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Abstract: This article describes the design of a smart steering wheel intended for use in unobtrusive
health and drowsiness monitoring. The aging population, cardiovascular disease, personalized
medicine, and driver fatigue were significant motivations for developing a monitoring platform in
cars because people spent much time in cars. The purpose was to create a unique, comprehensive
monitoring system for the driver. The crucial parameters in health or drowsiness monitoring, such
as heart rate, heart rate variability, and blood oxygenation, are measured by an electrocardiograph
and oximeter integrated into the steering wheel. In addition, an inertial unit was integrated into the
steering wheel to record and analyze the movement patterns performed by the driver while driving.
The developed steering wheel was tested under laboratory and real-life conditions. The measured
signals were verified by commercial devices to confirm data correctness and accuracy. The resulting
signals show the applicability of the developed platform in further detecting specific cardiovascular
diseases (especially atrial fibrillation) and drowsiness.

Keywords: steering wheel; driver monitoring; electrocardiography; photoplethysmography; oximetry;
inertial measurement unit

1. Introduction

Civilizational diseases refer to a group of diseases that have spread widely among
the human population. These are degenerative diseases that result from the degeneration
of tissues and organs. They are most common in developed or third-world countries [1].
In many cases, they are a common cause of death. Civilization diseases are most often
divided into cardiovascular diseases, cancer metabolic diseases, and nervous and mental
diseases. In addition, the lifestyle of the population has changed significantly over the
last 70 years, the pace of life has accelerated, and many people are living under constant
stress [2].

Chronic diseases or otherwise non-communicable diseases (NCDs) kill 41 million peo-
ple each year, representing 71% of all deaths worldwide. Cardiovascular diseases account
for the most deaths from so-called non-communicable chronic diseases, at 17.9 million peo-
ple per year. Tobacco use, physical inactivity, harmful alcohol consumption, and unhealthy
diets all increase the risk of death from NCD. The detection, screening, treatment of NCDs,
and palliative care are the key components of the NCD response. Early detection and
early treatment play the most critical role. There is evidence that such interventions are an
excellent economic investment because, if provided to patients promptly, they can reduce
the need for more expensive treatment [3]. This fact is confirmed by the current goals
of the WHO, which focus on the prevention and overall management of these diseases.
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In addition, many studies have shown that the risk factors for diseases of the circulatory
system and other chronic diseases are shifting to ever-younger age categories [4–7].

One approach is personalized medicine. It is an approach that exploits the knowledge
of the molecular origin of the disease and the knowledge of how the treatment works, in
conjunction with the knowledge of the differences between patients [8]. The personalized
medicine strategy aims to provide drugs and diagnostic devices that bring patients a
tangible improvement in health and quality of life. The critical element is the previously
mentioned diagnostic and measuring devices, also called wearables. Wearable technolo-
gies, such as medical technologies, become an integral part of personal analysis, physical
condition measurement, physiological parameters, or a treatment information plan. They
can provide continuous health data on metabolic status, diagnosis, or treatment [9]. They
can be conveniently placed on the epidermis, whether introduced through the skin and
body gates, to measure electrophysiological or biochemical signals, or to deliver drugs [10].
In some cases, they are built into clothing [11] or other smart elements such as watches [12]
or bracelets [13], or are part of various control devices.

Despite the efforts around the world to reduce greenhouse gas emissions produced
by cars [14], we can still state that people spend a considerable amount of their life in
a car. The time spent in the car is an opportunity to collect physiological information
to assess health conditions and sleepiness. According to the European Transport Safety
Council, driver fatigue is a significant factor in approximately 20% of commercial road
transport crashes [15]. According to surveys, more than half of long-haul drivers have
fallen asleep behind the wheel [15]. Sahayadhas [16] observed differences between the
alert and drowsy states of the driver in the signal acquired by an electrocardiograph (ECG).
Awais [17] has successfully improved drowsiness detection based on a combination of ECG
and EEG. The heart rate variability (HRV) calculated from the ECG signal was used as
the primary parameter for the drowsiness detection. Lee [18] investigated the robust and
distinguishable HRV signals acquired by wearable ECG or photoplethysmograph (PPG)
sensors for driver drowsiness detection.

However, the previous studies monitored the ECG using commercial devices or
systems that were not permanently built into the car equipment, such as the steering
wheel or seat. The ECG electrodes can be inbuilt in cars in different places, but especially
in the steering wheel (conductive), driver’s seat (capacitive), or backrest (capacitive—
thoracic or lumbar) [19]. The seat-integrated electrocardiography (ECG), capacitive ECG
(cECG), and ballistocardiography (BCG) have been applied extensively in the automotive
environment. The steering wheel has a decisive advantage because more important signals
can be monitored by the driver’s hands making contact with the steering wheel than in
the driver’s seat. The study of the current state helped us identify critical parameters for
measuring the driver’s cardiovascular health or drowsiness [20–22]. This research shows
that the steering wheel collecting health describing data is very possible in the research
area [17,19,23].

Steering wheel data for drowsiness detection have been the aim of several studies.
Studies show that a drowsy driver has abnormal characteristics when operating a steering
wheel. For example, the amount of control and operation with the steering wheel decreases,
reducing the accuracy and frequency of the rotation of the steering wheel while driving [24].
Li [25] analyzed steering wheel angle (SWA) and yaw angles (YA) at different fatigue
conditions. Approximate entropy (ApEn) was used during fatigue detection together
with a backpropagation neural network classifier. The experiment lasted 15 h in real
traffic, and the data obtained were then marked with a certain degree of driver fatigue.
This research achieved 87.21% accuracy in detection. Mortazavi [26] examined several
different driver-vehicle control variables, such as SWA, lane-keeping, etc., correlated with
drowsiness levels. In addition, several commercial drivers were tested in a simulated
environment, and different variables were recorded. The study shows that drowsiness has
a significant impact on lane-keeping and steering control behavior. The significance and
effectiveness of non-obtrusive drowsiness detection based on parameters such as lateral
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deviation from the road centerline, lateral acceleration, yaw rate, YA, and steering wheel
velocity is highlighted by recent research conducted by Arefnezhad [27]. This data was
processed by using deep neural networks; features can be extracted automatically from
pre-processed data. The proposed method was based on convolutional neural networks
(CNN) and recurrent neural networks (RNN). As a result, the highest accuracy of 96.0%
has been achieved with a long short-term memory (LSTM) CNN.

Besides detecting drowsiness, the ECG signal can be used to detect cardiovascular
disease (CVD). In Europe, CVD causes 3.9 million deaths and accounts for 45% of all
deaths [28]. Atrial fibrillation (AF) is the most common type of cardiac arrhythmia asso-
ciated with an increased risk of stroke. AF is responsible for approximately one-third of
hospitalizations for cardiac rhythm pathologies. It is a serious public health problem due
to the higher risk of death and the high financial cost (hospitalization, drug treatment,
etc.). [29] AF can be effectively detected by one-lead ECG devices operated by smart-
phones [30–34]. For instance, the usability of one-lead ECG for the detection of pathological
diagnoses was tested in [31]. The atrial fibrillation (AF), atrial flutter, atrioventricular block,
regular supraventricular rhythm, and cardiac pacing were defined as pathologies. The one
lead ECG device provides a sensitivity of 75% and a specificity of 97% to differentiate the
healthy and pathological heart activity. If the abnormalities are limited only to AF, then
the sensitivity and specificity were 100% and 94%, respectively. A similar smartphone-
dependent, one-lead ECG device was used in [35], where the sensitivity and specificity
were 92.8% and 100% for AF, 100% and 100% for atrial flutter, and 56.3% and 100% for
pacemaker rhythm.

Motivation and Aim

Based on the above-mentioned facts, the motivation of this research is the develop-
ment of a comprehensive driver monitoring system, which will be the basis for further
improvement with the simultaneous deployment of ongoing research. Although the paper
is not aimed directly at detecting heart disease or drowsiness, the usability and quality of
the measured data for this purpose are presented.

This paper introduces a unique platform integrating various sensors monitoring the
cardio-vascular system (ECG, PPG, and oximetry). In addition, an inertial measurement
unit (IMU) has been integrated into the steering wheel, which can record the movement
patterns as SWA or YA performed by the driver while driving. The goal of integrating
the IMU unit is to provide additional data to the physiological data, thus increasing the
ability of the sensory system to detect the stages of fatigue. Furthermore, the system
of sensors is integrated into the unique steering wheel construction developed by the
authors. The added value of the presented solution is a system that integrates all sensors
into one compact unit. The mechanical and electrical hardware design is described in the
Materials and Methods section. The signals measured by the developed steering wheels
are shown in the Results and Discussion section. The developed steering wheel was tested
under laboratory and real-life conditions. This section also discusses the significance of the
measured data in further detecting cardiovascular diseases, especially AF and drowsiness.

2. Materials and Methods

This section provides a detailed description of the sensor platform integrated into
the steering wheel. The platform is a unique combination of sensors that are independent
of car electronics. The system of sensors is encapsulated in a durable polymer case. The
designed CAD model of the steering wheel was made using SLS (selective laser sintering)
technology. SLS is a well-known 3D printing technology, where polymer-based dust is
sintered locally in one layer by the action of a laser. Subsequently, a 3D object is created
layer by layer. Polyamide PA12 material was used to produce the steering wheel for
its excellent mechanical properties, the precision of detail, and its favorable electrical
insulating properties.
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2.1. Electronic Hardware Design

The placement of electronics, components, and cables distribution inside the steering
wheel is shown in Figure 1c. The lithium-polymer battery with a capacity of 4000 mAh
is placed under the battery holder. The block diagram describing the electronic design of
the smart steering wheel (SSW) is depicted in Figure 2. The entire system is powered by a
lithium polymer battery with a nominal voltage of 3.7 V. The battery voltage is stepped
down to 3.3 V for powering all sensors, microcontroller unit (MCU), and the Bluetooth
module. The blocks shown in Figure 2 are described in detail in the following subsections.
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2.1.1. ECG Sensor

Electrocardiography is the most used diagnostic method for cardiovascular disease.
It is a valuable tool in the detection of any kind of heart abnormality at an early stage.
The early diagnosis of heart disease can prevent unnecessary deaths. Therefore, the ECG
sensor is an essential part of the steering wheel. In clinical practice, the ECG system with
twelve leads is the gold standard. The electrodes placed on the limbs (four electrodes)
and the chest (six electrodes) form so-called limb leads and chest leads, respectively. The
electrode placed on the right leg provides the return path for common-noise reduction. This
type of noise reduction is known as driven-right-leg (DRL) circuit [36,37]. Alternatively,
the right leg electrode can be connected to the signal ground to reduce noise from the
surroundings. The SSW measures only one channel of ECG from the upper limbs, called
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lead-I. The usability of one-lead ECG for the detection of AF was already shown in the
Introduction section.

Generally, the conductive gel is placed between the electrode and the skin to reduce
electrical impedance between them, resulting in a high-quality ECG signal with a high
signal-to-noise ratio (SNR). The ECG system integrated into the steering wheel must deal
with high impedance on a skin-electrode interface because of missing the conductive
gel [38,39]. Furthermore, the ECG incorporated into the wheel uses only two electrodes
without a third electrode, which effectively removes the noise. Removing the third electrode
is challenging due to the significantly higher electromagnetic interference (EMI), and lower
signal-to-noise ratio (SNR) compared to three-electrode ECG [37,40].

We decided to use the ADS1191 analog front-end (Texas Instruments, Dallas, TX, USA)
for the ECG measurement, a part of the ADS1x9x family (Texas Instruments, Dallas, TX,
USA). This family is a powerful tool in electrical biopotential measurements such as ECG,
EMG, and EEG. The ADS1191 enables the digitalization of one input channel by using a
16-bit delta-sigma AD converter. The essential parameters of the ADS1191 are summarized
in Table 1.

Table 1. Most essential parameters of ADS1191.

Parameter/Feature Value

Resolution 16 bits
Maximal Sampling Rate 8 kSPS
Power Supply (Analog) 2.7 V to 5.25 V
Power Supply (Digital) 1.7 V to 3.6 V

Communication Interface SPI
Power Consumption (Typ) 335 µW

Input Bias Current 1 nA
CMRR −95 dB
SNR 92 dB

The ADS1191 includes a built-in DRL amplifier and a programable gain amplifier
(PGA) used in our design. The voltage of 3.3 V is used for powering the analog and digital
parts of the ADS1191. The electrical circuit for the two-electrode ECG is shown in Figure 3.
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Figure 3 includes part of an internal circuit of the ADS1191. The value of the internal
RG resistor can be digitally tuned to change the differential signal gain and forms the PGA.
Six programmable gain values are available: 1, 2, 3, 4, 6, 8, or 12. The DRL circuit can be
enabled or disabled by the digitally controlled switches, S1 and S2. The gain and cut-off
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frequency of the DRL circuit are determined by the values of the external RD resistor and
CD capacitor. The G gain of the DRL amplifier is computed as [41]:

G = −2·
RD

1+jωRDCD

RCM
=

(
−2· RD

RCM

)
· 1
1 + jωRDCD

= A· 1
1 + jωRDCD

, (1)

where A stands for overall DRL gain in the passband. When using values from Figure 3,
the gain A = −5. The cut-off frequency of the low-pass filter formed by RD and CD is
approx. 106 Hz, and it is computed by

fc =
1

2πRDCD
(2)

In three-electrode ECG systems, the node denoted as the DRL electrode in Figure 3 is
connected to the right leg, or another place on the body, to remove common-mode noise.
Our solution is based on a two-electrode ECG presented in [42]. The functionality of this
circuit was successfully demonstrated in [37]. The output of the DRL circuit is connected
to the midpoint of the resistors (see Figure 3). The RT mechanical potentiometer is used
to adjust the resistance of the R1 and RT combination to be equal to the R2 resistance. The
output of the DRL circuit biases the ECG inputs (left arm and right arm) through 10 MΩ
resistors. The high value of the resistors ensures a high differential mode input impedance,
which equals R1 + RT + R2. Moreover, high resistance values limit the current flowing from
the DRL’s output to the subject (driver). The combination of C1 or C2 with 10 MΩ resistors
provides differential ac-coupling of the ECG signal [42,43]. This ac-coupling is formed by a
high-pass filter with the cut-off frequency:

fc =
1

2πC1(R1 + RT)
=

1
2πC2R2

= 0.16 Hz (3)

This filter removes the direct current (DC) voltage offset and attenuates the slow
fluctuation (below 0.16 Hz) of the ECG isoline.

2.1.2. PPG and Pulse Oximeter Sensor

The MAX30102 (Maxim Integrated, San Jose, CA, USA) is a highly-sensitive pulse
oximeter for wearable health monitoring. It includes red and infrared (IR) LEDs with a
typical wavelength of 660 nm and 880 nm, respectively. Each LED is a light source for
the measurement of the PPG curve by one photodiode. The internal delta-sigma analog-
to-digital converter (ADC) with the 18-bit resolution is used for PPG curve digitalization.
The sampling rate can be programmed from 50 samples per second (SPS) to 3200 SPS. The
analysis of the PPG curve can determine the heart rate [44], blood vessel elasticity [45,46],
or cuffless blood pressure [47]. The light absorption at various wavelengths (660 nm and
880 nm) differs between oxygenated and deoxygenated hemoglobin. The LEDs emit light
in cycles when only one LED is activated at a time. Four different pulse widths (LED on
time) are available in MAX30102: 69 µs, 118 µs, 215 µs, and 411 µs. The intensity of the
LED light is determined by the current flowing through the diodes. The LED current can
be programmed from 0 mA to 50 mA to control LED light intensity. All settings of the
MAX30102 are summarized in Table 2.

Table 2. Parameters of the pulse oximeter (MAX30102) used in the SSW.

Parameter/Feature Value

Resolution 18 bits
Sampling Rate 200 SPS
LEDs Current 50 mA

LED Pulse Width 411 µs
Power Supply 3.3 V

Communication Interface I2C
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Oxygenated hemoglobin absorbs more infrared light in contrast with deoxygenated
hemoglobin, which absorbs more red light. Both PPG curves are used to calculate periph-
eral blood oxygen saturation level (SpO2) [48–51]. The SpO2 is a percentage of oxygen
saturated hemoglobin relative to the total blood hemoglobin. Normal SpO2 saturation
is typically between 95% and 100% for patients without pulmonary pathology. The re-
search [52] shows that SpO2 decreases during drowsiness and increases when drowsiness
declines. It is thus suitable to monitor the SpO2 parameter to avoid car accidents caused by
driver fatigue.

The SpO2 is calculated using a formula provided by the MAX30102 manufacturer,
which was also used in [50]:

SpO2 = −45.060·R2 + 30.534·R + 94.845 (4)

where R is known as the “ratio of ratios”, and the following formula calculates it:

R =

ACRED
DCRED
ACIR
DCIR

(5)

The DCRED and DCIR are DC components (offsets) of the signals collected from
red and infrared LED, respectively. The DC component represents the absorption of
the light in the tissue, venous, capillary, bones, etc. The ACRED and ACIR alternating
current (AC) components reflect red and infrared light absorption in the arterial blood,
respectively. The calculation of the SpO2 is shown on the actual SSW data in the Results
and Discussion section.

2.1.3. IMU Sensor

The accelerometer and gyroscope are parts of the inertial measurement unit (IMU).
The MPU-6050 (Invensense, San José, CA, USA) is used as the IMU. It is a 3-axis gyroscope
and 3-axis accelerometer with an integrated I2C bus. The 16-bit ADCs are used for each
gyroscope and accelerometer axis. The IMU has a full-scale programmable range of
±250◦/s, ±500◦/s, ±1000◦/s, and ±2000◦/s, and ±2 g, ±4 g, ±8 g, and ±16 g for the
gyroscope and accelerometer, respectively. Under normal conditions, the steering wheel
does not turn rapidly, so the lowest ranges are used for the gyroscope and accelerometer.
The MPU-6050 can be supplied by voltage in the range of 2.375 V to 3.46 V.

The gyroscope and accelerometer data are used to detect motion artifacts in ECG and
PPG signals due to steering wheel rotation and road unevenness, such as road potholes
and road bumps. Moreover, the IMU data can be used for driver fatigue detection by
monitoring steering wheel movements [53,54] or recognizing driving style [55].

2.1.4. Wireless Communication Module

The steering wheel prototype is intended to be used with another device such as a
notebook, tablet, or smartphone, which acts as a data processing and visualization unit. The
data are transferred wirelessly via Bluetooth version 4.1 by the RN4020 module (Microchip
Technology, Chandler, AZ, USA). This version of Bluetooth, also known as Bluetooth
Low Energy (BLE), is focused on wireless data transfer for short distances (up to 10 m)
in healthcare. The RN4020 provides a maximum data transfer rate of 1 Mbit with low
current consumption suitable for battery-powered devices. As shown in [56], the current
consumption of RN4020 and the MCU (ATmega328P, Microchip Technology, Chandler, AZ,
USA) is only 7.8 mA when using the data rate of 1000 SPS. The Microchip Low-energy
Data Profile (MLDP) is used for custom data transfer. The MLDP is a private BLE service
that provides a 20 kbps serial data transport over Bluetooth, which is a sufficient data rate
for our purpose.
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2.1.5. Power Management

The powering of the SSW is independent of the car power supply and electronics.
The separation of power supplies helps to protect the car electronics from damage while
testing the steering wheel prototype. As is shown in Figure 2, the SSW is powered from
a lithium-polymer (LiPol) battery with a nominal voltage of 3.7 V. The battery voltage is
regulated to 3.3 V by a MCP1703 (Microchip Technology, Chandler, AZ, USA) low-dropout
voltage regulator (see schematic in Figure 4), which can deliver a current of 250 mA. The
voltage of 3.3 V powers all sensors of the SSW. The battery voltage is monitored by the
ADC of the MCU via a voltage divider formed by resistors R5 and R6 in Figure 4. The
battery can be charged by an external power source such as a car USB charger or power
bank. The micro-USB connector is used as charger input. The MCP73837 (Microchip
Technology, Chandler, AZ, USA) standalone battery charge management controller plays
an essential part in power management. It charges the battery by a current determined by
the R2 resistor. The charging current is 256 mA when the value of 3.9 kΩ is used. A bicolor
LED indicates the charging process on the SSW front panel. The red light and green light
indicate the charging process and charging completed status, respectively. During charging,
the electronics of SSW are not powering by the battery but by an external power source.
This feature is provided by P-channel MOSFET BSS84 (Q1), which acts as an electronic
switch. The battery disconnection ensures proper battery charging while the system is
externally powered.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 20 
 

 

2.1.4. Wireless Communication Module 
The steering wheel prototype is intended to be used with another device such as a 

notebook, tablet, or smartphone, which acts as a data processing and visualization unit. 
The data are transferred wirelessly via Bluetooth version 4.1 by the RN4020 module (Mi-
crochip Technology, Chandler, AZ, USA). This version of Bluetooth, also known as Blue-
tooth Low Energy (BLE), is focused on wireless data transfer for short distances (up to 10 
m) in healthcare. The RN4020 provides a maximum data transfer rate of 1 Mbit with low 
current consumption suitable for battery-powered devices. As shown in [56], the current 
consumption of RN4020 and the MCU (ATmega328P, Microchip Technology, Chandler, 
AZ, USA) is only 7.8 mA when using the data rate of 1000 SPS. The Microchip Low-energy 
Data Profile (MLDP) is used for custom data transfer. The MLDP is a private BLE service 
that provides a 20 kbps serial data transport over Bluetooth, which is a sufficient data rate 
for our purpose. 

2.1.5. Power Management 
The powering of the SSW is independent of the car power supply and electronics. 

The separation of power supplies helps to protect the car electronics from damage while 
testing the steering wheel prototype. As is shown in Figure 2, the SSW is powered from a 
lithium-polymer (LiPol) battery with a nominal voltage of 3.7 V. The battery voltage is 
regulated to 3.3 V by a MCP1703 (Microchip Technology, Chandler, AZ, USA) low-drop-
out voltage regulator (see schematic in Figure 4), which can deliver a current of 250 mA. 
The voltage of 3.3 V powers all sensors of the SSW. The battery voltage is monitored by 
the ADC of the MCU via a voltage divider formed by resistors R5 and R6 in Figure 4. The 
battery can be charged by an external power source such as a car USB charger or power 
bank. The micro-USB connector is used as charger input. The MCP73837 (Microchip Tech-
nology, Chandler, AZ, USA) standalone battery charge management controller plays an 
essential part in power management. It charges the battery by a current determined by 
the R2 resistor. The charging current is 256 mA when the value of 3.9 kΩ is used. A bicolor 
LED indicates the charging process on the SSW front panel. The red light and green light 
indicate the charging process and charging completed status, respectively. During charg-
ing, the electronics of SSW are not powering by the battery but by an external power 
source. This feature is provided by P-channel MOSFET BSS84 (Q1), which acts as an elec-
tronic switch. The battery disconnection ensures proper battery charging while the system 
is externally powered. 

 
Figure 4. Electric scheme of steering wheel power management. 

  

Figure 4. Electric scheme of steering wheel power management.

2.2. Data Acquisition

The smart steering wheel is connectable via Bluetooth to any device running a dedicated
application. For the functionality test, the application in the C# programming language was
developed. The application runs on a notebook running Windows 10. The testing scenario
is depicted in Figure 5. In practice, the notebook can be replaced by a smartphone, tablet,
or car display running Android Auto.
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The smart steering wheel can work in four operating modes, which are summa-
rized in Table 3. The notebook application provides the mode selection and the setting
of custom signal acquisition parameters. The acquired data are real-time plotted in all
available modes.

Table 3. The smart steering wheel modes.

Mode Channels Sampling Rate [SPS] Bits/Sample

ECG 1 125 or 500 16
PPG 2 200 18
IMU 6 125 16

COMBO 4 125 mix

If the ECG, PPG, or IMU mode is activated, the other unused sensors are in sleep mode
to reduce the power consumption. The IMU mode provides the three-axis accelerometric
and gyroscopic data, and is advantageous in detecting driver fatigue or recognition of
driving style.

The COMBO mode (Figure 6) provides complex information from all sensors. The
IMU data are reduced to gyroscopic data in the Z-axis (Gyro Z) because this data best
represents steering wheel movements. The suitability of Gyro Z data selection is discussed
in the next section.
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3. Results and Discussion

A series of experiments were conducted to verify the functionality of the SSW and the
correctness of the measured data. This section provides measurements of signals from all
sensors integrated into the SSW. The signals measured from the SSW are compared to sig-
nals acquired from accurate commercial devices. The SSW was tested in the laboratory and
real-life conditions. The unique console was constructed for the SSW fixation (Figure 7a) in
the laboratory tests. The inclination of the SSW mounted to the console is adjustable, so it is
possible to set the same steering wheel inclination as in the car. The SSW was mounted into
the car (a Volkswagen Sharan) to provide preliminary tests in real-life conditions during
driving (Figure 7b). SSW is compatible with the VW Group for most models of the Škoda,
Seat, and Audi. During the tests, the steering wheel airbag was not used, and the car was
driving on roads without the traffic to ensure the driver’s safety. The measured data are
visualized and analyzed in MATLAB R2018b (Mathworks, Inc., Natick, MA, USA).
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3.1. Measurement of ECG Signal

The BIOPAC MP36 acquisition unit (BIOPAC Systems Inc., Goleta, CA, USA) is used
as a commercial high precision device to verify the quality of the ECG signals. It comprises
precise built-in universal amplifiers and a 24-bit AD converter. The MP36 unit is designed
to measure a wide spectrum of physiological signals such as ECG, electromyography
(EMG), electroencephalography (EEG), or PPG. The solid gel disposable electrodes are
placed on both wrists and the right ankle. The electrode on the ankle acts as a grounding
electrode used to suppress noise from the surroundings (mostly mains noise). The ECG
signal measured by MP36 is considered a gold standard. The sampling frequency of the
MP36 is set to 1000 SPS, and a hardware band-pass filter in the frequency range (0.5–35)
Hz is activated. The ECG is synchronously measured by the SSW when the hands are
placed on electrode locations, and the subject is calm and relaxed (see Figure 8). The
ECG is sampled at 125 SPS by the SSW. The measured signals are shown in Figure 8. As
seen from the figure, the signal from the SSW contains more noise, and the ECG isoline
fluctuation is more evident than the ECG measured by BIOPAC. The wavelet filtration
is applied to the raw signal to remove mentioned undesirable artifacts. The five levels
wavelet decomposition using symlet 4 mother wavelet was applied to the raw signal. The
denoised signal is recomposed after removing noisy parts from details in levels 3, 4, and
5. The signal offset is removed by using a digital high-pass filter with a 0.5 Hz cut-off
frequency. The resulting denoised signal is shown at the bottom of Figure 8. The signal
quality is very similar to the gold standard signal measured by the BIOPAC MP36 (top
graph in Figure 8).

Sensors 2021, 21, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. The synchronized ECG signal measured by BIOPAC MP36 (top) and developed smart steering wheel (middle) 
in the laboratory environment. The filtered ECG signal from the smart steering wheel (bottom). Filtration is based on 
wavelets. 

3.2. Measurement of PPG Signal 
For the reference measurement of the PPG signal, the BIOPAC MP36 device with the 

SS4LA PPG transducer is used. The transducer consists of a matched infrared emitter and 
photodiode detector, and it uses the same reflective principle as the pulse oximeter sensor 
integrated in the SSW. The SS4LA sensor is placed on the right thumb. The sampling fre-
quency is set to 1000 SPS, and a low-pass filter with a cut-off frequency at 40 Hz is acti-
vated. The left thumb is placed on the oximeter sensor of the SSW. The signal from the IR 
LED is used for comparison; the signal from the RED LED is redundant in this case. The 
PPG signal of the SSW is sampled at 125 SPS. The synchronized PPG signals from the 
BIOPAC MP36 and SSW are shown in Figure 9. At first sight, there are differences be-
tween the curves. Many factors cause the differences. Firstly, the BIOPAC PPG is fixed to 
the thumb by a stretchable strap, whereas in the case of the SSW, the thumb is placed 
freely on the sensor. The unfixed finger produces more artifacts in the signal, so the qual-
ity is lower than in the BIOPAC PPG. Furthermore, the PPG signal measured on fingers 
on different hands can vary because the blood vessel system is not symmetric and de-
pends on the subject’s health condition. Despite these facts, we can conclude that the po-
sitions of the peaks are almost the same, as seen in the bottom graph of Figure 9. The 
positions of the PPG peaks can be used to calculate the BPM or pulse wave velocity if the 
ECG signal is known. 

Figure 8. The synchronized ECG signal measured by BIOPAC MP36 (top) and developed smart steering wheel (middle) in
the laboratory environment. The filtered ECG signal from the smart steering wheel (bottom). Filtration is based on wavelets.



Sensors 2021, 21, 5285 11 of 20

3.2. Measurement of PPG Signal

For the reference measurement of the PPG signal, the BIOPAC MP36 device with the
SS4LA PPG transducer is used. The transducer consists of a matched infrared emitter
and photodiode detector, and it uses the same reflective principle as the pulse oximeter
sensor integrated in the SSW. The SS4LA sensor is placed on the right thumb. The sampling
frequency is set to 1000 SPS, and a low-pass filter with a cut-off frequency at 40 Hz is
activated. The left thumb is placed on the oximeter sensor of the SSW. The signal from the
IR LED is used for comparison; the signal from the RED LED is redundant in this case.
The PPG signal of the SSW is sampled at 125 SPS. The synchronized PPG signals from
the BIOPAC MP36 and SSW are shown in Figure 9. At first sight, there are differences
between the curves. Many factors cause the differences. Firstly, the BIOPAC PPG is fixed
to the thumb by a stretchable strap, whereas in the case of the SSW, the thumb is placed
freely on the sensor. The unfixed finger produces more artifacts in the signal, so the quality
is lower than in the BIOPAC PPG. Furthermore, the PPG signal measured on fingers on
different hands can vary because the blood vessel system is not symmetric and depends on
the subject’s health condition. Despite these facts, we can conclude that the positions of
the peaks are almost the same, as seen in the bottom graph of Figure 9. The positions of
the PPG peaks can be used to calculate the BPM or pulse wave velocity if the ECG signal
is known.
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3.3. Measurement of IMU Data

The Shimmer3 IMU unit (Shimmer Research Ltd., Dublin, Ireland) is used as a com-
mercial device that provides superior data quality. This unit integrates nine degrees of
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freedom sensing via accelerometer, gyroscope, and magnetometer. It is placed on the top
cover of the SSW (Figure 10) in parallel with the integrated IMU sensor. When comparing
the accelerometer axes orientation of the Shimmer and SSW IMU, the X and Y axes are in
the opposite direction, and Z-axis has the same direction.
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A simple experiment was conducted to verify the accuracy of the accelerometric and
gyroscopic data of the SSW. The sampling rate was set to 125 SPS for both devices. The
ranges for the accelerometer and gyroscope are also identical. The full-scale range is ±2 g
and 250◦/s for the accelerometer and gyroscope, respectively. The SSW fixed to the stand
has one balanced state shown in Figure 10. When the SSW is rotated by some angle, the
SSW tends back to the balanced state. The experiment scenario is as follows: the SSW
is grabbed by a hand and rotated by some angle and then dropped. After that, the SSW
started to swing until it reached a balanced state. Then the process is repeated with a bigger
yaw. After that, a few free clockwise and counterclockwise rotations were performed. The
synchronized accelerometric data in the three axes are shown in Figure 11. As can be seen
from the graphs, the Shimmer and SSW data are very similar. The data in the X and Y axis
are inverted because of the opposite orientations of these axes. The swings of the SSW are
almost invisible in the Z-axis because this axis is consistent with the axis of rotation. The
detailed comparison of comparable accelerometric data in the X-axis is shown in Figure 12.
There are tiny differences between the curves caused by slightly different inclinations
between IMUs.
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Figure 11. Comparison of accelerometric data measured by reference Shimmer IMU unit (left side) and smart steering
wheel (right side) measured in the laboratory environment.
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Figure 12. Detailed comparison of accelerometric data in X-axis.

The comparative gyroscopic data are shown in Figure 13. As expected, the strongest
signal is measured on the Z-axis, which reflects rotation around the SSW’s axis. The
details of measured signals in this axis are shown in Figure 14. The data’s high similarity
confirms the correctness of the IMU sensor settings and positioning within the inner space
of the SSW.
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3.4. Testing of the SSW in the Car

The SSW was mounted into the car to provide a preliminary test of the functionality
in real-life conditions. The test was performed on side roads without traffic to ensure the
driver’s safety. The original front airbag is not used because there is not enough space for
it in the SSW prototype. The testing scenario is depicted in Figure 15. The long-term use of
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the SSW in its present form is slightly uncomfortable due to the smaller radius of the SSW
when compared to the original steering wheel radius. The next generation of the SSW will
have a bigger radius and inner space for the front airbag.
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Figure 15. Testing of the SSW while driving.

The COMBO mode (described in Section 2.2) was activated during the driving. The
representative twenty seconds long segment of acquired signals is shown in Figure 16. The
fluctuation of ECG and PPG signals is visible when the SSW is rotated more rapidly in the
first 6 s.
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The current consumption in the COMBO mode is about 36.5 mA. If we consider a
used battery with a capacity of 4000 mAh, the SSW can measure and transfer EEG, PPG,
and gyro data continuously over Bluetooth for approx. 109.5 h (4.5 days).

Although a detailed data analysis is not the aim of this article, the preliminary data
analysis of the car data is done to prove the SSW data’s usability and significance. As seen
in Figure 16, the ECG signal is noisy and fluctuating. We applied a modified Pan-Tompkins
algorithm for R peaks detection, which was described in [57]. The correct detection of R
peaks is a good indicator of ECG signal quality [58,59]. The result of the R peaks detection
is shown in Figure 17. The red squares mark the R peaks. As can be seen in Figure 17,
all R peaks are detected successfully. Correct R peak detection is crucial for calculating
heartbeats per minute (BPM) and heart rate variability (HRV).
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The PPG signal in the infrared channel has better quality than in the red channel
(Figure 16) because red light penetrates to a lesser depth than infrared and carries less
information about the arterial blood. The usability of PPG data for the estimation of SpO2
is shown in Figure 18. We select a time interval from 12 s to 14 s. We utilize this interval
because the SSW was not rotating (see gyroscopic data in Figure 16), so it is assumed
that a small portion of movement artifacts are in the signals caused by the rotation of
the SSW. There are two peaks marked as 1 and 2 in both channels in Figure 18. The
AC and DC components are determined from the graphs. These values are used for the
calculation of the R ratio according to formula (5). Then the SpO2 parameter for both peaks
is computed using Equation (4). The SpO2 is 99.73% and 99.47% for the first and second
peaks, respectively. The values are within the typical range of the SpO2. This example
demonstrates the possibility of monitoring the SpO2 while driving. The SpO2 is often
determined as the average value in a predefined time interval (several PPG peaks).

The motion artifacts (MA) are a serious problem in PPG measurement and successive
SpO2 estimation. The MA are caused by every mutual movement between the skin and the
PPG sensor, accompanied by changes in optical coupling between the illuminated tissue
and the sensor [60]. The research [61] describes the effects of motion on the SpO2 readings
and summarizes generally used solutions for MA reduction. Averaging the noisy data
over a longer time and holding data until clean data are qualified are commonly used as
MA reduction methods. The authors in [62] proposed motion artifact reduction based
on continuous wavelet transform in PPG signal acquired by a wrist-worn device. In our
case, the MA issue in the PPG signal is more critical because the PPG sensor is not fixed
to the finger. To increase the reliability of the SpO2 estimation, it is highly advisable to
reduce MA in the PPG signals. This can be achieved by applying some MA reduction
methods described above and by removing high noisy signal segments during rapid SSW
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movements. Gyroscopic data can effortlessly identify the noisy segments. This fact proves
the importance of adding gyroscope data to the COMBO mode.
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possibility of monitoring the SpO2 while driving. The SpO2 is often determined as the av-
erage value in a predefined time interval (several PPG peaks). 

The motion artifacts (MA) are a serious problem in PPG measurement and successive 
SpO2 estimation. The MA are caused by every mutual movement between the skin and 
the PPG sensor, accompanied by changes in optical coupling between the illuminated tis-
sue and the sensor [60]. The research [61] describes the effects of motion on the SpO2 read-
ings and summarizes generally used solutions for MA reduction. Averaging the noisy 
data over a longer time and holding data until clean data are qualified are commonly used 
as MA reduction methods. The authors in [62] proposed motion artifact reduction based 
on continuous wavelet transform in PPG signal acquired by a wrist-worn device. In our 
case, the MA issue in the PPG signal is more critical because the PPG sensor is not fixed 
to the finger. To increase the reliability of the SpO2 estimation, it is highly advisable to 
reduce MA in the PPG signals. This can be achieved by applying some MA reduction 
methods described above and by removing high noisy signal segments during rapid SSW 
movements. Gyroscopic data can effortlessly identify the noisy segments. This fact proves 
the importance of adding gyroscope data to the COMBO mode. 

 
Figure 18. PPG signal in the infrared and red channel with determined AC and DC components. Figure 18. PPG signal in the infrared and red channel with determined AC and DC components.

4. Conclusions

The unique design of SSW is presented in this paper. The steering wheel can be used
in applications that monitor the driver’s health, drowsiness, or driving style. Alternatively,
it can be used to map road irregularities when using additional GPS information.

The reason we focused on the ECG and PPG signals is that these signals start to change
in stages that forego the state of drowsiness and fatigue. The camera systems respond
to the situation and do not provide the ability to monitor gradual physiological changes.
Although the aim of this article was not a detailed analysis of the data, the significance
and usability of the data from the SSW were demonstrated by using the Pan-Tompkins
algorithm for detecting R peaks from the ECG signal, and by calculating blood oxygen
saturation from the PPG signals. The significance and applicability of the health data were
also confirmed when performing experimental measurements.

We are currently continuing our measurements. The quality of the measured signals
presented in the results gives us a promising motivation to continue in this research,
focusing directly on detecting drowsiness and specific types of heart disease (especially
AF) using the presented platform. Collecting data from several SSWs to form a database
of personalized data that would provide more accurate training data for drowsiness and
CVD detection. Personalized data are necessary to create a so-called generalized model
while implementing artificial intelligence. Such an approach would significantly advance
the issue of driver fatigue detection.
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In conclusion, we can state that the presented prototype addresses highly current
issues, corresponds to trends and challenges for the future, and its solution actively con-
tributes to progress in research areas such as non-invasive driver monitoring, the digital-
ization of healthcare, personalized medicine, and telemedicine.
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