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1. Introduction

According to the 2014 annual report of the Ministry of Health 
and Welfare, R.O.C. (Taiwan), cancer is the first leading cause 
of death among the ten leading chronic diseases in Taiwan.  The 
number of cancer death reports was 46,829 (28,776 in men and 
18,053 in women), accounting for 28.6% of the total number 
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ABSTRACT

Oral cancer is a serious and fatal disease.  Cisplatin is the first line of chemotherapeutic agent for oral cancer 
therapy.  However, the development of drug resistance and severe side effects cause tremendous problems 
clinically.  In this study, we investigated the pharmacologic mechanisms of YC-1 on cisplatin-resistant hu-
man oral cancer cell line, CAR.  Our results indicated that YC-1 induced a concentration-dependent and 
time-dependent decrease in viability of CAR cells analyzed by MTT assay.  Real-time image analysis of 
CAR cells by IncuCyte™ Kinetic Live Cell Imaging System demonstrated that YC-1 inhibited cell prolif-
eration and reduced cell confluence in a time-dependent manner.  Results from flow cytometric analysis 
revealed that YC-1 promoted G0/G1 phase arrest and provoked apoptosis in CAR cells.  The effects of cell 
cycle arrest by YC-1 were further supported by up-regulation of p21 and down-regulation of cyclin A, D, 
E and CDK2 protein levels.  TUNEL staining showed that YC-1 caused DNA fragmentation, a late stage 
feature of apoptosis.  In addition, YC-1 increased the activities of caspase-9 and caspase-3, disrupted the 
mitochondrial membrane potential (ΔΨm) and stimulated ROS production in CAR cells.  The protein levels 
of cytochrome c, Bax and Bak were elevated while Bcl-2 protein expression was attenuated in YC-1-treated 
CAR cells.  In summary, YC-1 suppressed the viability of cisplatin-resistant CAR cells through inhibiting 
cell proliferation, arresting cell cycle at G0/G1 phase and triggering mitochondria-mediated apoptosis.  Our 
results provide evidences to support the potentially therapeutic application of YC-1 on fighting against drug 
resistant oral cancer in the future.

of deaths.  The death rate was 199.6 per 100,000 population, 
increased by 1.3% from 2013 to 2014 [1, 2].  Oral cancer is the 
fifth leading cause of cancer death in Taiwan.  The death rate of 
oral cancer was 11.4 per 100,000 population [1, 2].  In Taiwan, 
the major risk factors of oral cancer are betel nut chewing [3-6], 
smoking [7], alcohol consumption [4, 8], inflammation [9, 10] 
and human papilloma virus (HPV) infection [11, 12].  The 5-year 
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Chemiluminescent HRP Substrate) were purchased from Merck 
Millipore (Billerica, MA, USA). YC-1 was designed and synthe-
sized as detailed in the previous study [21].

2.2. Cell culture

The cisplatin-resistant cell line (CAR) was developed by treating 
CAL 27 cell line, a parental human tongue squamous cell carci-
noma (American Type Culture Collection, Manassas, VA, USA) 
with 10-80 μM of cisplatin. CAR cells are characterized by its 
stable resistance to cisplatin as previously described [1, 18, 85, 
86]. The cells were cultured in Dulbecco’s modified Eagle’s me-
dium (DMEM) fortified with 10% fetal bovine serum (FBS), 100 
U/ml penicillin, 100 μg/ml streptomycin, and 2 mM L-glutamine 
(Thermo Fisher Scientific) and were incubated at 37˚C with a 
humidified 5% CO2 air. The cisplatin-resistant CAR cells were 
constantly cultured in medium containing 80 μM cisplatin unless 
otherwise indicated [1, 18, 85, 86].

2.3. Cell viability assay

CAR cells (1 × 104 cells/per well) were seeded in 96-well plates 
in 100 μl medium with or without 25, 50, 75 and 100 μM of YC-1 
for 24 h.  After YC-1 treatment, DMEM containing 500 μg/ml of 
MTT was added and incubated at 37˚C for 4 h.  The medium was 
then removed, and 100 μl DMSO was added to each well to dis-
solve the formed blue formazan crystals, followed by measuring 
the 570 nm absorbance of each well by the ELISA plate reader 
with a reference wavelength of 620 nm.  For the caspase inhibi-
tion experiment, cells were pretreated with 15 μM z-VAD-fmk (a 
pan-caspase inhibitor) for 1 h before subjected to YC-1 adminis-
tration.  Cell morphological examination was observed and pho-
tographed by the IncuCyte™ Kinetic Live Cell Imaging System 
(Essen BioScience, Ann Arbor, MI, USA) [87-89].

2.4. IncuCyte cell proliferation and confluence assay

To measure the cell confluence, a stable mixture of CAR cells (2 
× 104 cells) were plated into a 96-well plate.  The cells were then 
incubated with or without 25, 50, 75 and 100 μM of YC-1.  Cell 
confluence relative to the control cells was determined by the In-
cuCyte™ Kinetic Live Cell Imaging System (Essen BioScience) at 
a 2-h interval and up to 48 h [90].

2.5. Flow cytometry analysis of cell cycle distribution

CAR cells (2 × 105 cells/per well) were plated into the 12-well 
plates and then treated with 100 µM of YC-1 for 0, 12, 24, 36 and 
48 h.  The cells were then fixed, followed by staining with pro-
pidium iodide (PI) solution as previously described [91, 92].  The 
cell cycle profiling and the data analysis were determined utiliz-
ing a Muse Cell Analyzer (Merck Millipore, Hayward, CA, USA) 
[93-98].

2.6. Immunoblotting analysis

CAR cells (1 × 107/75-T flask) were treated with 0, 25, 50, 75 and 
100 μM of YC-1 for 48 h.  The cells were then harvested, and the 
total proteins in cell lysate were collected by SDS sample buf-
fer.  Briefly, protein sample from each treatment was subjected 
to electrophoresis on a 10% SDS-polyacrylamide gel (SDS-
PAGE), followed by electro-transferring to a PVDF membrane.  

survival rate of oral cancer is 50% [13, 14].  Surgery, radiotherapy 
and chemotherapeutic drugs are the major treatments for oral can-
cer.  The first-line chemotherapeutic drugs to treat oral cancer are 
cisplatin, carboplatin, 5-fluorouracil (5-FU), paclitaxel (Taxol®) 
and docetaxel (Taxotere®) [15-17].  However, surgery, radiother-
apy and chemotherapy did not significantly improve the overall 
survival rate of oral cancer patients.  On top of that, the develop-
ment of drug resistance in the duration of chemotherapy remains 
as a clinical obstacle [18, 19].  To meet the need, designing novel 
compounds as well as discovering new targeting molecules that 
can overcome the resistance to chemotherapeutic drugs in oral 
cancer are clinically important.

YC-1 [3-(5’-hydroxymethyl-2’-furyl)-1-benzylindazole] was 
first designed and synthesized in our team [20, 21].  Current stud-
ies have shown that YC-1 has a wide spectrum of pharmacologi-
cal activities, including anti-platelet [22-24], anti-inflammatory 
[25-29], anti-angiogenesis [30], neuro-protective [31-33], anti-
hepatic fibrosis [34] and anti-cancer properties [20, 33, 35-56].  
The underlying mechanism exerted by YC-1 included activation 
of NO-independent soluble guanylyl cyclase (sGC), inactivation 
of phosphodiesterase type 5 (PED5) [29, 57, 58] and inhibition 
of hypoxia-inducible factor 1α (HIF-1α) activity [22, 59, 60].  As 
for the anti-cancer activity, YC-1 can repress the proliferation of 
various types of cancer cells, including head and neck squamous 
cell carcinoma [48], esophageal squamous carcinoma [43], lung 
cancer [61-65], lymphoma [66, 67], bladder cancer [41, 68], 
hepatocellular carcinoma [52, 69], breast cancer [35, 55, 70], 
neuroblastoma [32], ovarian carcinoma [71], prostate cancer [72], 
pancreatic cancer [73], renal carcinoma [56, 74, 75], osteosarco-
ma [45], colon cancer [76, 77] and leukemia [20, 39, 49, 78].  In 
terms of the molecular mechanisms in anti-cancer activity, YC-1 
induced cell cycle arrest at G0/G1 phase [50, 79, 80] or at S phase 
[52, 81], inhibited multidrug-resistant protein (MDR1) [82], re-
duced autophagy [83] and triggered apoptotic cell death [52].  In 
addition, YC-1 enhanced chemotherapeutic cisplatin sensitivity in 
hepatocellular carcinoma cells [84] and head and neck squamous 
cell carcinoma cells [48].  However, studies on whether YC-1 
can inhibit cisplatin-resistant human oral cancer are scarce.  The 
objective of this study was to investigate the anti-cancer effects 
of YC-1 on cisplatin-resistant human tongue squamous cell carci-
noma CAR cells and its underlying mechanisms.

2. Material and methods

2.1. Chemicals and reagents

Cisplatin, propidium iodide (PI) and thiazolyl blue tetrazolium 
bromide (MTT) were purchased from Sigma-Aldrich (St. Louis, 
MO, USA).  Trypsin-EDTA was purchased from BioConcept 
(Allschwil/BL, Switzerland).  Fetal bovine serum (FBS), L-glu-
tamine, penicillin G, 2’,7’-dichlorodihydrofluorescein diacetate 
(H2DCFDA) and 3,3-dihexyloxa-carbocyanine iodide [DiOC6(3)] 
were obtained from Thermo Fisher Scientific (Carlsbad, CA, 
USA).  Caspase-3 and caspase-9 activity assay kits were pur-
chased from R&D Systems Inc. (Minneapolis, MN, USA).  The 
primary antibodies against Bcl-2, Bax, cytochrome c, Apaf-1, 
AIF, p21, cyclin A, cyclin D, cyclin E, CDK 2, β-actin and the 
goat anti-rabbit or anti-mouse IgG-horseradish peroxidase (HRP) 
secondary antibodies were purchased from GeneTex, (Hsinchu, 
Taiwan).  Pan-caspase inhibitor (z-VAD-fmk) and enhanced 
chemiluminescence (ECL) detection kit (Immobilon Western 
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The transferred membranes were blocked in 20 mM Tris-buffered 
saline/0.05% Tween-20 solution containing 5% non-fat dry milk 
for 1 h at room temperature.  The membrane was then probed 
with the primary antibodies against proteins associated with either 
cell cycle regulation or apoptosis at 4˚C overnight.  Afterwards, 
the membranes were washed with Tris-buffered saline/Tween-
20 and incubated with secondary antibodies conjugated with 
horseradish peroxidase (HRP).  The blots were developed by an 
enhanced chemiluminescence kit (Immobilon Western HRP Sub-
strate; Merck Millipore, Bedford, MA, USA), followed by X-ray 
film exposure [99, 100].

2.7. TUNEL staining

CAR cells (2 × 105 cells/ per well) were seeded into 12-well 
plates and incubated with 0, 25, 50, 75 and 100 μM of YC-1 for 
48 h.  At the end of the treatment, apoptotic DNA fragmentation 
was detected using the In Situ Cell Death Detection kit, Fluores-
cein (Roche Diagnostics GmbH, Roche Applied Science, Man-
nheim, Germany) according to the protocol by the manufacturer 
[101-104].

2.8. Assays for caspase-3 and caspase-9 activities

CAR cells (2 × 105 cells/ per well) were seeded into 6-well plates 
and incubated with 0, 25, 50, 75 and 100 μM of YC-1 for 48 h.  
At the end of the treatment, cells were harvested and cell lysates 
were assessed in accordance with the manufacturer’s instruction 
provided in the caspase-3 and caspase-9 Colorimetric Assay kits 
(R&D Systems Inc.).  Cell lysate protein was then incubated for 
1 h at 37˚C with specific caspase-3 substrate (DEVD-pNA) or 
caspase-9 substrate (LEHD-pNA) in the reaction buffer (provided 
in the kits).  The OD405 of the released pNA in each sample was 
measured as previously described [86, 105].

2.9. Detection of ROS generation and mitochondrial mem-
brane potential (ΔΨm) 

CAR cells (2 × 105 cells/ per well) were seeded into 6-well plates 
and incubated with 0, 25, 50, 75 and 100 μM of YC-1 for 48 h. 
At the end of the treatment, cells were harvested and incubated 
with 10 μM H2DCFDA and 4 nM DiOC6 at 37˚C for 30 min for 
H2O2 detection and ΔΨm, respectively.  The mean fluorescence 
intensity (MFI) was quantified by BD CellQuest Pro software (BD 
Biosciences, San Jose, CA, USA) after analysis by flow cytom-
etry [86, 105, 106].

2.10. Statistical analysis

All the statistical results are presented as the mean ± SD for at 
least three separate experiments.  Statistical analysis of data 
was done using one-way ANOVA followed by Student’s t-test. 
***P<0.001 was considered statistically significant.

3. Results

3.1. YC-1 decreased the viability and suppressed confluence 
of CAR cells 

The cisplatin-resistant human oral CAR cells were treated with 
YC-1 (0, 25, 50 and 100 µM) for either 24 h or 48 h.  The MTT 

assay demonstrated that YC-1 significantly decreased the cell vi-
ability in a concentration and time-dependent manner (Fig. 1A).  
The percentage of cell confluence relative to the control cells was 
determined by the IncuCyte™ Kinetic Live Cell Imaging System 
at a 2-h interval and up to 48 h.  The administration of YC-1 (0, 
25, 50 and 100 µM) inhibited the confluences of cultured CAR 
cells (Fig. 1B).  The inhibition of cell confluence showed concen-
tration and time-dependent.  Images of cultured CAR cells under 
different YC-1 concentrations (0, 25, 50 and 100 µM) taken by 
IncuCyte™ Kinetic Live Cell Imaging System at the indicated pe-
riod of time showed that YC-1 induced cell morphology changes 
and triggered cell death (Fig. 2).  Herein, we also provide the real-
time cell imaging of cultured CAR cells with or without YC-1 
(100 µM) by IncuCyte™ Kinetic Live Cell Imaging System video 
(Supplementary video).  Our data revealed that YC-1 exhibited 
cytotoxicity to CAR cells.

3.2. YC-1 caused G0/G1 cell cycle arrest and affected the 
expression levels of G0/G1 proteins of CAR cells

To verify whether YC-1 treatment affects the cell cycle distribu-
tion, CAR cells were administered with 100 µM of YC-1 for 0, 
12, 24, 36 and 48 h.  The percentage of cells in G0/G1, S and G2/
M phase were analyzed by DNA content stained with PI and flow 
cytometry.  Our data indicated that YC-1 treatment resulted in 
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Fig. 1 - Effects of YC-1 on cell viability and cell confluence 
in CAR cells.  Cells were incubated with 0, 25, 50 and 100 
μM of YC-1 for various duration.  (A) The cell viability was 
determined by MTT assay.  (B) The cell confluence was 
determined by the IncuCyte™ Kinetic Live Cell Imaging 
System.  Data are presented as the mean ± SD (n = 3).  
***p<0.001 versus untreated control.
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cell cycle arrest at G0/G1 phase.  The percentage of cells arrested 
at G0/G1 increased as the treatment duration lengthened.  In the 
meanwhile, a marked decrease of the cells at G2/M phase was 
observed (Fig. 3A).  The expression levels of proteins associated 
with G0/G1 were analyzed after 24-h treatment. YC-1 induced the 
protein expression of p21 in a concentration-dependent manner, 
while the protein expression of cyclins A, D, E and CDK2 was 
inhibited (Fig. 3B).  These results indicated that YC-1 regulated 
CDK2 activation and caused G0/G1 phase arrest in the CAR cells. 

3.3. YC-1 induced DNA fragmentation and enhanced cas-
pase-9 and caspase-3 activities in CAR cells.

We examined whether YC-1 induces apoptosis in CAR cells.  
A significant reduction in cell viability from MTT assay was 
observed after cells were exposed to 100 µM of YC-1 for 48 
h.  However, the decreased cell viability induced by YC-1 was 
reversed by z-VAD-fmk (a pan-caspase inhibitor) (Fig. 4A).  
Results from TUNEL staining also showed that as the YC-1 con-
centration increased, more TUNEL positive cells were observed, 
indicating that more cells exhibited DNA fragmentation (Fig. 
4B).  To further investigate whether the cell death provoked by 
YC-1 was mediated through caspases activation, protein samples 
collected from CAR cells after YC-1 exposure for 48 h were 
analyzed.  Treatment of YC-1 (0, 25, 50, 75 and 100 µM) signifi-
cantly and concentration-dependently stimulated the activities 
of both caspases-9 and caspase-3 (Fig. 4C and 4D).  Our data 
demonstrated that YC-1 induced apoptosis, and the activation of 
caspases was involved in apoptotic cell death in CAR cells.

3.4. YC-1 stimulated ROS production, collapsed mitochon-
drial membrane potential (ΔΨm) and altered the levels of 
apoptosis-related proteins in CAR cells 
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(50 μM)

YC-1
(100 μM)

Fig. 2 - Effects of YC-1 on cell morphology and confluence of CAR cells.  Cells were incubated with 0, 25, 50 and 100 μM of  
YC-1 for 0, 12, 24, 36 and 48 h.  The cell morphology and density was determined by the IncuCyte™ Kinetic Live Cell Imaging 
System.
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Fig. 3 - Effects of YC-1 on cell cycle distribution and the levels 
of G0/G1 proteins of CAR cells.  (A) Cells were incubated 
with 100 μM of YC-1 for 0, 12, 24, 36 and 48 h.  The cell cycle 
distribution was assessed by PI staining and flow cytometric 
analysis.  (B) Whole-cell lysates were prepared, and the levels 
of G0/G1 proteins were analyzed by western blot analysis.
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Fig. 4 - Effects of YC-1 on DNA fragmentation, caspase-9 and caspase-3 activities in CAR cells.  (A) Cells were incubated with 
100 μM of YC-1 with or without z-VAD-fmk for 48 h.  The cell viability was determined by MTT assay. (B) TUNEL assay, (C) 
caspase-9 and (D) caspase-3 activities were analyzed in CAR cells treated with 0, 25, 50, 75 and 100 μM of YC-1 for 48 h.  Data 
are presented as the mean ± SD (n = 3). ***P<0.001 versus untreated control.

Supplementary video - Effects of YC-1 on cell confluence in CAR cells.  Cells were incubated with or without 100 μM of YC-1.  
The dynamic cell imaging was taken by the IncuCyte™ Kinetic Live Cell Imaging System at a 2-h interval and up to 48 h.
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We investigated whether YC-1 stimulates ROS production.  The 
production of ROS markedly elevated after cells were adminis-
trated with of YC-1 (0, 25, 50, 75 and 100 µM), and the elevation 
showed concentration-dependent (Fig. 5A).  To confirm whether 
the mitochondrial pathway mediating YC-1-induced cell apopto-
sis, the level of ΔΨm was measured, and immunoblotting analysis 
was performed to evaluate the expression levels of proteins as-
sociated with mitochondria-dependent apoptotic pathways.  CAR 
cells exhibited a decrease of ΔΨm in a concentration-dependent 
manner after 48 h of YC-1 treatment (Fig. 5B).  YC-1 suppressed 
the level of Bcl-2, while it promoted the protein expressions of 
Bax, cytochrome c, Apaqf-1 and AIF (Fig. 5C), indicating the in-
volvement of mitochondria-dependent pathway.

4. Discussion

Discovering and exploring novel therapeutic strategy and under-
lying molecular mechanisms has been a major research focus in 
oral cancer therapy [107-110].  Studies on various cancer cells 
demonstrated that YC-1 possessed significant anti-cancer activi-
ties through several pathways. YC-1 can induce cell cycle arrest 
[81, 111, 112], apoptosis [81, 111, 112] and autophagy [83, 113, 

114]. It also blocked angiogenesis [30, 115-117], cell migration 
[41, 43, 72, 118], metastasis [36, 64, 119] and reduce matrix 
metalloproteinases (MMPs) activity [41, 72, 117].  Furthermore, 
YC-1 enhanced the chemo-sensitivity of cancer cells to cisplatin 
by regulating expression and activity of apoptosis-related pro-
teins, leading to the activation of caspase-9 and caspase-3 signal-
ing [120].  Recently, Tuttle et al. [48] reported that YC-1 inhibited 
cell proliferation, induced apoptotic cell death, and increased 
sensitivity to cisplatin in UM-1- and CAL 27-cisplatin resistance 
cells.  However, the molecular mechanisms of YC-1-induced cell 
cycle arrest and death in cisplatin resistant oral cancer cells are 
not yet fully understood.  In this study, our results showed that 
25-100 μM of YC-1 significantly inhibited the proliferation of 
cisplatin-resistant CAR cells (Fig. 1, Fig. 2 and Supplementary 
video).  YC-1 treatment increased the number of cells in the G0/
G1 phase, suggesting that YC-1 caused growth inhibition by pro-
moting G0/G1 phase arrest in CAR cells (Fig. 3).  The significant 
DNA fragmentation and caspase-3/ -9 activation in YC-1 treated 
cells (Fig. 4B, C, and D) indicate that YC-1 can induce caspase-
dependent apoptosis in CAR cells.  Our findings provide new 
insights addressing the anti-cancer activity of YC-1 in cisplatin-
resistant CAR cells at the molecular levels.

Once the mitochondrial apoptotic signaling is provoked, 
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changes in the mitochondrial membrane permeability would lead 
to the loss of mitochondrial membrane potential.  In addition, the 
mitochondrial outer membrane becomes leaky and releases the 
pro-apoptotic proteins; including cytochrome c, Apaf-1, procas-
pase-9, AIF and Endo G into cytosol.  These proteins can then 
activate caspase-9 and caspase-3 and result in DNA fragmenta-
tion, a unique feature of the late stage apoptosis [121-125].  Bcl-2 
family proteins are also involved in the regulation of apoptosis 
through modulating mitochondrial functions [121, 124].  Our 
results showed that YC-1 induced apoptosis, as evidenced by the 
reduced viability and the significant number of TUNEL-positive 
cells (Fig 4A, B).  YC-1 induced apoptosis was further confirmed 
by pan-caspase inhibitor which reversed the reduction of cellular 
viability in YC-1 treated cells (Fig 4A).  In addition, the loss of 
ΔΨm, elevation of ROS production, and the changes in quantity 
of mitochondria-related proteins (Bcl-2, Bax, cytochrome c, 
Apaf-1 and AIF) were observed after YC-1 treatment (Fig. 5).  
These results suggested that YC-1-induced apoptosis was medi-
ated through the activation of caspase cascades, and this apoptotic 
death was mitochondria-dependent.  This study is the first report 
to prove the involvement of a mitochondrial pathway in YC-1-
induced apoptosis in cisplatin-resistant CAR cells.

It has been documented that YC-1 inhibited cell proliferation 
and cell cycle progression from G0/G1 to S phase in rat mesangial 
cell and human hepatocellular carcinoma cells [50, 80].  Teng et 
al. [50] demonstrated that YC-1 inhibited human hepatocellular 
carcinoma cell proliferation through G0/G1 phase arrest and in-
creased p21 and p27 protein levels.  However, Yeo. et al. reported 
YC-1 induced S phase arrest and apoptosis in Hep3B cells [81].  
Our results (Fig 3) were consistent with those of Teng el al. [50] 
and suggested that, by down-regulation of CDK2/cyclin A,D, and 
E activities, YC-1 blocked cell cycle at G0/G1 phase.

The IncuCyte™ Kinetic Live Cell Imaging System provides a 
continuous time-lapsed recording and quantitation of cell life im-
ages, which facilitates a robust data collection and analysis.  This 
system can be used to detect cell activities such as cell prolifera-
tion, migration, invasion, wound healing, caspase activity and 
autophagy [126-128].  In the present study, we are the first group 
using this imaging system to characterize cell proliferation and 
confluence in YC-1-treated CAR cells (Fig. 2 and Supplementary 
video).  Thus, more studies on anti-cancer activity of YC-1 can 

be accelerated and examined by this cell image system in the near 
future.

5. Conclusions

Fig. 6 illustrated the proposed molecular mechanism of YC-1-
provoked G0/G1 phase arrest and apoptosis in CAR cells.  Our 
results revealed that YC-1 arrested at G0/G1 phase through regu-
lating p21, cyclin A, D, E and CDK2 activity.  In addition, YC-1 
induced apoptosis in CAR cells via caspases activation and mito-
chondria-dependent pathway.  YC-1 is proved to be potential ad-
juvants or alternatives to cisplatin treatment in cisplatin-resistant 
oral cancer.
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