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In Vitro Generation of Red Blood Cells
from Stem Cell and Targeted Therapy
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Abstract
Red blood cell (RBC) transfusion is a common therapeutic intervention, which is necessary for patients with emergency or
hematological disorders to reduce morbidity and mortality. However, to date, blood available for transfusion is a limited
resource, and the transfusion coverage system still depends on the volunteer-based collection system. The scarcity of blood
supplies commonly develops because of local conditions that transiently affect collection. Moreover, donor-derived infectious
disease transmission events also remain a risk. Thus, there is a huge demand for artificial blood. The production of cultured
RBCs from stem cells is slowly emerging as a potential alternative to donor-derived red cell transfusion products. In this
concise review, we summarize the recent in vitro expansion of RBCs from various stem cell sources, targeted therapy,
prospects, and remaining challenges.
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Introduction

Red blood cells (RBCs) are anucleate blood components

indispensable for oxygen delivery. RBC transfusion is a

life-saving treatment in numerous therapies. The current sys-

tem is based on voluntary blood donations with several

shortcomings, such as chronic shortages for rare blood

groups, sporadic restrictions in association with natural or

man-made disasters, insufficient development of blood col-

lection systems, and so on.1

The increased usage by aging population and the detri-

mental effects of storage on RBCs will eventually lead to

insufficient blood supply1. In addition, the clinical

demand for RBC transfusion remains high in surgical

interventions and hematologic malignancies. Rather, the

most threatening scenarios involve long-term disruption

of the supply chain because of a major pandemic that

would decrease the ability of the population to donate

blood for an extended period of time2. In order to alle-

viate the intensified imbalance and shortfalls in blood

supply and demand, therapeutic in vitro generation of

RBCs via biotechnologies became an urgent need in glo-

bal demand for transfusion applications. Many attempts

had been made worldwide for in vitro generation of blood

cells from different stem cell sources3 because their

immediate cell sources and precursors can be cryopre-

served and stored long-term for repeated study.

Formation of RBCs from Hematopoietic
Stem Cells (HSC)

HSCs are rare cells present in the blood and bone marrow

that are capable of generating an entire hematopoietic sys-

tem with their pluripotency and self-renewal properties.

HSCs are also the stem cells that give rise to other mature

blood cells, such as RBCs, platelets, and white blood cells.

The formation process is regulated by signaling through both
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external factors, such as cytokines and fibronectin, and intra-

cellular factors, such as transcription factors and miRNAs4.

CD34þ also plays an important role in RBC production

from HSCs5. The CD34 is a glycoprotein found in the bone

marrow and expressed in early HSCs and are also found in

cord blood (CB) and in small amounts as granulocyte

colony-stimulating factor (G-CSF) mobilized peripheral

blood stem cell concentrates in the peripheral blood6. Sev-

eral groups have reported that CD34þ cells from CB and

peripheral blood can be used to reproduce the hematopoietic

process7,8. Nowadays, the differentiation process of HSCs

into RBCs has already been thoroughly elucidated. HSCs

differentiate into common myeloid progenitors and

megakaryocyte-erythroid progenitors. Then, HSCs sequen-

tially differentiate into unipotent progenitors restricted to the

erythroid lineage. These unipotent erythroid progenitors are

composed of burst-forming unit erythroid, colony-forming

unit erythroid, and the morphologically recognizable ery-

throblast series that terminally differentiate into orthochro-

matic erythroblasts. Ultimately, orthochromatic

erythroblasts enucleate into reticulocytes and mature into

RBCs4.

The late-stage maturity RBCs have been successfully

generated by promoting erythroid differentiation of primary

HSCs derived from CB units9–11, mobilized apheresis prod-

ucts7, or cell fractions discarded during the leukoreduction

process of adult blood donations12. The generation of RBCs

from HSCs takes about 21 days in vitro10,13, making it unaf-

fordable for clinical applications. According to Lalita and

colleagues, using transforming growth factor b1 can signif-

icantly accelerate the process of in vitro RBC formation up

by 3 days from HSCs by stimulating mitophagy and thereby

making the large-scale production possible14.

Nevertheless, the low number of HSCs is achieved even

by donation and is hard to scale up. This is also the reason

why human pluripotent stem cells (PSCs), including

embryonic stem cells (ESCs) and induced pluripotent stem

cells (iPSCs), currently represent the alternative approach

for blood cells and components’ derivation. To improve the

scalable industrial production of RBCs, as a consequence,

ESCs and iPSCs are investigated as an alternative stem cell

source as their indefinite expansion capacity in vitro15–17.

Formation of RBCs from ESCs

Human ESCs (hESCs) are capable of unlimited proliferation

while maintaining the ability to form all the cells of the body,

including blood cells18,19. It provides a potentially inexhaus-

tible and donorless source of cells for human therapy.

Hematopoietic differentiation of hESCs has been widely

investigated in vitro, and hematopoietic precursors have

been identified in differentiating hESC cultures18,20,21. It has

been reported that primitive erythroid cells can be produced

from hESCs by embryoid body (EB) formation and cocultur-

ing with stromal cells21–23. However, the efficiency of dif-

ferentiation of hESCs into homogenous RBCs still needs to

be improved. Enforced expression of HOXB4 has been

found to enhance the production of hematopoietic progeni-

tors but has no effect on the maturation of RBCs24. Thus,

another critical issue is whether hESCs can generate termin-

ally mature progenies with normal function and be utilized in

the clinic. Ma and colleagues recently developed a method

for the efficient production of hematopoietic progenitors

from hESCs by coculture with murine fetal liver-derived

stromal cells25.

Lu and colleagues were able to grow blood types A, B, O,

and both Rhesus D positive and Rhesus D negative but unable

to produce the O Rhesus D negative blood type, the so-called

“universal” donor15. The differentiation of hESCs into func-

tional oxygen-carrying RBCs on a large scale (1010–1011

cells/six-well plate), with up to 60% enucleation rate15.

Elcheva and colleagues subsequently reported that GATA2

and TAL1 transcription factors are capable to directly convert

hESC to endothelium having the potential to transform into

blood cells. This study accelerates and enhances the genera-

tion of 33 million CD43þ cells from 1 million transduced H1

hESCs after 7 days of expansion26. However, the clinical

relevance of ESC is limited due to ethical and immunological

concerns27, and so the attention has turned to iPSCs.

Formation of RBCs from iPSCs

iPSCs are embryonic-like cells reprogrammed from adult

somatic cells through retroviral transduction of defined fac-

tors and possess various properties of embryonic stem

cells28. iPSCs can be created from dermal skin fibroblasts,

and patient-specific iPSCs could avoid the immune rejection

problems that might occur if heterologous sources of ESCs

were used29. As a consequence, iPSCs are also investigated

as an alternative stem cell source17.

The sequential addition of cytokines at defined concentra-

tions led to the in vitro differentiation of iPSCs into mature

blood cell types, which is also the most difficult step in the

manufacture30. The generation of RBCs from iPSCs takes

about 26 days in vitro17. The differentiation of iPSCs by the

formation of human EBs (hEBs) in EB medium takes about

20 days. Then, hEBs differentiate into the stage of mature

cultured RBCs in the presence of supporting cytokines,

including stem cell factor (SCF), erythropoietin (EPO), and

interleukin-3 (IL-3) for 6 days17. However, in vitro erythro-

poiesis from iPSCs is currently limited due to low efficiency

and unphysiological conditions of common culture systems.

Especially, the absence of a physiological niche may impair

cell growth and lineage-specific differentiation.

In 2019, Bernecker and colleagues reported a simplified

but robust, xeno-free and feeder-free, culture system for

prolonged RBC generation using a low concentration of

supporting cytokines, such as SCF, EPO, and IL-331. Colo-

nies of undifferentiated human iPSCs were transferred into

low-binding plates to induce EB formation for 5 days. Then,

the spherical EBs were cultured in adherent plates in albu-

min polyvinyl alcohol essential lipid medium containing
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SCF, EPO, and IL-3, which was changed weekly. Within

2 weeks, a hematopoietic cell-forming complex was estab-

lished, from which hematopoietic cells were continuously

released into the supernatant and harvested. Ultimately, cells

released into the supernatant were harvested and differen-

tiated into RBCs in a three-phase erythropoiesis system for

18 days31. This model is more cost affordable and less arti-

ficial when compared with conventional systems.

Formation of RBCs from Mesenchymal
Stem Cells (MSCs)

Although RBCs have been derived from human PSCs, the

risk of potential tumorigenicity cannot be ignored, and a

majority of these cells produced from PSCs express embryo-

nic e-globins and fetal g-globins with little or no adult b-glo-

bin and remain nucleated32. Lu and colleagues reported a

method to generate RBCs from human hair follicle MSCs

(hHFMSCs) by enforcing OCT4 gene expression and cyto-

kine stimulation32. The adult b-globin chain with a minimum

level of the fetal g-globin chain was found in the cells gen-

erated from hHFMSCs. Moreover, these cells formed enu-

cleated RBCs with a biconcave disc shape via multiple

maturation events. In this study, the authors also revealed

that OCT4 regulated the expression of genes associated with

both pluripotency and erythroid development during

hHFMSC transdifferentiation toward RBCs32. Other than

that, it has also been found that MSCs can promote CD34þ
HSC proliferation with preserved RBC differentiation

capacity33. These findings indicate that mature RBCs can

be derived from adult somatic cells, which may also serve

as an alternative source of RBCs for potential autologous

transfusion.

Targeted Therapy

To date, the use of in vitro stem cell-derived RBCs has not

proved practical for routine transfusion. Despite the major

worldwide research efforts to achieve the goal of RBC pro-

duction have received great attention, the problems with

large-scale production and cost-effectiveness have yet to

prove practical usefulness. Therefore, although vast

advances have been made in stem cell-derived RBC

research, it is still in the beginning stages for clinical trans-

fusion use by making RBCs available, in both quantity and

quality.

RBCs, however, have additional clinical applications that

do not require a large number of cells. Thus, there are some

realistic intermediate therapeutic goals that could be

achieved with the current technology, such as drug delivery,

drug discovery, and reagent RBCs for antibody

identification34,35.

RBC with CD47 expressed on the cell surface is signaling

to the immune system to avoid RBC uptake36. The recent

progress of in vitro differentiation of stem cells into mature

RBCs has boosted the possibility of drug discovery. In 2006,

Chang and colleagues reported that the use of RBCs for

systemic drug delivery was obtained in mouse models for

Hemophilia, an X-linked recessive congenital disorder of

coagulation due to factor VIII or IX deficiency37. In 2017,

Doulatov and colleagues have reported the drug discovery

for Diamond-Blackfan anemia using reprogrammed hema-

topoietic progenitors38.

In order to predict the suitability of donors with rare blood

types for alloimmunized patients, in vitro tests via RBCs are

used. The RBCs from rare donors are usually with limited

numbers. Thus, the generation of RBCs in vitro from mono-

nuclear cells that are usually discarded during the leukore-

duction process (or from iPSCs derived from these cells)

may represent valuable substitutes for in vivo-generated

reagent RBCs in these assays. Recently, the identification

of drugs for personalized therapy of diverse disorders, such

as inducers of hemoglobin F production for thalassemia and

sickle cell anemia, inhibitors of 11-kDa nonstructural

protein-mediated caspase-10 activation to prevent B19 par-

vovirus infection, and cellular-based antimalarial therapies,

was considered to use in vitro assays by ex vivo expanded

erythroid progenitor cells39. Substantial progress in these

intermediate clinical applications is likely to ensure that the

in vitro artificial RBCs will become a reality in the future.

Prospects and Challenges

These studies have provided the foundation for rational mon-

itoring of in vitro differentiation into the mature RBCs to

establish a reliable, efficient RBC generation protocol. Espe-

cially, the differentiation of iPSCs into RBCs provides

opportunities for the development of novel technologies for

manufacturing patient-customized blood products. Equally

importantly, these studies also make it possible to proceed

through the whole protocol from the stem cell generation to

RBC maturation under good manufacturing practice condi-

tions, which will be an essential requirement to use in vitro-

generated biomaterials in the clinical field.

One of the next key steps toward clinical usage for blood

shortage is bioreactor based-technology for further scaling

up of cell production. It is a significant technical challenge to

produce a sufficient number of RBCs to contribute to the

existing transfusion system, even a few percent of the total

RBCs transfused. The maximal concentration of cells that

can be achieved in a bioreactor is the major issue. Since a

unit of blood contains approximately 1–2� 1012 cells, more

than 1000 l of medium would be necessary to produce that

many cells in static flask culture, which allows a maximal

density of approximately 2 � 106 cells/ml2,40.

Summary

All of the cell sources discussed above have the potential to

eventually reach the clinical needs of RBCs. These studies

would also surely promote the development of RBC clinical

treatment. The race to develop the winning technology of
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RBC generation will be one of the great scientific and tech-

nological interests. Overall, these continuous efforts to

establish advanced strategies for a cost-effective, highly

potent RBC culture system combined with engineering tech-

niques would ultimately contribute to the practical utiliza-

tion of in vitro-generated RBCs in the near future.
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