificial commons vary greatly between rounds (cf. Figure S1

and S2 for the results of all rounds). A quantitative measure that

may explain those differences of the total harvest Htot is the

maximum discount factor w?. The total harvest indicates the

success of the group’s behavior and is positively related to w?

(Figure 3A), because in the model the productivity increases with

R for the range of resource levels observed in the experiment

(Rv0:5K~420:5N). In other words, a high w? leads to harvest

rates below productivity, i.e. sustainability, at the beginning of a

round and eventually to high total harvests. Given the constraints

of the experiment, the highest Htot of 520N is therefore realized at

the highest value of w?~41:8 (Figure 3A).

By only adjusting w? to match the experimental results, we

assume that differences between rounds are mainly caused by

variations in the users’ perception of future certainty. Allowing for

variations also in the parameters a and b reduces the error

between model and experimental data indicating that users also

adjust the temporal dynamics of the harvest from round to round

(Figure S4 and Table S1). However, the results of a systematic

sensitivity analysis (Figure S5) confirm the high sensitivity of the

model results to changes in w? and corroborate the choice of w? as

the only free parameter explaining the observed differences

between the rounds of the experiment.

Effect of Different Treatments on the Maximum Discount
Factor

Our analysis reveals that the variations between rounds in the

perception of future certainty, represented by w? in the model, are

determined by a combination of factors, including 1) treatment in

the current round, 2) prior experience from rounds with the same

treatment, and 3) possible exposure to a different treatment in the

past.

Figure 2. Time evolution of cooperation, harvest rates and a renewable resource for three different levels of future certainty.
Increasing the maximum discount factor w? (Equation 8) lowers the current harvest rhC (Equation 3, lower panels d–f, green shaded area), but raises
the future resource productivity rf C that is considered by the users (Equation 7, blue shaded area). Cooperation decreases sharply when future
pay-offs are ignored (a, w?~0.0) causing an immediate resource collapse (d, black solid line (model) and gray dots (experimental data from [9])).
Larger values of w? (b, w?~16.5 and c, w?~32.5) result in higher cooperation and reduce the current harvest as resource users account for a much
higher proportion of future productivity (e and f). Resource collapse occurs later and the extended period of sustainable resource use leads to
significantly higher total harvests (cf. Figures. S3a and S1). Red lines in panels a–c indicate the temporal evolution of the discount factor w.
doi:10.1371/journal.pone.0052763.g002
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Sustainable harvest strategies, characterized by high Htot

exceeding 400N , are associated with rounds in which either

communication is possible or users had experienced communica-

tion in previous rounds (Figure 3A). On the contrary, in the

absence of communication or with prior experience of punish-

ment, users harvest unsustainably throughout the simulation and,

thus, realize poor harvests (below 300N). Rounds in which the

positive and negative effects of previous communication and

punishment are balanced represent a transition between clearly

separated strategies of successful and unsuccessful harvests (black

dots in Figure 3A).

The impact of previous experience of punishment on the

maximum discount factor and therefore on the total harvest

becomes clear when comparing the outcomes of NCP rounds that

were preceded by differing treatments. While in rounds 4 and 5 of

the C-NCP treatment users manage to sustain a w?
w15, the

maximum discount factor drops considerably to values around 10
in corresponding rounds of the CP-NCP treatment (Figure 3A). In

our model, this indirect effect on the harvest behavior is much

stronger than any direct effect of punishment. As a tool to enhance

the confidence of users into the future, punishment has, different

from communication, no or even negative effects beyond the

period of its availability [41]. Punishment alters the expectations of

future returns, but communication is clearly more effective in

raising the users’ maximum discount factor and eventually in

establishing cooperation [9,42,43]. In studies of real social-

ecological systems, leadership significantly influences the successful

management of the commons [12,13,44]. Supported by Janssen

et al. ’s observations [9], we argue that communication enables

negotiation and promotes leadership in the artificial environment

of this simple, computer-based CPR system.

Changes of the Maximum Discount Factor within One
Treatment

A feedback between w? and Htot links the outcome of previous

rounds with the same treatment to the current harvest strategy.

Our results suggest that the group’s total harvest will increase

further in the following round with identical treatment if Htot is

above a certain threshold (323wN , equivalent to w?
w8:5). Values

below this reference lead to a further deterioration of the

maximum discount factor and diminish the group’s total harvest

in most rounds.

The reference value hence marks a sustainability threshold for

the system. This feedback between rounds is similar to the

mechanism proposed by Fehr & Gächter [45], who explained the

decay of cooperation in a public goods game as a feedback loop of

disappointed expectations that leads to lower and lower endow-

ments of the players of the experiment.

The discount rates r, which were derived from w? assuming

exponential discounting [17], are related to the Htot of the

previous round by a sigmoid function (Figure 3B). We suggest that

the threshold determined in Figure 3A and the discount rate

correspond respectively to the reference point of the value function

and to the psychological value of an outcome in prospect theory

[46]. Prospect theory, which is based on gains and losses rather

than on absolute outcomes, explains the discrepancies between

economic rationality and observed human behavior. According to

prospect theory the perceived value of an outcome does not

depend linearly on its economic value. Instead, it is an asymmetric,

sigmoidal function of gains and losses with respect to a reference

point, the value function, which can be influenced by expectations

or the current status. Furthermore, the weight humans associate to

an uncertain outcome is related, but not equal, to the

corresponding probability, because the human ability to objec-

Figure 3. Outcomes of the common pool resource system. The total harvest Htot is closely related to the certainty of the future, here
expressed as the maximum discount factor w? (Equation 8, colored dots). Only data from rounds that were preceded by a round with identical
treatment (rounds 2, 3, 5, and 6) were included. a, Communication with or without punishment (CP and C, green dots) is essential to establish high w?

and to increase the Htot. Punishment (P), even if experienced only in previous rounds, or the lack of communication and punishment (NCP), keep Htot

below the reference point (red dots). Blue and black dots indicate NCP rounds in which either communication or communication and punishment
were available in previous rounds. The lines connecting two dots show the change of w? between a current and a preceding round (gray dots) with
the same treatment (at the current round’s Htot). The intersection of the regression lines of previous (gray line) and current (black line) discount
factors reveals that the value of w? increases from round to round if the group manages to establish a w?

w8.5 (corresponding to Htot~323) in the
preceding round, or decreases if w?

v8.5. This intersection marks the sustainability threshold between positive and negative feedbacks in the system
and sets the reference point for the users’ expectations. b, Htot in a preceding round determines the discount rate r, derived from the relation

r~(w?z1){1 . The solid, sigmoidal line indicates a least-squares fit to a logistic equation (root mean square error RMSE~0:155s{1).
doi:10.1371/journal.pone.0052763.g003
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tively estimate probabilities, in particular those of rare events, is

limited [46,47].

We, thus, argue that users adjust the discount rates according to

the psychological value of the total harvest realized in the previous

round with identical treatment. Users are highly sensitive to losses,

which are caused in this system by the lack of communication or

by punishment. Losses with respect to the reference value in the

previous round lead to a severely impaired perception of future

certainty. In contrast, small gains can be sufficient for users to

adopt lower discount rates in following rounds (Figure 3B). Note,

however, that we excluded the first rounds with a new treatment

from our analysis, because a drastic change of the institutional

environment does clearly affect future expectations and obfuscates

the relationship between harvest experience and discounting as

shown in Figures 3A and B.

Conclusions
We have shown that it is possible to understand main features of

a CPR and the harvest dynamics of a simplified SES by reducing

the social environment to its impact on the perceived future

certainty of the users. Our approach extends classic models of

maximum sustainable [48,49] or maximum economic [34] yield

by introducing a behavioral trait that accounts for the mutual

dependency of current behavior and future expectations. The

social environment including the first-tier variables ‘‘users’’ and

‘‘governance system’’ of Ostrom’s framework for the analysis of

SESs [23] is obviously more complex than assumed here and

exhibits a dynamics of its own (indicated in Figure 3A and 3B).

Despite this well-recognized complexity, the harvest behavior of

CPR users can be analyzed, understood, and even roughly

predicted with a simple model. Our model is able to describe the

co-evolution of the renewable CPR and the adaptive harvest

behavior of the users following a mechanistic trade-off, a

disregarded feature in classic harvest models [16]. Furthermore,

by showing the influence of user experience on the perception of

future certainty, we presented an approach to understand the

observed variability of user behavior in apparently similar or

identical situations.

We conclude that unsustainable harvest leads to reduced

discounted future pay-offs and low cooperation in two ways, first,

as a consequence of reduced resource productivity and, second, as

a consequence of a deteriorating discount factor. Once the

temporal gradient of both terms has turned negative, it is difficult

for users to escape from the downward vortex of decreasing

expectations and diminishing pay-offs. This feedback works also in

the opposite direction towards sustainable harvest strategies, high

pay-offs, and sustained cooperation among resource users. Our

findings illustrate the behavioral variability of users that act

rationally according to their current opportunities and their

perception of future returns. By this means, our approach opens

up a perspective for predicting dynamics and identifying tipping

points of coupled user-resource systems.

Methods

Our adaptive model consists of three ordinary differential

equations and describes the combined dynamics of the resource R,

the harvest H , and the harvest trait x for a constant number of

users C.

The Renewable Resource
R is changing over time t according to the difference between

new production and harvest

dR

dt
~rr R{rh C , ð1Þ

where rr is the productivity of R

rr ~mR 1{
R

K

� �
, ð2Þ

with mR and K indicating the maximum specific growth rate and

the carrying capacity of the resource system, respectively.

Resource growth is hence logistic with highest growth rates at

R~0:5K and declining rates towards R~0 as well as towards

R~K [16].

Adaptive Harvesting
The current harvest rate rh is based upon Monod kinetics

rh ~mC

R

RzKS

� �
, ð3Þ

with mC representing the maximum specific harvest rate and KS

the half-saturation constant. The harvest rate rh is, thus, insensitive

to changes in R for RwwKS , but sensitive for RvKS . In our

model, KS is variable and responds to changes in the harvest trait

x.

KS ~K̂KSzx2K?
S ð4Þ

where K̂KS and K?
S denote the minimum and the variable part of

KS , respectively. Using an adaptive modeling approach [29–32],

the temporal change of x is proportional to the fitness gradient F

dx

dt
~k

LF

Lx
, ð5Þ

with F~rhzrpzrf and k denoting the rate constant of the

adaptive process [29]. k hence parameterizes the speed of the

adaption process, i.e. the speed of learning, of the group of users

over the course of a round. While the punishment rate

rp ~ce

{(x̂x{x)2

2s2
p RK{1 , ð6Þ

is only available in some rounds, the discounted future produc-

tivity

rf ~wrr RC{1 , ð7Þ

which stands for the future resource productivity expected by the

users, is considered in all rounds. In Equation 6 c is the specific

punishment rate, x̂x is the trait value of the punishment maximum,

and sp is the punishment standard deviation. Consistent with the

experimental results [9], x̂x is set to intermediate values in the

model so that punishment is applied mostly at intermediate levels

of x. At high x users forgo a large fraction of their potential

harvest, they cooperate, and punishment is therefore not

necessary. By contrast, at low levels of x, which indicate egoistic

harvest strategies and low importance of future pay-offs, users are

not inclined to invest in a costly and uncertain measure that may

support long-term sustainability. The discount factor w is a

variable function of t and x

Adaptive Behaviour in Common Pool Resource Systems
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w~w? (1{e{x) 1{
1

1zea({tzb)

� �
, ð8Þ

with w?, the maximum discount factor, representing the only free

parameter between rounds, and a and b, two shape parameters,

determining the decay of w as the time in a round elapses. While

the time dependence of w is similar to the discounted utility model

[17], the parameters a and b allow for a modification of the timing

and the speed of decay of w with time. w acts here as a weight on

future productivities and is connected to the harvest behavior of

the users via the harvest trait x. We assume here that users

estimate the future productivity of the resource at the current

resource level. Hence, the trade-off between rh and rf emerges,

because an increase of x raises the current harvest rh, but erodes rf

by reducing w. The functional dependence of rf and rh on x is

determined by the highly non-linear shape of the trade-off in the

data (cf. Figure 1C) and constrained by the requirement that rf

and rh may not be negative for any x. Integrating the harvest over

time while accounting for possible costs for punishment gives the

temporal evolution of the harvest H

dH

dt
~(rh{rp)C : ð9Þ

The total harvest realized over the 240s of an experimental round

is then Htot~H(t~240).

Cooperation
Cooperation is a diagnostic variable in our model. It is defined

by the non-realized current harvest normalized to the maximum

possible harvest rh(x~0)

~1{
rh(x)

rh(x~0)
: ð10Þ

In other words, not harvesting anything results in ~1,

whereas maximizing the current harvest rate by adopting x~0
leads to ~0. Note that considering users as an adaptive entity

implies that the properties x and also are mean properties of the

group. Unlike in similar evolutionary dynamics models, the

dynamics of the trait distribution is not determined by the

reproductive fitness of individuals bearing a certain trait, because

we assume that the change of a behavioral trait does not require

sexual reproduction [50]. In our model, the fixed group of

resource users is able to quickly adapt the harvest strategy

according to the state of the resource and the maximum discount

factor, an assumption that is corroborated by the observed

variability of harvest rates in the laboratory experiments [9].

Consistent with the published results of the experimental study, the

model is not spatially explicit, because the dynamics of the spatial

averages of the resource and the group’s harvest in the

homogeneous system can be adequately described by zero-

dimensional approach.

Simulations
The parameter-set of the model was manually calibrated to fit

the temporal evolution of the resource and the total harvest

observed in the 36 rounds of the laboratory experiment (cf. Table 1

and Figure S2). The data [9] are averages of five or six replicates

for each round. All simulations were conducted with identical

initial conditions and parameter values except for the maximum

discount factor w?. Changes of w? account for all variability in the

model results we show in the main text. The different treatments

and the learning of the users are, thus, reduced to their impact on

the expectations of future pay-off, which is represented by the

maximum discount factor w? in the model. Additional results with

three variable parameters are presented in the Supporting

Information (Figures S4 and S5, Text S1, and Table S1).

Supporting Information

Figure S1 Total harvest for different treatments. Com-

parison of total harvest Htot for combinations of different

treatments, namely communication (C), costly punishment (P),

communication and costly punishment (CP), neither communica-

tion nor punishment (NCP). Respectively, bars and dots with error

bars denote mean values and standard deviations of experimental

results obtained from the laboratory study of Janssen et al. [9].

(TIF)

Figure S2 Temporal dynamics of the resource. Times-

series of resource levels for six experiments consisting of six rounds

Table 1. Parameter values and variables (with initial
conditions given in parenthesis).

Symbol Name Value Unit

a Shape parameter 0:055 ½s{1�
b Shape parameter 137:5 ½s�
C Users 5 ½N�
c Specific punishment rate 0:096 ½s{1�
H Harvest (0:0) ½N�
Htot Total harvest (0:0) ½N�
mC Max. specific harvest rate 1:37 ½s{1�
mR Max. specific resource

growth rate
0:0095 ½s{1�

K Carrying capacity 841:0 ½N�
KS Half-saturation const. (320:0) ½N�
K?

S Variable half-saturation const. 35:0 ½N�

K̂KS Min. half-saturation const. 50:0 ½N�

k xVariance of 1:25 ½�
q Cooperation (0:6) ½�
rf Future productivity ({) ½s{1�
rh Current harvest rate ({) ½s{1�
rp Punishment rate ({) ½s{1�
rr Resource growth rate ({) ½s{1�
R Resource (210:0) ½N�
sp Punishment standard deviation 0:5 ½�

t Time ({) ½s�
w Discount factor ({) ½�
w? Max. discount factor (roundspecific) ½�
x Mean harvest trait (3:0) ½�

doi:10.1371/journal.pone.0052763.t001
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each. Treatments are communication (C), costly punishment (P),

communication and costly punishment (CP), neither communica-

tion nor punishment (NCP) and change after three rounds. Solid

lines indicate model results and dotted lines indicate the

experimental results [9]. Only the maximum discount factor w?

was varied between rounds to fit the experimental results, all other

parameter values are reported in Table 1.

(TIF)

Figure S3 Model-data comparison. Comparison of all

experimental data from [9] shown in Figure S2 with correspond-

ing model data. A linear regression yields r2~0:972.

(TIF)

Figure S4 Temporal dynamics of the resource. Times-

series of resource levels for six experiments consisting of six rounds

each. Treatments are communication (C), costly punishment (P),

communication and costly punishment (CP), neither communica-

tion nor punishment (NCP) and change after three rounds. Solid

lines indicate model results and dotted lines indicate the

experimental results obtained from the laboratory study of Janssen

et al. [9]. Only the parameters w?, a, and b vary between rounds

to fit the experimental results, all other parameter values are

reported in Table 1.

(TIF)

Figure S5 Sensitivity analysis. Sensitivity of the root mean

square (RMS) error between simulated and experimental data to

changes in the three parameters w? (A), a (B), and b (C), all other

parameter values are reported in Table 1. The ranges of variation

were w?~½0{70�, a~½0:00{0:04s{1�, and b~½10{200s�. Each

of the 36 experimental resource time-series was compared to the

results of 112000 model runs with unique combinations of the

three variable parameters to find the optimal parameter values (cf.

Figure S4 for the best results). The panels A–C show how the

RMS error increases from the optimum when only one of the

three parameters is varied while the other two are held constant at

their optimum value.

(TIF)

Table S1 Root mean square error (RMSE) between
experimental and simulated data for models with one
(w?) and three free parameters (w?, a, and b).

(PDF)

Text S1 Additional model results.

(PDF)
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