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Abstract: The chemistry of NHC core pincer ligands of LX2 type bearing two pending arms, identical
or not, whose coordinating center is anionic in nature, is here reviewed. In this family, the negative
charge of the coordinating atoms can be brought either by a carbon atom via a phosphonium ylide
(R3P+–CR2

−) or by a heteroatom through amide (R2N−), oxide (RO−), or thio(seleno)oxide (RS−, RSe−)
donor functionalities. Through selected examples, the synthetic methods, coordination properties,
and applications of such tridentate systems are described. Particular emphasis is placed on the role of
the donor ends in the chemical behavior of these species.
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1. Introduction

The term ‘pincer’ was introduced in 1989 by van Koten to refer to a tridentate ligand featuring
a central anionic carbon atom coordinated through a covalent σ bond and associated with two
flanking arms that donate their electron lone pairs and force the metal center to adopt a meridional
geometry [1]. This geometry has the main advantage of leaving an open coordination shell for any
incoming molecule and of preventing undesired ligand redistribution processes [2–6]. The high
stability, variability and activity of pincer ligands have made these species essential today in modern
organometallic chemistry and homogeneous catalysis [7–9]. The first pincer system prepared by
Shaw et al. in the late 1970s was based on an anionic carbon atom belonging to a central phenyl
ring and bearing two neutral pendant phosphine donors, the so-called PCP pincer ligands [10].
This pioneering report was followed shortly after by the preparation of the NCN analogues by van
Koten and Noltes [11]. From there, a wide variety of chemical motifs were designed, and the term
‘pincer’ was generally extended to any metallic complex adopting a meridional geometry whatever
the bonding mode of the coordinating ends, as opposed to the facial coordination mode found in
tripodal systems [12–14]. According to the Green formalism [15], although mono-anionic pincers
(L2X-type) remain the most exemplified, other systems containing neutral (L3-type), di- (LX2-type),
or tri-anionic (X3-type) pincer frameworks were also developed allowing an efficient control of the
metal coordination sphere and the stabilization of a broad range of metal centers with different
oxidation states [16–22]. Among all pincer-type ligands, di-anionic representatives (LX2-type) have
been relatively little explored, and considering only the cases where the central donor moiety is
neutral [23], three main sub-structures of this family have been reported over the years featuring either
a pyridine [24–29], a carbodiphosphorane [30–32], or a N-heterocyclic carbene (NHC) [33,34]. The latter
architecture B built from a neutral NHC core (2-e− donor (L-type)) and two anionic peripheral groups
(1-e− donor (X-type)) is formally characterized by an opposite bonding mode to that encountered
in the Shaw’s prototype A derived from a central anionic aryl group (1-e− donor (X-type)) and
two neutral donor moieties (2-e− donor (L-type)) (Scheme 1). In both structures, in addition to the
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thermodynamically favored chelate effect, the association of coordinating extremities of different nature
extends naturally the scope of accessible metal fragments, but more generally of all centers having a
Lewis acidic character. According to HSAB theory (hard soft acid base) [35,36], combining a soft NHC
with two harder anionic groups must inevitably afford metallic complexes with unique properties, as is
the case with systems B. For instance, a different bonding mode is anticipated with a high degree of
covalency in the NHC-metal bond and a more marked ionic character between the negatively charged
atoms and the metal center. It follows that anionic functionalized NHC ligands generally prefer to
coordinate with electropositive metals, the anionic arms acting as a real anchor counterbalancing
the natural tendency of the NHC to dissociate from the metal [37–41]. With late transition metals,
an opposite behavior is expected with a possible lability of the anionic donor extremities [42–44]. All of
these electronic criteria, combined with geometric parameters, govern the reactivity vs stability of
these pincers, thus making each of them a unique system.
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Scheme 1. Representation of the XL2 prototype pincer A and LX2 pincers B of interest.

This review aims to account for this class of LX2-type pincer ligands B where the central NHC is
N-substituted by two side arms bearing identical or different anionic coordinating atoms, and which
remains to this day underdeveloped compared to other families of pincer ligands. Through selected
examples, the preparation methods, coordination properties, and applications of NHC core pincers
exhibiting amide, oxide, thio(seleno)oxide, and phosphonium ylide donor extremities, which belong to
this class of ligands, will be thus presented (Scheme 2).
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2. NHC Core Pincer Ligands of LX2-Type

2.1. Based on Two Identical Side Arms

2.1.1. With Two Coordinating O- Atoms

The first representatives of the family were reported by Kawaguchi et al. from the
1,3-bis(4,6-di-tert-butyl-2-hydroxybenzyl) imidazolium bromide 1 prepared in 60% yield via sequential
N-alkylation of imidazole with 2-bromomethyl-4,6-di-tert-butylphenol. By reacting the imidazolium
salt 1 with TiCl4(THF)2 in the presence of NaN(SiMe3)2, the bis(aryloxide) NHC Ti(IV) pincer complex 2
was formed in 74% yield (Scheme 3) [45]. An X-ray diffraction analysis confirms the meridional
coordination mode of the NHC where the pseudo-octahedral geometry adopted by the Ti(IV) center
is completed by a THF molecule and two chlorine atoms in mutual cis position. Using the same
protocol, the Zr(IV) analogue 3 was prepared but with a lower yield (20%) since it was obtained as a
mixture with the corresponding homoleptic bis(NHC) Zr complex isolated in 38% yield [46]. It should
be mentioned that although the latter complex could be synthetized in 84% yield by the reaction of
ZrCl4(THF)2 with two equivalents of ligand, attempts to prepare complex 3 in a better yield failed.
The larger ionic radius of Zr with respect to Ti was proposed to explain the more favorable formation
of the bis(NHC) complex in the case of Zr. Both pincer complexes 2 and 3 could be converted to their
alkyl derivatives via chloride displacement upon addition of Grignard reagents. For example, the
chloro ligands in complexes 2–3 could be substituted using 2 equivalents of PhCH2MgCl to form the
corresponding dialkyl pincer complexes. Whatever the series, the benzyl complexes display a distorted
trigonal bipyramidal geometry with a meridional coordination of the NHC.
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ligand from the imidazolium salt 1 [45,46].

Another striking fact concerns the dibromide analogue of complex 2, which, upon reduction
with an equivalent of LiBEt3H, led to the formation of a rare Ti(III) complex exhibiting a distorted
octahedral geometry and where the coordination sphere around the metal is completed by the pincer
ligand occupying meridional positions, two THF molecules in mutual trans position and a bromide
co-ligand [47]. Following this, dinuclear complexes [48] and macrocyclic structures of the same
tridentate ligand with group 4 metals were also reported by the same authors [49]. These metallic
systems as well as the Ti(IV) pincer complex 2 showed significant catalytic activity for the polymerization
of ethylene.

Based on the same flanking donor arms but with a central saturated six-membered NHC, rare earth
pincer complexes (Nd, Y, Sm) were prepared, fully characterized, and applied in the polymerization
of n-hexyl isocyanate [50]. The polymer formed showed very high molecular weight and narrow
molecular weight distribution. It was also demonstrated that the catalytic activity depends on the radius
of rare earth metal, solvent, polymerization temperature, and the ligand structure. The saturated NHC
moiety was in particular found to play a critical role in the initiation step of the polymerization process.

More rigid representatives of the same family were prepared via a different route, which consists
of the elimination of alcohols from imidazolium salts. For instance, Ti(IV) complexes 5 and 6 were
quantitatively formed by the reaction of the imidazolium salt 4 with TiCl(OiPr)3 and Ti(OiPr)4
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precursors, respectively (Scheme 4) [51]. Deduced from a solid state analysis, complexes 5 and 6
exhibit a slightly distorted octahedral geometry with the bis(aryloxide) NHC ligand coordinated in
a meridional manner. The NHC Ti(IV) complex 6 was shown to readily initiate the ring-opening
polymerization of rac-lactide in a controlled fashion without the NHC a priori playing any role in the
catalytic transformation. Related pincer complexes were obtained using the same protocol in the Zr(IV)
and Hf(IV) series [52]. Despite lower yields, amine elimination was also found to be a possible route to
afford such pincer complexes. The reaction of salt 4 with M(NMe2)4 (M = Ti, Zr) thus afforded the
corresponding bis(phenoxy) NHC amido complexes.

Homoleptic bis-ligated NHC complexes could be also synthetized in high yields by reacting the
imidazolium salt 4 with half of an equivalent of MCl4 complexes (M = Ti, Zr, Hf) in the presence of
Et3N [53]. In all complexes, the metal atom adopts a distorted octahedral geometry with the two NHCs
located in trans position one from each other. These three NHC pincer complexes were described to be
redox-active and, in the case of Zr and Hf derivatives, to present luminescent properties, constituting
the first examples of emissive non-metallocene group 4 metal complexes. It must be mentioned that
tetravalent Ti(IV) complexes bearing the same pincer ligand were found to be active and selective for
the copolymerization of cyclohexene oxide with CO2 [54].

In the Zr series, toluene elimination was observed from the imidazolium salt 4 by using Zr(CH2Ph)4

as a metal precursor leading to the corresponding chlorobenzyl NHC pincer complex 7 in quantitative
yield (Scheme 4) [55]. However, while this complex is stable in non-coordinating solvents, in the presence
of THF the quantitative formation of the unexpected Zr-THF adduct 8 as a single isomer was observed.
The complex 8 is characterized by the presence of a heptacoordinate Zr center featuring an O,N,C,N,O-
pentadentate trianionic ligand. The formation of 8 was rationalized through a Lewis base assisted benzyl
migration from the Zr atom to the carbenic center. This unusual benzyl migration was also observed
with other group 4 metals (Ti, Hf) [56]. More recently, the reversibility of this benzyl migration was
demonstrated by the addition of PMe3 to a bis(phenolate) benzylimidazolylidene(dibenzyl)zirconium
complex and then abstraction of the coordinated PMe3 on the Zr complex formed with a Ni(0)
complex [57].
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Scheme 4. Preparation of Ti(IV) and Zr(IV) pincer complexes 5–7 featuring a more rigid bis(aryloxide)
NHC ligand from the imidazolium salt 4, and unexpected rearrangement to the benzyl complex
8 [51,52,55].

Bis(aryloxide) NHC pincer ligands were successfully coordinated to a wide variety of metal centers,
such as metals of groups 5 (V) [58], 6 (Mo) [59], 7 (Mn) [58], 9 (Ir [60], Co [61,62]), 10 (Ni, Pd, Pt) [63],
and 13 (Al) [64]. More precisely from the imidazolium salt 4, high oxidation sate V(V) and Mn(III)
metal complexes were readily prepared using triisopropoxyvanadium(V) oxide [(iPrO)3V=O] and
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manganese(III) acetylacetonate [Mn(aca)3] precursors, respectively [58]. Al(III) complexes supported by
such a dianionic NHC pincer ligand were obtained via various synthetic methods [64]. A possible route
involved first, via alcohol elimination, the formation of the zwitterionic bis(phenolate) imidazolinium
complex 9 featuring a four-coordinate tetrahedral Al(III) center O,O- chelated by the two phenolate
extremities (Scheme 5). The latter was then readily converted to the pincer NHC Al(III) complex 10
upon reaction with an equivalent of LDA. The dimeric nature of 10 is indicated by an X-ray diffraction
analysis where the two Al centers are supported by a O,C,O- coordinated NHC bis(phenolate) ligand
and connected to one another via µ-O bridging Al-OiPr groups. Both Al centers display a slightly
distorted trigonal bipyramidal geometry with a meridional coordination of the bis(phenolate) NHC
ligand. Moreover, the pincer Al complex 10 was reported to efficiently polymerize rac-lactive and
trimethylene carbonate in a highly controlled fashion for the production of narrow disperse materials
with catalytic performance in the range of conventional group 13 based ROP catalysts.
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Scheme 5. Preparation of the dimeric Al(III) complex 10 featuring a more rigid bis(aryloxide) NHC
ligand from the imidazolium salt 4 [64].

To accommodate heavy metal centers, the introduction of a benzimidazol-2-ylidene core was also
considered, on the assumption that the presence of a π-conjugated system over the three six-membered
aromatic rings should provide additional stabilization to the metal center. High-valent NHC Mo(VI)
complexes featuring a O,C,O- benzimidazolylidene pincer ligand were prepared, as illustrated with
the complex 12 isolated in 75% yield by addition of (DME)MoO2Cl2 in THF to the benzimidazolium
precursor 11 in the presence of Et3N (Scheme 6, top) [59]. In the solid state, the dioxo complex 12
was found to crystallize following two different arrangements, namely a dimeric structure with two
six-coordinate Mo(VI) atoms in a strongly distorted octahedral environment and a monomeric form
with the five-coordinate Mo(VI) center lying in between a square pyramidal and a trigonal bipyramidal
geometry. The dioxo complex 12, which represents a rare example of five-coordinated Mo(VI) complex,
was found to be stable toward air and moisture in the solid state and in solution. The pre-ligand 11
was also reported to stabilize oxo-imido and bis(imido) Mo(VI) pincer complexes.

A series of group 10 metal complexes, 13–15, was prepared in good yield (66–79%) when the same
precursor 11 was treated with one equivalent of MCl2 (M = Ni, Pd, Pt) in the presence of an excess of
potassium carbonate in pyridine at 100 ◦C (Scheme 6, bottom) [63]. This one-pot procedure was also
successfully applied in the imidazolylidene series. Imposed by the tridentate NHC, these complexes
adopt a distorted square-planar geometry. DFT studies performed on Pd and Pt representatives
indicated that the HOMO is centered on the metal and the aryloxide fragment while the LUMO
involves mainly the pyridine co-ligand. Based on these findings, optical properties were studied
evidencing the absence of luminescence at room temperature but in the case of Pt complexes the
presence of an emission band in the green region of the visible spectrum at 77 K, which was attributed
to a long-lived triplet-manifold excited state featuring MLLCT character [63].
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Scheme 6. Preparation of metal complexes 12–15 (M = Mo, Ni, Pd, Pt) from the benzimidazolium salt 11 [59,63].

In the Co series, the trifluoromethylation of (hetero)arenes was reported, thanks to the thermally
stable pincer Co(III) complex 16, which is able under light exposure to release a CF3 radical
(Scheme 7) [62]. This result represents an elegant strategy to activate strong M-CF3 bonds for
the functionalization of small molecules. From a synthetic point of view, the Co(III) complex 16 was
formed by oxidation of the corresponding four-coordinate Co(II) complex using AgCF3 in MeCN.
An X-ray diffraction analysis of 16 indicates that the CF3 group is orthogonal to the O,C,O- Co plane with
a short Co-CF3 bond in favor of a high degree of covalency. The complex 16 appeared to be diamagnetic
well described as a low-spin Co(III) center stabilized by a closed-shell dianionic bis(phenolate) NHC
core pincer ligand.
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Very recently, the first bis(phenolate) mesoionic carbene was reported by Hohloch et al. following
a ten-step procedure and was shown to be a valuable ligand for the preparation of various heteroleptic
early transition metal pincer complexes (group 4 to group 6) (Scheme 8) [65]. The triazolium salt 17,
which can be prepared on a multi-gram scale, was obtained by reacting phenyl substrates bearing
alkyne and azide functionalities under classical click conditions. Prior to N-methylation, the two
alcohol functions were protected in the presence of bis(trimethylsilyl)acetamide (BSA). Treatment with
MeOH followed by salt metathesis with tetraethylammonium chloride afforded finally the pre-ligand 17
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in 51% overall yield. From the latter, rare examples of Ti, Mo, and Nb imido complexes were prepared,
as illustrated with the Nb complex 18 isolated in 62% yield. The Nb atom in 18 resides in a distorted
octahedral environment where the coordination sphere is completed by the O,C,O- pincer ligand
and imido, chloro, and pyridine co-ligands. Comparison of the electrochemical properties of these
carbenic complexes with more classical bis(phenolate) NHC complexes conclude that, as expected,
triazolylidenes are more difficult to oxidize than imidazolinylidene-based systems.
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After the development of various bis(aryloxy) NHC core systems, bis(alkoxy) analogues were
naturally considered. For such purpose and based on preliminary studies on bidentate systems [66,67],
the introduction of electron-withdrawing CF3 groups was envisaged to decrease the acidity of the
alcohol hydrogen atoms. Indeed, the stability of fluoroalkoxy carbenes has been reported, in particular
the reluctance of the alkoxy fragment not to react with the electrophilic imidazolium center as may be
the case with more basic alkoxides [68]. Under phase-transfer catalysis, the imidazolium salt 19 as
a stable zwitterion was thus prepared through a sequential method by reacting 1H-imidazole with
hexafluoroisobutylene oxide (Scheme 9) [69]. It is noteworthy that the salt 19 could be obtained
in excellent yield (94%) via a one-pot procedure without isolating the imidazole intermediate.
This methodology was extended to 3,4-disubstituted imidazole and triazole derivatives. Treatment of
19 with two equivalents of tBuOK generated the corresponding free carbene, which was observed to
be relatively stable in solution. Addition of [NiCl2(PPh3)2] to this carbene resulted in the formation of
the NHC pincer 20 and the bis(NHC) complex 21 in a 2/1 ratio. While an X-ray diffraction analysis of
20 confirmed the square-planar geometry around the Ni(II) center with the meridional coordination of
the bis(alkoxy) NHC that of 21 indicated that two alkoxy groups of the same NHC are bound to Ni
and the two hydroxyl groups from the other NHC are hydrogen-bonded to the adjacent oxygen atoms.
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2.1.2. With Two Coordinating S- (or Se) Atoms

Bis(thiolate) NHC core complexes were actually reported before their oxygenated analogues.
The first complexes were obtained by reacting Pd(PPh3)4 and RhCl(PPh3)3 with tetraazapentalene
derivatives 22, the latter exhibiting unique reactivity due to the presence of hypervalent sulfur
(Scheme 10) [70]. In both cases, the formation of Pd(II) and Rh(III) complexes 23 and 24 was
accompanied by the release of triphenylphosphine sulfide. It is noteworthy that, depending on the
nature of the amine substituents (R), the bis(thiolate) NHC complexes were isolated as a mixture
with their isostructural complexes containing an unsymmetrical amido, NHC, thiolate pincer ligand,
knowing that more hindered R substituents, disadvantage a priori the latter form. The best ratios in
favor of the S,C,S- pincer complexes 23 and 24 were observed with small p-Cl- and p-MeOC6H4 amine
substituents with yields between 86% and 99%. The complexes based on a N,C,S- ligand were generally
found to be less stable than their analogues exhibiting the symmetrical S,C,S- ligand. In a Pd complex
of type 23 bearing N-Me groups, an X-ray diffraction analysis was performed confirming the square
planar geometry around the Pd(II) center surrounded by two sulfur, one phosphorus, and a carbenic
carbon atom. This Pd complex was found to be very stable in organic solvents under air. For Rh(III)
complexes of type 24, the octahedral geometry of the metal center with two phosphine ligands located
in trans position was deduced on the basis of a solid state analysis performed in the case of a Rh
complex featuring the hybrid SCN- pincer ligand. Following the same strategy, a diselenato version
of 22 based on a five-membered saturated NHC was prepared by the same authors and coordinated
with different metal centers such as Pd(PPh3)4, Pt(PPh3)4, and RhCl(PPh3)3, affording corresponding
Se,C,Se- pincer complexes. [71,72]
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Another representative of the family was described by Sellmann et al. who observed the
unexpected formation of bis(thiolate) NHC Ni(II) pincer complexes 27 upon dissociation of the dimeric
complex 26 by addition of different metallic salts (KCN, LiMe, NaSPh) (Scheme 11) [73]. X-ray structure
determinations confirmed the square planar geometry around the metal center with a characteristic
propeller-like twist resulting from positioning the phenyl rings above and below the coordination
plane. If the pincer complexes 27 exhibit remarkable thermal stability, in the presence of Brönsted
acids, the regeneration of dimer 26 was noticed.
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2.1.3. With Two Coordinating N- Atoms

The first bis(amido) NHC pincer complex was described by Fryzuk et al. in 2004 in the Zr(IV)
series [74]. The corresponding pre-ligand, namely the bis(amine) imidazolium salt 28 (Ar = Tol) was
synthetized by the reduction of a bis(amide) imidazolium salt using borane-dimethylsulfide. Later, in
order to introduce larger N-aryl groups (Ar = Mes, Xy), an alternative route was developed consisting
of melting the appropriate N-substituted imidazole with a β-chloroethylarylamine [75]. Whatever the
preparation method, imidazolium salts 28 were treated with KN(SiMe3)2 to give in good yield the
stable free NHCs substituted by two amine donor arms. The latter reacted cleanly with M(NMe2)4

complexes (M = Zr, Hf), providing a convenient entry to N,C,N- group 4 pincer complexes (Scheme 12).
The dimethylamido co-ligands could be readily removed by adding an excess of chlorotrimethylsilane,
affording the corresponding dichloride adducts which were then converted into dialkyl complexes
by treatment with Grignard reagents. In the case of a Hf complex of type 30 bearing two isobutyl
groups, an X-ray diffraction analysis evidences a distorted trigonal bipyramidal geometry around
the metal atom with the two amido moieties in pseudo-trans position [75]. It should be noted that
Hf dialkyl complexes are more thermally stable than Zr representatives, with the exception of the Hf
diethyl complex which undergoes β-hydrogen transfer and subsequent C-H bond activation with the
neighboring N-Mes substituent to afford a cyclometalled complex [75]. The Hf dialkyl complexes were
also shown to insert carbon monoxide and isocyanides to give the related η2- acyl and η2- iminoacyl
derivatives. After activation with [Ph3C, B(C6F5)4], the Zr dimethyl complex showed moderate
catalytic activity for ethylene polymerization.
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From the same pre-ligand, bis(amido) NHC tantalum pincer complexes were also reported [76].
However, to reach such systems, the formation of the dilithiated diamido NHC ligand 32 prepared
by addition of 2 equivalents of BuLi to the free carbene 31 was a prerequisite. Indeed, from the free
carbene 31, only the formation of bidentate amido NHC Ta complexes were observed, the remaining
amine arm being reluctant to coordinate the metal center. By contrast, the metathesis reaction of 32
in the presence of various TaClx(NMe2)5−x precursors proceeded under mild conditions and in good
yield to afford the desired pincer complexes, as illustrated with complex 33 (Scheme 13, top). However,
attempts to synthetize trialkyl derivatives following this methodology were not successful, yielding
instead metallaziridines, as demonstrated with the formation of N,C,C,N- NHC Ta(V) complexes 34
(Scheme 13, bottom). An X-ray diffraction analysis of one of these representatives (with R = Np)
emphasizes the facial orientation of the activated C-H bond and the distorted pseudo trigonal
bipyramidal geometry around the Ta center. DFT calculations confirm that such cyclometallated
species formed by the endocyclic C-H activation of one of the amido arms are thermodynamically
favored over the targeted trialkyl derivatives.
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Bis(amido) NHC ligands were also coordinated to group 10 metal centers. The Pd(II) complex 36
was prepared from the tridentate imidazolium salt 35 exhibiting two side amide arms and PdCl2
in the presence of the K2CO3/pyridine system (Scheme 14) [77]. This square planar pincer Pd
complex isolated in 77% yield showed significant catalytic activity in Suzuki coupling reactions of
aryl bromides with phenylboronic acid, although less than corresponding monodentate NHC Pd
complexes bearing a pendant neutral amine arm. This difference was attributed to the too strongly
anionic amido coordinating ends, which do not allow in the case of 36 the release of vacant sites during
the catalytic process. The dissociation of the neutral NHC moiety is expected to be more favorable
with electropositive early transition metal centers.
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2.1.4. With Two Coordinating C- Atoms

Phosphonium ylides are globally neutral in their free state, characterized by an almost planar
carbanion stabilized by an adjacent tetrahedral phosphonium center. In their coordination state,
phosphonium ylides act exclusively as η1- carbon centered ligands, rather than as η2- C=P ligands [78],
and can therefore be considered locally as anionic carbon ligands [79]. This chemical description means
that phosphonium ylides like NHCs behave as strong σ-donor carbon ligands while differing in their
bonding mode (NHC, 2e− donor (L type); P+-ylide, 1e− donor (X type)) [80,81]. Following preliminary
reports in the field aimed at developing ylide-based metal complexes [82–85], NHC and phosphonium
ylide donor moieties were recently associated by a C3-propyl bridge in the bi- [86], tetradente [87],
and in the pincer series forming very electron-rich complexes [88], thanks to the design of a general
synthetic strategy [89].

A new family of pincer Pd(II) complexes bearing an electron-rich C,C,C- NHC,
diphosphonium bis(ylide) ligand was indeed prepared from the imidazolium salt 37 featuring
two phosphonium side chains obtained through the dual N-functionalization of 1H-imidazole by
(3-bromopropyl)triphenylphosphonium bromide (Scheme 15) [88]. Due to a difference in acidity
between the cationic moieties, the imidazolium salt 37 was sequentially coordinated to Pd(II) centers
leading first to the NHC Pd complex 38 and then to the ortho-metallated Pd complex 39. Protonation
of the latter afforded the NHC, diphosphonium bis(ylide) pincer Pd(II) complex 40 as a mixture of
meso- and dl-diastereomers (de = 50%). The pincer complex 40 isolated in 94% yield appeared to be
perfectly stable in air both in the solid state and in solution. The selectivity of C-coordination was
rationalized on the basis of DFT calculations, indicating the quasi-degeneracy of the two diastereomeric
forms. Thanks to its electronic properties, this NHC core pincer was shown to efficiently stabilize
Pd(II) complexes bearing isocyanide 41 and carbonyl co-ligands 42, whose examples of this latter type
remain rare due to easy Pd–CO dissociation (Scheme 15). In the isocyanide case, an X-ray diffraction
analysis of both isomers was achieved showing that the Pd(II) atom is an integral part of two strongly
distorted fused six-membered metallacycles and resides in a quasi-square planar environment with
the two phosphonium ylides occupying mutually trans positions [88].
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NHC core diphosphonium bis(ylide) Pd complexes 40–42 represent the sole examples of LX2-type
pincer complexes where the metal center is bonded only with carbon atoms, in the present case being
of different nature: one carbenic (sp2) and two ylidic (sp3) carbon atoms. Their availability combined
with their stability should benefit catalytic processes requiring extremely electron-rich ligands.

2.2. Based on Two Different Side Arms

The interest in unsymmetrical pincer ligands has considerably increased in recent years since they
can provide significantly different chemical donor extremities with a more or less pronounced hard/soft
character, thus affording metal complexes with unprecedented properties. This may lead in particular
to catalysts exhibiting unique reactivity and selectivity profiles. In this direction, NHC core pincers of
LX2-type bearing two different side arms are rare and their synthesis represent an additional synthetic
challenge because their formation requires the coordination of three different donors having their own
chemical features at the same metallic center. For instance, the coordination of neutral and/or anionic
donor ends possessing a wide range of basicity will have to take into account the relative acidity of
each H-atom in the corresponding conjugated acid precursors.

2.2.1. With N,O- Coordinating Atoms

In the last decade, the preparation of the imidazolium salt 43 bearing pending amine and phenol
arms was reported in four steps in 52% overall yield from 2-(N-mesitylamino) aniline [90]. However,
while this cation appeared to be stable in the solid state, it was observed to quantitatively rearrange
in solution to form the thermodynamically favored benzimidazolium salt 44 (Scheme 16) [91]. DFT
calculations were performed to rationalize the mechanism of this unprecedented rearrangement.
Despite its unstability, various attempts to coordinate the pre-ligand 43 were carried out with group
4 metals, all leading to unexpected species but not to the desired pincer complexes. It is worth
mentioning the formation of the Zr(IV) complex 45, which was obtained when the precursor 43 was
reacted with ZrBn4 and BnMgCl in toluene. The formation of 45 results formally from the migration of
a benzyl group and a proton to the carbenic center, converting the heterocycle to an imidazolidine.
The latter stands as a Zr(IV) complex where the metallic center interacts with a tetradentate N,N,N,O-
dianionic ligand featuring two X-type (amide and phenoxide) and two L-type (amine) donor moieties.
Similar benzyl migration was already evidenced in Zr(IV) complexes supported by bis(phenoxy) NHC
pincer ligands [55]. These surprising results tend to illustrate the difficulty of access to unsymmetrical
pincer systems containing different coordinating ends.
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2.2.2. With N,S- Coordinating Atoms

The method developed to prepare S,C,S- pincer complexes (see Scheme 10) also enabled the
synthesis of unsymmetrical pincer complexes as illustrated with the formation of the S,C,N- Pt(II) 47
and Rh(III) 48 complexes. The difference lies in the nature of the tetraazapentalene substrates 46 where
a thiocarbonyl function is replaced by a carbonyl group (Scheme 17) [92]. As demonstrated in the
Rh(III) series, the substitution of both thiocarbonyls by two carbonyl groups does not lead, as one
might have expected, to the formation of N,C,N- pincers but to a bidentate N,S- Rh complex [92].
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2.2.3. With C,O- Coordinating Atoms

With the previous cases 47–48, the Pd(II) complex 52 constitutes one of the very rare examples of
NHC core pincer complex of LX2-type exhibiting two different peripheral coordinating extremities
reported to date [93]. The latter, featuring pending phenolate and phosphonium ylide moieties,
was readily obtained from the ortho-metallated Pd complex 51 in 94% yield, thanks to the selective
acid cleavage of a Car-Pd bond using HOTf in MeCN (Scheme 18). The highly strained zwitterionic
C,C,C,O- Pd complex 51 was prepared through two distinct routes, either directly from the tridentate
imidazolium salt 49 by adding PdCl2 in the presence of Cs2CO3 in 84% yield or in a two-step procedure
via the NHC Pd pyridine adduct 50 in 64% overall yield. The pincer complex 52 was readily converted
to its isocyanide analogue 53 by an exchange reaction at the Pd center. In this case, the formation of a
Pd–CO adduct was not experimentally observed, due probably to the too weak donor character of the
C,C,O- pincer ligand.
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The overall donating character of the C,C,O- ligand of complex 52 was further analyzed on
the basis of IR νCO and νCN stretching frequencies, oxidation potentials, and DFT calculations by



Molecules 2020, 25, 2231 14 of 19

comparison with isostructural phosphonium ylide-based pincer Pd complexes. Notably, the IR νCN

frequency values of Pd complexes 53 (2207 cm−1) and 55 (2206 cm−1) indicate that the C,C,O- NHC,
phenolate, phosphonium ylide, and the C,C,C- bis(NHC) phosphonium ylide have similar electronic
properties. These IR values, which appear at higher frequency than that of the Pd-CNtBu complex 41
(2194 cm−1), bearing the C,C,C- bis(ylide) NHC ligand lead to the conclusion that the substitution
of a NHC or a phenolate for a phosphonium ylide increases significantly the donor character of
corresponding pincer ligands (Scheme 19) [93]. The Pd−CO complex 42 only experimentally observed
in the case of the bis(ylide) ligand is in perfect agreement with these findings. This trend was also
found to be in line with previous studies performed on an isoelectronic series of C,C- chelating NHC,
phosphonium ylide Rh(CO)2 complexes. [94,95]
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The electronic properties of these phosphonium ylide-based pincer Pd(II) complexes were exploited
in homogeneous catalysis for the Pd-catalyzed allylation of aldehydes. It was in particular observed
that the Pd complex bearing the most donor pincer ligand, namely the NHC, bis(ylide), was the most
active in this catalytic process [93].

3. Conclusions and Perspectives

In perpetual search for new ligands, those based on pincer architecture have a promising future,
not only because of a structural diversity, which remains to be discovered, but also because of their many
potential applications, especially in the fields of organometallic chemistry, homogeneous catalysis,
and materials. In this large family, pincer ligands of LX2-type which position two anionic donor
units on either side of a neutral central donor are less common and undoubtedly deserve to be more
considered. Combining neutral with anionic donor extremities indeed offers several advantages such
as the efficient coordination of a wide range of metal centers and the access to unusual oxidation states.
For instance, anionic donors are more likely to bind early transition metals, while neutral ones generally
prefer to coordinate late transition metals. In this category of pincer ligands, NHCs substituted by
two anionic arms represent a promising family. The association of NHCs with anionic donors indeed
makes it possible to stabilize but also to modulate the reactivity of various metal complexes across the
periodic table. Independently of the two anionic arms, the nature of the central donor allows a fine
adjustment of the electronic properties of the pincer structure since saturated, unsaturated, five- or
six-membered NHCs, as well as mesoionic carbenes can be introduced. However, the preparation of
such chelating systems generally represents a synthetic challenge in terms of coordination selectivity
and choice of metal center in order to reach a good compromise between stability and reactivity. As
pointed out in this review, the nature of the donors used in this family of pincer ligand remains very
limited to date, and there is no doubt that the introduction of other donor functionalities should allow
the development of new properties in the area of redox and photo-active systems but would also be
beneficial for the activation of small molecules and for homogeneous catalysis.
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