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Complex networks are used in a variety of applications. Revealing the structure of a community is one of the essential features of a
network, during which remote communities are discovered in a complex network. In the real world, dynamic networks are
evolving, and the problem of tracking and detecting communities at different time intervals is raised. We can use dynamic graphs
to model these types of networks. -is paper proposes a multiagent optimization memetic algorithm in complex networks to
detect dynamic communities and calls it DYNMAMA (dynamic multiagent memetic algorithm). -e temporal asymptotic
surprise is used as an evaluation function of the algorithm. In the proposed algorithm, work is done on dynamic data. -is
algorithm does not need to specify the number of communities in advance andmeets the time smoothing limit, and this applies to
dynamic real-world and synthetic networks. -e results of the performance of the evaluation function show that this proposed
algorithm can find an optimal and more convergent solution compared to modern approaches.

1. Introduction

Dynamic networks change over time and are used in various
fields. Identifying dynamic communities in complex net-
works is of great importance. A community in a complex
network is a collection of close operations with other
community entities. -e existence of direct communication
is a unique and essential action. Most of the new, improved
tools and algorithms have been used for static networks,
where the input graph cannot be changed, while most real
networks have a dynamic nature [1]. Because real-world
networks constantly change dynamically, community de-
tection in static networks cannot capture natural phe-
nomena and essential dynamics. Discovering communities
in dynamic networks helps to find the laws of network
evolution processes, which have been necessary for
obtaining basic structural information in social [2–4] and
biological systems [5, 6]. Evolution-based methods integrate

communities and their evolution by simultaneously con-
sidering current and historical community structures in
dynamic networks [7]. With increasing access to dynamic
networks, the issue of detecting dynamic communities has
become a new and vital topic in research, and various
methods have been proposed for it [8, 9]. If static network-
based methods identify real-world network communities,
critical changing situations are easily lost [10]. Optimization
has been considered the most critical issue in evolutionary
sciences and methods. Evolutionary methods provide
computational methods in which an iterative process is used
to improve the resulting solutions until the termination
condition is met.

One of the optimization algorithms is an advanced
discrete version of the Water Cycle Algorithm (WCA) to
solve the Traveling Salesman Problem (TSP) [11]. A PSO-
based optimization method is proposed for fuzzy navigation
cognitive maps [12]. In this method, the complexity of the
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optimization problem requires the automatic adaptation of
fuzzy cognitive map parameters, which evolutionary algo-
rithms have proven to be effective in this field. Other op-
timization algorithms include a reinforcement learning-
based control method that uses a Q-learning algorithm and
meta-heuristic gravity search algorithm and has good per-
formance to solve optimization problems [13]. An optimi-
zation method based on the heuristic algorithm is proposed
in [14], which uses effective rule classification for string
adaptation architectures with heterogeneous bit divisions.
-is method uses the uniqueness of the target pattern to
classify all the characters in the target law and estimate the
distance between strings to reduce memory demand. -e
optimization of fuzzy controllers for nonlinear processes is
described in [15], which uses a meta-heuristic algorithm
whose evaluation results indicate the high efficiency of this
method.

-e problem space on static problems remains un-
changed during the optimization process. At the same time,
most optimization problems are dynamic in the real world;
the problem search space changes during the optimization
process. In static optimization problems, finding the global
optimal point is the primary goal, while finding the optimal
global effectiveness is not the only goal of dynamic opti-
mization. Tracking the optimal point in the problem space is
very important. It is noteworthy that in many evolutionary
optimization findings in dynamic environments, the concept
of dynamic problems or time-dependent problems is not
discernible. In these findings, dynamic optimization prob-
lems are defined sequentially as static problems. We have a
dynamic problem using the time function in optimization;
otherwise, we have a static problem [16]. In real-world
network analysis, when data become temporal, the issue of
modeling structural changes in networks becomes critical,
and these types of networks become evolutionary. -e ac-
tivity of user groups over time can predict future behaviors
on the network, such as clusters of famous writers in the
Blogosphere [2], online networks such as Facebook and
Twitter, and mobile networks. Dynamic networks have
become widely popular in many fields and provide dynamic
tracking of network structure [17]. In dynamic networks,
two conflicting criteria are often considered for the problem
of community recognition. First, they need to maximize the
quality of the snapshot and measure the clustering perfor-
mance of the photo at this time. -en, minimize time costs.
In this way, in dynamic networks, the problem of com-
munity structure recognition can be considered a multi-
objective optimization problem [18].

In this paper, a new algorithm is introduced called a
dynamic multiagent memetic algorithm in unweighted and
undirected complex networks. In this algorithm, the agents
are placed in a network-like structure. -is algorithm is then
used in complex networks for dynamic community detec-
tion and is named DYNMAMA (dynamic multiagent
memetic algorithm). -e evaluation function used in this
algorithm for the dynamic environment is based on an
example of an improved surprise function called temporal
asymptotical surprise (TAS). -e most popular criterion for
the quality of a partition in a static network is modularity.

However, this criterion is not a good choice in dynamic
networks because the measurement has an inherent reso-
lution limit. Surprise can overcome the resolution limit, and
we can use it to reveal the exact community structure of
complex networks. But surprise optimization has high
computational complexity. We use the TAS formula in the
structure of multiagent memetic algorithms in dynamic
networks and conclude that it can achieve better results in
detecting communities. We show that with this function, we
can obtain better results in the problem of dynamic com-
munity detection, and we can apply it to other problems of
the dynamic environment. DYNMAMA is suitable for
handling large-scale complex problems.

In the following, the structure of the paper is as follows:
in the second part, some related works are briefly reviewed.
In the third part, dynamic community detection is
explained. In the fourth section, optimization and multi-
agent systems are described. In the fifth part, a multiagent
memetic optimization algorithm in complex networks for
dynamic community detection is introduced. In the sixth
part are the results of tests and evaluations. -e seventh part
includes discussion and future work, and the last part is the
conclusion.

2. Related Works

-e benefits of detecting communities in dynamic networks
have led to much research in this area, such as methods
based on two-step strategy [19], incremental clustering,
evolutionary clustering [20], andmultiagent algorithms [21].
We analyzed the structure of the distributed community
through a tracking method. Another method is to use a few
snapshots of the fixed network to evolve communities over
time. It introduces a clustering method that tracks and
evaluates the evolution of clusters, which are the same
communities, over time.

FacetNet, presented in [2], is a structure for community
analysis in dynamic networks which operates based on
instant photo cost optimization and ensures that it con-
verges to an optimal local solution. Its convergence is slow,
and communities must first be identified for each time slot
and then compared to determine correspondence. -e idea
provides a framework for discovering communities that
maximize temporal evolution. -e concept of game theory
has been used to identify static communities [20, 21]. -is
approach has also been proposed by Alvari et al. To identify
communities in dynamic networks, the game theory method
provides for dynamic community detection in which each
node behaves as a logical representative [22]. Structures for
evolutionary spectrum clustering are provided that include
cluster quality maintenance parameters and cluster mem-
bership maintenance. In evolutionary clustering, we must
take two goals into account: that the result of good clustering
should be well-proportioned with current data and also not
be significantly different from recent history at the same
time. In this idea, smoothness measurement is integrated
into the overall measure of clustering quality using the well-
known k-means clustering. In [18], a multiobjective safety
algorithm is presented. -is algorithm can optimize both
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modularity criteria and normalized mutual information
criteria simultaneously. A multiobjective method is pro-
posed that identifies communities with temporal softness as
a multiobjective problem and is based on genetic algorithms.
-e main advantage of this algorithm is that it automatically
offers a solution that shows the best exchange between the
obtained clustering accuracy and the deviation from one step
to another [4]. A genetic algorithm with merging and
splitting operators called MSGA [23] has been proposed to
identify a dynamic community based on asymptotic surprise
[24] and the maximum temporal asymptotic surprise to
measure and calculate the quality of partitions in a dynamic
network. Wang et al. [25] have proposed a new method of
targeted optimization for community-based immunization
to select immunization nodes. In this method, the structures
of society are first discovered. -en, according to the
characteristics that exist in the structure of society, potential
candidates are limited. Finally, a new memetic algorithm
selects safe nodes from the node set. Targeted immunization
is formulated as an optimization problem. As mentioned
earlier, dynamic communities change at different intervals
and thus evolve with other developments. We can offer
various approaches to achieve these communities [26]. One
of these methods is the instant optimization that the cur-
rently identified associations should be the most relevant
associations that only consider the current state of the
network [27–29]. In the temporal trade-off method, the
communities identified presently correspond to the balance
between the best relatively stable communities to the net-
work and the history of the communities built. -is method
consists of three steps. First, identify fixed communities at
present. Second, identify existing communities later, using
communities acquired earlier, and in the third step, it
returns to the second step to complete all the processes. In
the cross-time community detection method, all stages of
evolution are studied simultaneously. By considering in a
single transition all network cycles and creating a single
decomposition, single community detection is performed,
i.e., instant detection on all snapshots [30–34]. Figure 1
shows some of the most prominent algorithms that have
been proposed so far for these approaches. Various ideas of
the memetic algorithm have been proposed for community
detection in a static environment.

-e memetic algorithms have been able to attract the
interest of many researchers and are one of the most de-
sirable methods of evolutionary optimization. Table 1 shows
examples of the application of memetic algorithms in
community detection in networks, which shows the type of
crossover operators and mutations used in them. Several
studies focused on the neighbor mutation that guarantees
that each mutated gene is linked only with one of its
neighbors. -is method can cause one of two effects that
relate to a community’s state by either splitting a single
community or combining two communities and ultimately
modifying the community structure.

In adaptive mutation, the mutation rate varies according
to the fitness value, previous mutation rate, or the number of
generations (assuming that the mutation points are deter-
mined randomly). Other new methods have been proposed

in dynamic networks to solve and optimize the problem of
community detection.

Mishra et al. [45] proposed a tree-based structure in
dynamic networks that uses connection and penetration
methods to maintain and record information about the
discovery and change of communities at different time in-
tervals. -e spiderweb method is suggested in [46], which
uses the idea of a spider web by forming subgraphs of nodes
to identify a community. In [47], a new method for iden-
tifying dynamic communities is introduced, which works
based on the distance between the resistance, identifying the
core node, and using a noise community. Also, a method
based on classification approaches, including top-up, top-
down, and based on the data structure to identify the
community in dynamic networks, is proposed [48]. Other
new algorithms based on ant colony and network node
attributes have been proposed in [49, 50] for community
detection.

-e chaotic memetic algorithm is a new method for
detecting the structure of the community in complex net-
works that use a modularity function [51]. In this method, a
chaotic memetic algorithm is proposed that uses both
chaotic numbers instead of random numbers in global and
local search processes, preserving population diversity and
preventing local optimization from falling.

3. Dynamic Community Detection

Community detection, one of the problems of social network
analysis, is the detection of hidden structures in the network
and the division of the network into partitions where the
communication between network members is dense in each
section. Network partitioning is modeled in the form of the
objective function optimization problem. Detecting com-
munities fall into the category of NP-Hard issues. Figure 2
shows the relationship of members of a community.

Community detection is often used in complex net-
works.-ese networks represent systems or data that are not
random and can originate from nature, community, or
anything else. A group of nodes can be defined as an as-
sociation in a network whose dense internal connections
rarely have external links. We can obtain commonalities or
relationships from community detection [52]. Today, net-
works are extensive in scales that are constantly changing
their structure. A dynamic network can be considered a
collection that includes snapshots at different time intervals.
-e first feature of dynamic community detection is used in
dynamic networks. Networks evolve and can originate from
a variety of contexts. Gathering information in real time as
soon as they appear is another way to get a changing
network.

We can obtain the community model by combining a
previous timestamp or a network snapshot. According to a
dynamicG network, periods can be discrete or continuous in
a dynamic community without changing the nature of
dynamic communities. We can use operations in dynamic
communities that include six different operations on
communities. Cazabet et al. [53] added a seventh operation,
which provides for growth, contraction, merging, splitting,
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birth, death, and resurgence as shown in Figure 3. Figure 3
shows that the growth operation can enlarge a community
by merging new nodes. -e contraction operator in a
community means removing some nodes and making that
community smaller. -e merging operator involves com-
bining two or more communities into one community. -e
splitting operator implies that a community can be divided
into two or more other communities. In birth operations, we
can create a new community over some time. -e death
operator means that a community can be destroyed or
disappear at any time. In resurgence operations, a com-
munity that has vanished in a limited time can reappear at
another time.

Most optimization problems are dynamic in the real
world, and the problem search space changes during the
optimization process. Finding the global optimal point is not
the only goal of dynamic optimization, and tracking the
optimal point in the problem space is very important. If the
cost function of the optimization problem is not a function
of time, we are dealing with a static optimization problem.

Still, if time also enters the cost function, the problem of
optimization becomes dynamic. Effective optimization over
time depends on the increasing effect of instabilities caused
by the parameter space on the time vector. Complex time-
dependent systems can have dense components in cohesive
groups of nodes known as “communities.” In the real world,
network topologies change over time. Figures 4 and 5 show
the structure of a variable community with time, and the
following figures show the evolution of the community in a
dynamic network [54]. An evolutionary algorithm based on
clustering in dynamic networks has been proposed by Chen
et al. [55]. Other algorithms for detecting dynamic com-
munities have also been proposed in [56–59].

4. Optimization and Multiagent Systems

-e goal of optimization is to find the best acceptable an-
swer, given the limitations and needs of the problem. -ere
may be different answers to a problem, and the objective
function is defined to select the optimal solution. Multiagent
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Rosvall& Bergstrom, 2010 A method in large networks
to make a map change
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A method in overlapping communities
based on clique percolation that

evaluates time dependence on a large
scale

 Hopcro� et all. 2004
A method in large interconnected

networks to track evolving
communities

Temporal Trade-off

Cross-time
community detection
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longitudinal networks

Guo & Wang, 2014
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Yang et all.2011
It is a method of finding communities that
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Mucha et all. 2010
Community structure in

timedependent, multiscale, and
multiplex networks

Figure 1: Some examples of community detection methods in dynamic networks.
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systems provide the opportunity to calculate and optimize
many complex problems. -ere are two critical issues in-
volved in designing multiagent systems: the first is the design
of the agent, and the second is the creation of the envi-
ronment for the performance and relationship between the
agents, in agent design, how to build an agent capable of
performing independent tasks and autonomous actions. In
designing a community or operating environment, the key is
how to create agents that can interact with one another. -is
relationship implies cooperation, coordination, and nego-
tiation between agents. It is indispensable for accomplishing
the tasks we have been given because not all agents have
common goals or create the same interests. In Figure 6, you
can see the structure of an environment with two agents and
what parts each agent contains, and what kind of rela-
tionship it has with the other agent. -eir neighborhood
knowledge determines the relationship between the two
agents. -ey were deciding whether two agents were adja-
cent to each other.

We can combine multiagent systems and evolutionary
algorithms to form new algorithms to solve optimization
problems. -e optimization algorithm is introduced that
uses the structure of a multiagent system to optimize the
extractive text summarization problem [60]. -is method
combines the optimization algorithm based on biogeogra-
phy (BBO) and the concepts of multiagent systems to create
an optimal summary, the results of which show the efficiency
of this method. Agents live in a network, and each agent is
fixed at a network point. All agents can increase their energy
in competition with their neighbors and use domain
knowledge. Combining evolutionary algorithms and

multiagent systems leads to convergence to optimal global
solutions, which occurs at high speed. -ey are also used to
solve large-scale problems with thousands of dimensions,
and this hybrid structure has been able to achieve good
performance and reduce computational costs. Also, a
method based on the multiagent particle swarm optimiza-
tion approach has been proposed to improve the text
summarization. In this method, each particle is upgraded
with the status of multiagent systems [61]. -e environment,
as an agent, provides environmental information to other
agents. When the search is limited to points that have not yet
been met, the search speed increases.

In the community detection problem, the agent is de-
fined as dividing a network, a candidate solution to solve the
problem. Because the agents live in a network-like

Table 1: A few examples of memetic algorithms in community detection.

Types of memetic algorithms in community detection
References Crossover method Mutation method
Gong et al. [35] Two-way X Neighbor
Zalik and Zalik [36] X-based modularity and community size Neighbor
Haque et al. [37] Add random vertices X Delete random node
Naeni et al. [38] Modularity-based X Adaptive
Wu and Pan [39] One-way X Neighbor
Mu et al. [40] One-way X One neighbor point
Wang et al. [41] Uniform X One point
Ma et al. [42] Two-way X Neighbor
Gach and Hao [43] Priority-based X —
Gong et al. [44] — Neighbor label

Figure 2: Dense communication of members of a community with
each other.
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Figure 3: Operations in dynamic communities [53].
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environment, they are called network agents who can ex-
change information with their neighbors. Multiagent sys-
tems have been integrated with evolutionary algorithms to
solve constraint satisfaction problems and combinatorial
optimization problems with satisfactory results.

5. Multiagent Memetic Optimization
Algorithm to Dynamic Community
Detection (DYNMAMA)

-e memetic algorithm is one of the evolutionary algo-
rithms, and it is a hybrid optimization method that adds
local search to the evolutionary optimization process, in-
creases convergence speed, and can successfully solve

complex optimization problems. In this algorithm, each
member of the population can grow its fitness as its
neighbors.-e utility of each of the answers in this algorithm
is calculated based on the fitness function, and it generates
new responses using the intersection and mutation opera-
tors. A local search is done on each generation at the end of
this algorithm. A set of solutions of that generation and a
subset of the current generation are transferred for the next
generation’s survival. Generating new generations continues
until fulfilling the stop condition. -e local search strategy is
the most critical key to the effectiveness of memetic
algorithms.

-e proposed algorithm, the multiagent memetic algo-
rithm in dynamic community detection, is called DYN-
MAMA. In this structure, agents live in a network-like

Time

Figure 4: Time-varying community structure.

deathbirth
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growth split

merge

t=0 t=1 t=2 t=3 t=4

Figure 5: Community evolution in a dynamic network.
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Figure 6: -e structure of an agent.
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environment. Agents can live in the environment and apply
activities according to their understanding, and specific
goals can guide them. Because each agent interacts with its
environment and other agents, it can increase its energy,
which allows the multiagent memetic algorithm to optimize
the objective function value. We can base agents’ decision-
making on parameters defined as agents’ input, and agents
can use appropriate actions and activities to solve and op-
timize the problem. One of the most critical applications of
multiagent systems is modeling complex systems, and the
structure of networks can be considered a complex system.
We can use graphs for modeling that graph nodes are agents,
and having a link and edge between agents means having
their relationship. Multiagent systems can be the optimal
way to solve the problem of complexity in the structure of
networks such as social networks. If we want to model
complex dynamic networks, this is very costly and requires a
lot of processing. We can model this complex dynamic
network with less cost and processing because of agents’
features in multiagent systems, such as scalability and
flexibility. An agent can use local search to increase the value
of its evaluation function based on the appropriateness of the
importance of its neighbor’s evaluation function. When the
environment of multiagent systems is dynamic, then for
learning operations, we must constantly update agents.
Sharing knowledge between agents and their neighbors leads
to joint learning, effectively removing and reducing obsta-
cles. Each agent competes or cooperates with other neigh-
boring agents to achieve its ultimate goal in optimization
issues. Neighborhood competition, crossover, mutation, and
self-learning operators are defined for these operating be-
haviors. Figure 7 introduces the parameters that make up
our proposed algorithm and explain how we can apply the
parameters according to the application of the algorithm. In
the proposed algorithm, we need to enter the data at each
step for processing.

Initialization should be done based on the data of that
time and based on the number of nodes and connections
between nodes, then partitioning should be done, and we
should enter the next stage or time. We will enter new data
into the program again and operate the data again. -is
method does not need to specify the number of communities
in advance and, at the same time, satisfies the time
smoothing limit. -e initial values of the agents are random,
and in the following steps, the populations are randomly
assigned with the best sample of the community in the
previous time step.-e dynamic networkG is represented by
a set of instantaneous images of the network G � G1,

G2, . . . , GT) at time intervals T.
DYNMAMA uses a locus-based adjacency encoding

schema. -is schema brings to these approaches the ad-
vantage that the number of communities does not need to be
specified in advance. In this graph-based structure, each g

genotype contains n genes. Each gi gene can take up any of
the neighboring node nodes. -erefore, any value of j

assigned to the gene i is interpreted as a link between i and j.
As a result, these nodes are in the same community. For
example, suppose a network is assumed to be in Figure 8.
-is graph has 15 nodes and can be divided into three

communities. An example of a possible chromosome is il-
lustrated. Each community is a subset of network vertices.
-e complex multiagent memetic algorithm for community
detection has the following basic steps: neighborhood-based
integration operator, hybrid integration operator, adaptive
mutation operator, self-learning operator, fitness function,
and local search, which are detailed in each step. Each of
these parameters is described below.

5.1. Division Operator and Neighborhood Competition Based
Integration (Split andMerging). We consider the agent in the
a, b coordinates of the grid to be Za,b, and the agent with the
highest energy among the neighbors to be Maxa,b. If the
amount of energy Za,b is greater than the amount of energy
Maxa,b, then Za,b will be the winner, and it is one of the best
and can survive; otherwise, the agent Za,b is replaced by
Maxa,b.

For the loser and replacement mode, two strategies can
be proposed that emphasize exploitation or exploration
Maxa,b chooses one of these strategies considering the
probability. An agent locates at (a, b), a, b � 1, 2 . . . Size{ },
and an agent Za,b consists of N genes. If there is a connection
between nodes i and k, then the gi gene takes the value of k.
In this display, k � (gi � k) and the indices of i and k are in a
similar community. We define a genotype that explores the
relationship between specific nodes and communities. In
this method, we consider two approaches to detect the allele
value of a random gene from each agent. -e gene selected
for each agent that is randomly determined is called the
target gene. We choose an approach by choosing a random
number. We compare the energy of the modified
energy agent (Za,b) with the point of the best agent in the
energy neighborhoodMaxa,b, and if the energy improves, we
save the new agent. -e modified agent (Za,b) is compared
with the energy of the best agent in its neighborhood
(maxa,b). In the case of energy improvement, the new agent
is saved; otherwise, we will replace it with the best neighbor.
If Za,b satisfies equation (1), it is a winner; otherwise, it is a
loser.

Energy Za,b >Energy Maxa,b . (1)

Maxa,b is first mapped on [0, 1] and generates a new
agent, Newa,b, and then, Newa,b is put on the lattice point.
We used the division and integration operator to remove
lower energy agents from the network.

5.2. Hybrid Integration Operator (Crossover). In the pro-
posed method, a neighboring integration operator is defined
that consists of combining two types of two-point and
uniform integrations. In this function, using two integration
action strategies, an agent Za,b is integrated with the best
agent in its neighborhood maxa,b. Each strategy is selected
based on the Px probability. If u(0, 1)<px, the first strategy
is adopted; otherwise, we will use the second strategy. -e
first strategy begins with the two-point integration and the
random selection of points k1 and k2. If u(0, 1)< 0.5, the
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genes between the two selected points of maxa,b are replaced
with Za,b; otherwise, we will replace the genes outside these
selectable points with each other. In fact, in the first strategy,
we map the genes between positions k1 and k2 of maxa,b to
Za,b. Otherwise, the rest of the genes are mapped to Za,b. In
the second strategy, a uniform integration operator is used in
which maxa,b and Za,b are integrated, and Za,b is replaced
with the new agent.

5.3. Mutation Operator. -e mutation is performed based
on the probability pb. If u(0, 1)<pb, then the value of the
gene is replaced by the neighbor allele’s value in its
neighborhood list. Also, the pb changes to achieve better
results in an adaptive mutation operator. Equation (2) shows
the mutation.

Pb′ �
t

Nx

+ 1 Pb, (2)

where Nx is the end criterion and Pb is the probability of
mutation.

5.4. Local Search. -e local search is applied to agents after
generating a new generation and replacing it with previous
generations in the proposed algorithm. Accordingly, for

each agent, a neighborhood radius is considered that the
neighbors of each agent Za,b in the proposed method are
determined based on equation (3). Each agent is compared
with the neighboring agents in terms of energy. In equation
(3), Zsize is the size of the population. Agents are used to
detect communities within graphs. We show the neigh-
borhood structure we used in Figure 9.

neighborsa,b � Za′,b , Za,b′ , Za,b″ , Za″,b ,

a′ �
a − 1, a≠ 1,

Zsize, a � 1,
 a″ �

a + 1, a≠Zsize,

1, a � Zsize,


b′ �
b − 1, b≠ 1,

Zsize, b � 1,
 b″ �

b + 1, b≠Zsize,

1, b � Zsize.


(3)

5.5. Self-Learning Operator. In the proposed method, a
network of small-scale s Z agents with the size s Zsize × s Zsize
is created based on equation (4). In the following equation,
Zsize is the size of the population.

sZ �
Za,b, a′ � 1 , b′ � 1,

sZa′ ,b′ , otherwise.

⎧⎨

⎩ (4)

sZa′ ,b′ is created based on the neighborhood-based
mutation operator on Za,b -e split and merge operation

DYNMAMA parameters

Neighborhood
competition

operator

Crossover
operator

Mutation
operator

Self-learning
operator Local Search Evaluation of

individuals

Figure 7: Proposed algorithm (DYNMAMA) parameters.
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Figure 8: -e locus-based representation of an individual. (a) -e main structure of the graph; (b) an example of a possible chromosome;
(c) structure of communities.
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improves agent energy until no improvement is achieved.
-e self-learning operator is essential in improving the
performance of our proposed algorithm.

5.6. Fitness Function. A statistical measure of the commu-
nity is called a surprise. -e formula of this criterion is
shown in the following equation:

S � −ln 

min m, Mint( )

j�mint

Mint

j

⎛⎝ ⎞⎠
M − Mint

m − j

⎛⎝ ⎞⎠

M

m

⎛⎝ ⎞⎠

, (5)

where

(i) M� the maximal number of links
(ii) Mint � the maximal number of intracommunity

links
(iii) m� the number of existing links
(iv) mint � the number of existing intracommunity links

Surprise can eliminate the degree of resolution and, by
maximizing it, can accurately reveal the community struc-
ture of networks, but optimization with this method has high
computational complexity. Trag et al. presented an exact
asymptotic approximation of surprise or asymptotic surprise
called asymmetric surprise or AS. Asymmetric surprise can
accurately measure and quickly calculate the quality of
partitions in a dynamic network. Detecting a dynamic
community is a matter of maximizing this function. -is
method lacks a resolution that makes the structure of the
community more accurate. Its formula is shown in the
following equation:

S ≈ m q log
q

q
+(1 − q)log

1 − q

1 − q
  � m D(q||q), (6)

where

(i) q�mint/m
(ii) q �Mint/M
(iii) D(x||y) is the KL divergence

Asymmetric surprise has been developed for the tem-
poral asymptotical surprise (TAS) for dynamic community
detection. We used TAS as the fitness function to optimize.

For a given partition π, the temporal asymptotical surprise
at time t is defined according to equation (7), which shows
that the asymmetric temporal surprise at time t depends on
AS at t, t − 1, . . . , t − k( 1≤ k≤ t − 1). Given a partition π,
we can obtain the total numbers of internal links mint and
possible internal links Mint.

TAS(π, G, t) �
AS π, G1( , t � 1,

β.AS π, Gt(  +(1 − β).AS π, Gt−1( , t � 2, 3, . . . , T.


(7)

A chromosome is decoded into a partition, and the TAS
associated with the partition and current time step is cal-
culated using equation (7).

A dynamic network G is given by a series of network
snapshots, G � G1, G2, . . . , GT{ }. Parameter β is an input
parameter that measures the relative importance of the
snapshot cost in the whole one. -erefore, to calculate the
fitness of each population, first, the populations are con-
verted to partition by decoding. -en, the fitness value for
each population is calculated by the TAS function. If we
consider TAS as a qualitative criterion for communities, the
problem of detecting the structure of the community be-
comes the problem of finding the partition of the network
with the optimal value of TAS. Algorithm 1 shows our
proposed method, DYNMAMA, for dynamic community
detection. We use TAS as an effective measure to evaluate
the quality of a partition on the snapshot of the dynamic
network. As an extension of asymptotic surprise, TAS is
preferable for dynamic community detection because it can
break resolution limits and supports temporal smoothness
for adjacent snapshots. Figure 10 shows the flowchart of the
multiagent memetic algorithm in dynamic community de-
tection, DYNMAMA. -e value of parameters used in our
proposed algorithm is according to Table 2.

6. Test Results and Analysis

In this section, we test the results of evaluating the effec-
tiveness of using the multiagent memetic algorithm in
complex networks for dynamic community detection
(DYNMAMA). -e results of the suitability value or the
same TAS and NMI (normalized mutual information) [62]
are calculated at each time step. As an evolutionary method,
we have to set several parameters. Finally, we compare the
proposed method with state-of-the-art approaches, such
as MSGA [23], DYNMOGA [4], ESPRA [63], and
FacetNet algorithms [2], which are well-known evolutionary
approaches for the accurate detection of dynamic com-
munities in networks. -ese methods are in dynamic net-
works and are based on evolution, which integrate the
extraction and evolution of societies by simultaneously
considering the structures of current and historical com-
munity. In MSGA, a genetic algorithm improved by the split
and merge operator is used for dynamic community de-
tection. First, the algorithm gets the dynamic network, the
number of time steps, and the population size. -en, it
generates the best partition for each time step. -e initial-
ization is divided into two parts. 90% of the initial

a',b"

a, b"a,b"

a',ba',b'

a,b

a", b"a",ba",b'

Figure 9: -e neighborhood of an agent.
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populations are randomly selected, and the remaining 10%
are quantified by the best samples of the previous pop-
ulation. -e standard parameters are considered the same
for better comparison in both methods.

In fact, by comparing this algorithm with our proposed
method, we want to examine whether local search in a
memetic algorithm can improve the results or not. In the
DYNMOGA algorithm, which is based on a genetic algo-
rithm, the discovery of communities in dynamic networks
has been proposed as a multiobjective optimization problem
to increase the quality of snapshots and reduce time costs.
ESPRA is a clustering method for finding dynamic com-
munities presented under temporal smoothness. FacetNet
uses a random model to generate communities and a
probabilistic model to capture community change and
discovers communities that maximize time evolution. We
run our algorithm in MATLAB 2016, and we select solutions
with the maximum value of NMI at each run.

6.1.Data Sets. We tested DYNMAMA performance on real-
world dynamic networks and synthetic networks, which we
describe below:

6.1.1. Real-World Network: Enron Email. -e data set used
a collection of emails sent between employees of an or-
ganization collected between 1999 and 2002. -e data set
we reviewed is part of these emails sent to employees
within the organization for 12 months. -e smaller ver-
sion of this data set contains the following: the number of
employees is 151, and the number of emails sent is 50,572.
-erefore, in the network structure, the number of 151
nodes and the number of directional links equal the
number of emails sent. -e Enron email data supporting
this study’s findings are available with the identifier
“https://doi.org/10.1109/TKDE.2013.131” [4]. -e num-
ber of different links without repetition is equal to 2235.
Also, the number of time steps is 12.

6.1.2. Synthetic Network: LFR Benchmark. -is database is
one of the standard graphs that achieve heterogeneity in the
distribution of node degree and size of the community in the
dynamic environment. -e LFR data supporting this study’s
findings are available with the identifier [3]. -at is, we can
trace communities over time in unstable networks. -is data
set is a network generator that can generate dynamic

Initialize network agents

Neighborhood-based integration
operator

Crossover operator

Mutation operator

Local search

Self-learning operator Fitness function

The best agent update

Termination

Save partitioning and determine the best
agent

Complete time steps

YES

NO

NO

Get a dynamic network 

Figure 10: Flowchart of DYNMAMA.

Table 2: Parameter setting.

Parameter Ns Ps Pb Pa Zsize

Description -e number of
generations

-e probability of choosing for hybrid neighborhood
crossover operator

Mutation
probability

Crossover
probability

Population
size

Value 500 0.5 0.7 0.7 100

10 Computational Intelligence and Neuroscience

https://doi.org/10.1109/TKDE.2013.131


network instances that include growth, contraction, merg-
ing, splitting, birth, death, and alternating communities.
Each network consisted of 1000 nodes. Nodes have an av-
erage degree of 20, a maximum degree of 40, and a mixing
parameter value of μ � 0.2 that controls the level of edges
between communities. We set the power exponents for
degree and community size to −1 and −2, respectively.

6.2. Evaluate the Quality of the Communities Detected.
Communities detected by the proposed algorithms are
analyzed using the NMI evaluation criterion. NMI deter-
mines the proximity of communities resulting from the
proposed system to optimal communities. A and B are
partitions of a network. If A and B are the same,
NMI(A, B) � 1, and if A and B are entirely different,
NMI(A, B) � 0. -e definition of NMI(A, B) is shown in
the following equation:

NMI(A, B) �
−2

kA

i�1 
kB

j�1 Dij log Dij N/Di.D.j 


kA

i�1 Di.log Di./N(  + 
kB

j�1 D.jlog D.j/N 
,

(8)

where kA is the number of communities in A, kB is the
number of communities in B, D is the confusion matrix, and
N is the number of elements.

In addition to NMI, the error rate [2] can also be used to
evaluate the distance between a detected partition and the
ground truth. At the error rate, the Z matrix is used to
represent the partitions and the G matrix is used to represent
the ground truth. If the number of nodes in the network is n,
the number of communities in a detected partition is k, and
the actual number of communities is m, Z � n × k, and
G � n × m. -e error rate is then defined as the norm
ZZT − GGT, that is, nonzero inputs and the detected par-
tition will be more accurate if the error rate is lower. -e
error rate measures the distance between the community
structures represented by Z and G.

6.3. Results of theDYNMAMA. First, the results based on the
best NMI values in the Enron email network are presented
for comparison and analysis. To calculate the NMI value, we
need to know the initial communities in the Enron email
network. Figure 11 shows the NMI results for DYNMAMA,
MSGA, DYNMOGA, and ESPRA. As you can see in Fig-
ure 11, our proposed method, DYNMAMA, has been more
successful than other methods in obtaining values close to 1,
which indicates the high accuracy of the proposed method
and the high quality of the dynamic communities discov-
ered. -e MSGA algorithm has also obtained good values
close to our proposed method. For example, in step 9, the
NMI values obtained by DYNMAMA andMSGA are 0.8309
and 0.8024, respectively, which are close to each other. At
this time, the NMI values obtained from the other two
methods, DYNMOGA and ESPRA, are 0.6718 and 0.5491,
respectively, which have weaker answers than our proposed
method. Our proposed method maintains the NMI values
obtained in these 12 time steps between 0.7625 and 0.8685.

-e highest value that the MSGA method has been able to
get for NMI is 0.8081 in time step 3, for the DYNMOGA
method, 0.7821 in time step 7, and for the ESPRA method
0.6527 in time step 10 in the Enron email network data set.
In Figure 11, the lower error rate is related to our proposed
algorithm in all time steps, which, for example, in step 6 was
able to achieve the value of 508. -e lowest error rates for
other comparable algorithms are 610, 903, and 990 for
MSGA, DYNMOGA, and ESPRA, respectively. We observe
that in this network, the highest error rate in all time steps is
related to the ESPRA algorithm.

In Table 3, the results of the TAS value in each time step
are calculated for the best partitioning in each step in the
proposed dynamic community detection algorithm, DYN-
MAMA, in the Enron email network. In other words, after
determining the best solution or the best partition in each
step, its TAS value is determined and shown in Table 3. Both
DYNMAMA and MSGA methods use the TAS evaluation
function, and the DYNMOGA method uses the Q modu-
larity evaluation function. |C|D1 and |C|D2 are the number of
dynamic communities detected in DYNMAMA and
DYNMOGA methods, respectively, and |C|M is the number
of dynamic communities detected in MSGA. |V| and |E| are
the number of nodes and edges, and |E∗| is the number of
undirected edges.

As shown in Table 3, the number of evaluation functions
and the number of dynamic communities detected are
variable at each time step for each method. For example, in
time step 2, the numbers of dynamic communities obtained
by the DYNMAMA method equal 12. For the two methods,
MSGA and DYNMOGA are equal to 11 and 9, respectively.
Also, at the same time step, the value of TAS in the
DYNMAMA method is equal to 179.563, and in the MSGA
method, it is equal to 178.376, and the value of modularity
function in the DYNMOGA method is equal to 0.5348. In
time step 12, the numbers of dynamic communities obtained
by the DYNMAMA method are equal to 14, and for the two
methods, MSGA and DYNMOGA are equal to 13 and 9,
respectively. Also, at the same time step, the value of TAS in
the DYNMAMA method is equal to 376.025, and in the
MSGA method it, is equal to 329.668, and the value of
modularity function in the DYNMOGA method is equal to
0.5175. In other words, the proposed method has been able
to increase and improve the value of its evaluation function
and detect more dynamic communities. Because both
DYNMAMA and MSGA methods use the TAS function,
their values at each time step for comparison are shown in
Figure 12. As can be seen in the results, the proposedmethod
(DYNMAMA) in the Enron email network has been able to
achieve better results than the MSGA method and achieve
better answers in each step. It allows for better partitioning,
and the detected communities are more accurate. -e
structure of the communities detected by the proposed
DYNMAMA method at time steps 3 and 4 for the email
network can be seen in Table 4. If we want to compare
operations in the third and fourth time steps according to
Table 4, we see that, for example, in community number 1 of
the third time step, nodes 1, 2, 6, 18, 22, 30, 31, 40, 49, and 75
have a membership in this community. We see that in the
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fourth stage, nodes 18, 30, 31, and 40 have lost their
membership in community one and have joined community
numbers 4, 10, 2, and 8, respectively.-e number of detected
communities has reached 16 in the third step and 13 in the
fourth step.

-e results of the LFR data set are shown below. We
mentioned earlier that this benchmark is closer to real-world
networks regarding node degrees and community size.
Figure 13 shows the performance of our proposed algorithm,
DYNMAMA, and the other four algorithms, MSGA,
DYNMOGA, ESPRA, and FacetNet, in the birth and death
of the LFR network. In evaluating and comparing the results,
we can see that the DYNMAMA method has obtained the
NMI value always better than the other four methods and
the value of 1 or relatively close to 1.

-e minimum NMI in the DYNMAMA method is
0.9967 in time interval 1. It means that our proposed method
has always been able to obtain more accurate quality
communities in periods of 1 to 10 than the other two
methods.

-e existence of local search in the structure of memetic
algorithm and cooperation and evolution of factors in the
network structure such as multiagents in the DYNMAMA
method have improved the results continuously upward.
DYMAMA and MSGA are relatively equal and close to each
other in the birth and death part of the LFR data set at time
intervals 2, 5, 7, and 8. DYNMOGA maintained the NMI
values obtained, except for step one, between 0.9754 and
0.9936 in steps 2 to 10. ESPRA received the highest NMI
value in time 5 with 0.9871. FacetNet also got the highest
value in time 6 with 0.9878 and the lowest value in time 1
with 0.9714. In Figure 13, the lower error rate is related to
our proposed algorithm in all time steps, which, for example,
in step 6 was able to achieve the value of 69. -e lowest error
rates for other comparable algorithms are 84, 468, 2032, and
6543 for MSGA, DYNMOGA, ESPRA, and FacetNet, re-
spectively. We observe that in this network, the highest error
rate in all time steps is related to the FacetNet algorithm.

Figure 14 shows the performance of our proposed al-
gorithm, DYNMAMA, and the four comparable algorithms

in the expansion and contraction section of the LFR data set
in 10 time steps. Both DYNMAMA and MSGA algorithms
perform well. In each time step, DYNMAMA has higher
accuracy in terms of NMI value in this part of the network
than the LFR database, and except for time steps 2, 6, and 9,
it has been able to obtain a value of 1 at other times. MSGA
has also been able to get values close to 1, and the minimum
NMI value for it in the time interval is four and equal to the
value of 0.9926. DYNMOGA has a value of 0.9301 in NMI in
period 1. In period 2, this value has improved to 0.9801 but
still changes sequentially between 0.9740 and 0.9880 in 3 to
10 time steps. Because DYNMOGA uses the modularity
function as the optimization function, we can raise the issue
of resolution in the face of these changes.

ESPRA has the highest NMI value in time 1 with 0.9951,
and FacetNet has the highest value in time 7 with 0.9655. In
Figure 14, the lower error rate is related to our proposed
algorithm in all time steps, which, for example, in step 10 was
able to achieve the value of 101. In this time step, error rates
for other comparable algorithms are 139, 2111, 3899, and
8195 for MSGA, DYNMOGA, ESPRA, and FacetNet, re-
spectively. We observe that in this network, the highest error
rate in all time steps is related to the FacetNet algorithm.
ESPRA was able to obtain a lower error rate than DYN-
MOGA in steps 2, 4, and 6. We have already mentioned that
the lower the error rate, the higher the accuracy of com-
munity detection.

Figure 15 shows the performance of our proposed al-
gorithm, DYNMAMA, and the four algorithms MSGA,
DYNMOGA, ESPRA, and FacetNet in the merging and
splitting section of the LFR database. As you can see,
DYNMAMA has been able to detect communities more
accurately in obtaining NMI than the other four methods.
Also, the presence of the TAS function with the property of
breaking the resolution limit in both DYNMAMA and
MSGA methods is a better criterion for detecting dynamic
communities and can find higher quality communities,
which has resulted in an NMI value of either one or almost 1.
-e NMI values obtained in this section for DYNMAMA
ranged from 0.9910 to 1 during steps 1 to 10. MSGA ranged
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Figure 11: Compare NMI (a) and error rate (b) values in the Enron email network.
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from 0.9881 to 0.9980, and DYNMOGA ranged between
0.9423 and 0.9720. -e low NMI for DYNMOGA in step 1
indicates the high error rate of this method in this interval,
and gradually with increasing the NMI value, this error rate
has improved and does not reach values less than 0.9610.
ESPRA and FacetNet obtained the highest NMI values at
time step 1 with 0.9886 and 0.9651, respectively, and the
lowest NMI values at time step 8 and 9 with 0.9301 and
0.9308 values, respectively. ESPRA obtained higher NMI
values than DYNMOGA in steps 1 and 6. In other words, it

has been able to detect dynamic communities with better
quality than the DYNMOGA method in these two time
steps. In Figure 15, the lower error rate is related to our
proposed algorithm in all time steps, which, for example, in
step 2 was able to achieve the value of 98. -e error rates for
other comparable algorithms in this time step are 129, 3951,
11151, and 8199 for MSGA, DYNMOGA, ESPRA, and
FacetNet, respectively. We observe that DYNMOGA has the
highest error rate in time step 1. Also, ESPRA has a higher
error rate than FacetNet in steps 2 and 3.

Input:
Dynamic network G� {G1, G2,. . .,GT}
Time Steps: T;
Zt: the agent at the t generation of Z;
sl: agents carried out self-learning operator;
Bt: the best agent;
KBt[sl]: the best sl agents;
KBt: the best agent in Zt;
Crossover probability: Pa;
Mutation probability: Pb;
Ps: the probability of chosen for hybrid neighborhood crossover operator;
Ns: the maximum number of generations without improvement;

Output:
Partitions π1, π2,. . ., πT

t� 0;
n� 0;
ts� 1;
While (ts<T) do
If ts�� 1 then

Z0 � Initialize population with random individuals;
Else

Z0 � Initialize population with part of members being of best individuals from ts− 1 generation;
End if
Evaluate the fitness of each individual in the population;
While (n<Ns) do

t� t+ 1;
Zt � the split and merging operation;
Zt � the hybrid neighborhood crossover operator;
Zt � adaptive mutation operator;
Zt � local search;

KBt[sl]:� the best sl agents in Zt;
for i� 1 to sl do
if Learning (KBt[i]��True) then
self learning operator on KBt [i]

end
end
Update KBt;
if (Energy (KBt)>Energy (KBt−1)) then
n� 0;
Bt �KBt;

else
n� n+ 1;
Bt �Bt−1;

KBt �Bt;
end

end
ts� ts+ 1;

End While

ALGORITHM 1: DYNMAMA.
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Figure 16 shows a comparison between our proposed
method, DYNMAMA, and the four algorithms in obtaining
the NMI value for the hidden part of the LFR data set, which
still shows the superiority of the DYNMAMA method over
the other four methods. NMI values ranged from 0.9988 to 1
for DYNMAMA, 0.9901 to 1 forMSGA, and 0.9520 to 0.9810
for DYNMOGA during steps 1 to 10. But we are still of the
opinion that these evolutionary algorithms have always been
able to keep the NMI value in the very close range of 1 and
always discover higher quality communities. Still, in com-
paring TAS and modularity evaluation functions, this ad-
vantage with TAS is always preserved. Existence of split and
merge operators in MSGA, the presence of multiobjective
structure using genetic algorithm in DYNMOGA, and the
existence of local search and multiagent structure in
DYNMAMA have led to this process of improving dynamic
communities with higher accuracy and quality. -e highest
NMI values obtained by ESPRA and FacetNet methods are
in steps 1 and 4, respectively, with 0.9881 and 0.9789. In steps
1, 2, and 7, the ESPRA method obtained higher values than
the DYNMOGAmethod. In Figure 16, the lower error rate is
related to our proposed algorithm in all time steps, which,
for example, in time step 4 was able to achieve the value of

199. -e error rates for other comparable algorithms in this
time step are 232, 3251, 5741, and 13700 for MSGA,
DYNMOGA, ESPRA, and FacetNet, respectively. We see
that the highest error rate in time step 1 is related to
DYNMOGA and FacetNet algorithms with values of 9451
and 16300.

We mentioned earlier that in our proposed algorithm,
DYNMAMA and the MSGA algorithm we used for com-
parison both use the temporal asymptotical surprise (TAS)
evaluation function in their optimization. In the following,
we show the experimental results on four parts of the LFR
data set, which shows the value obtained by the TAS
function by both methods and states which way was able to
get the higher TAS value. Figure 17 shows the performance
of these algorithms in the birth and death network for the
TAS value. As shown in Figure 17, for the LFR network of
the birth and death section, the TAS value obtained in our
proposed algorithm, DYNMAMA, has increased compared
to the MSGA. In time step 1, the value of TAS is equal for
both algorithms, but from time step 2 onward, we encounter
an increase in the amount of TAS obtained by DYNMAMA.
For example, in time step 3, the TAS value of the DYN-
MAMA method is equal to 2.7845e+ 03, and for the MSGA
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Figure 12: Compare the Enron email network’s TAS values between DYNMAMA and MSGA.

Table 3: TAS value for DYNMAMA and MSGA in Enron email network.

DYNMAMA MSGA DYNMOGA
Time steps |V| |E| |E∗| TAS |C|D1 TAS |C|M Q |C|D2
1 91 963 151 173.271 11 169.561 10 0.5219 7
2 95 991 186 179.563 12 178.376 11 0.5348 9
3 90 1431 193 183.112 16 181.593 13 0.5711 11
4 118 1209 245 217.413 13 205.841 14 0.4932 10
5 126 3027 304 223.712 19 218.623 14 0.5984 11
6 108 5129 450 258.903 16 221.179 13 0.6011 11
7 124 6698 604 261.015 12 223.602 10 0.5885 9
8 143 6003 864 289.438 17 248.082 14 0.5293 12
9 140 20107 1222 338.517 13 313.977 13 0.5270 9
10 118 6501 614 352.996 12 335.756 11 0.4314 11
11 139 5141 371 353.478 13 341.237 11 0.4993 10
12 117 1657 482 376.025 14 329.668 13 0.5175 9
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method, it is equal to 2.6436e+ 03. In time stages of 7 to 10,
the value of TAS for both ways is close to each other. -e
evolutionary structure in both methods has improved the
value of TAS. However, this advantage is still with the
DYNMAMA algorithm until the time step of 10. Figure 18
shows the performance changes of these algorithms in the
expansion and contraction network of the LFR data set. In
this section, the closeness of the answers can still be seen, but
the superiority in obtaining a higher TAS for the DYN-
MAMA method has been maintained from time two on-
ward. As we can see in Figure 19, for the LFR network of the
merge and split section, the NMI value obtained in our first
proposed method, DYNMAMA, has increased compared to
the comparison method. In this section, too, DYNMAMA
has maintained its superiority in achieving higher TAS

values. For example, in step 2, a value of 2.4971e+ 03 is
obtained for our proposed algorithm. A value of 2.2919e+ 03
is accepted for the MSGA algorithm.

Figure 20 shows the performance comparison between
these algorithms in the hidden network.

As we can see, for the LFR network of the hide section,
the TAS value obtained in our proposed method, DYN-
MAMA, has increased compared to the MSGA method in
time steps 10.

For example, in step 3, a value of 2.7960e+ 03 is obtained
for our proposed algorithm. A value of 2.6510e+ 03 is ob-
tained for the MSGA algorithm. In step 6, we received a
value of 3.3562e+ 03 for our proposed algorithm. We got a
value of 3.2778e+ 03 for the MSGA algorithm. According to
the results obtained in the LFR data set, we can say that our
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Figure 13: Compare NMI (a) and error rate (b) values in the birth and death from the LFR network.
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Figure 14: Compare NMI (a) and error rate (b) values in the expansion and contraction of the LFR network.
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proposed algorithm, DYNMAMA, has been able to perform
better in dynamic community detection than MSGA and
increase the values of the TAS parameter and NMI
value, which indicates the effectiveness of the proposed
algorithm.

As we can see in the figures above, DYNMAMA per-
forms better than other algorithms on all networks. Under
the same number of evaluations, DYNMAMA can quickly
converge to optimum mode with good stability. DYN-
MAMA can achieve the best-known results better than
MSGA and DYNMOGA. DYNMAMA can converge opti-
mally with a small number of evaluations. Having a local

search improves the algorithm. -e poor scores of genetic
algorithms do not converge in a limited number of iterations
at each time step. At the same time, the presence of inte-
gration and division operators leads to convergence.

6.4. Convergence of the Algorithm. We compare the pro-
posed algorithm convergence with other algorithms in this
subsection. -e convergence graph shows the mean error
performance of the best solution over the total runs. -e
output results are shown in Figure 21. As shown, the pro-
posed algorithm in each repetition achieves better results.
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Figure 15: Compare NMI (a) and error rate (b) values in the merging and splitting from the LFR network.
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6.5. Statistical Analysis. We compare the results of the
proposed DYNMAMA algorithm using ANOVA (ANalysis
of VAriance) with other algorithms to ensure the statistical
results. ANOVA is a statistical test to determine the dif-
ference between the meanings of two or more independent
statistical populations. In other words, the analysis tech-
nique of variance is used to compare two or more groups to
investigate whether they are significantly different. ANOVA
compares the variance of the between groups with the
variance of the within groups. If their variance is not sig-
nificantly high, the average group may be equal. Tables 5 and
6 present the ANOVA test results for our proposed algo-
rithm compared to other algorithms, including MSGA,
DYNMOGA, and ESPRA.

Analysis of variance can be used as a method to test the
hypothesis of comparing the mean between several inde-
pendent communities. One of the indicators that can be used

to express the characteristics of communities can be the
mean. By comparing the mean and detecting their equality
or inequality among communities, one can vote for them to
be the same or different. -erefore, if one of the means is
different from the others, we find that communities are not
the same. -e test hypotheses for comparing the mean k of a
community are shown in the following equation:

H0: μ1 � μ2 � . . . � μk,

H1: There are some μ′s not equal with others.
(9)

Here, the opposite hypothesis, or H1, states that at least
one of the means is different from the others, and that the
null hypothesis is true, indicating that the means are equal to
each other. We see that the p− value or sig is less than 0.05.
In addition, Figure 22 shows the stability of the compared
algorithms in achieving coverage. All algorithms run 20
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times independently, and our proposed algorithm has ex-
cellent performance in creating full coverage.

7. Discussion and Future Work

-is paper describes an optimization method based on
memetic algorithms and multiagent systems in complex
networks to reveal a dynamic community structure. Ex-
periments on the networks used show that our process works
well to obtain optimal values. We were able to get good

results in the TAS fitness function and the NMI evaluation
criterion, which can be found in Tables 3 and 4, and see

Table 4: -e communities detected by DYNMAMA at third and fourth time steps for Enron email network.

Time step: 3 Time step: 4
Comm. no. Members Comm. no. Members

1 1, 2, 6, 18, 22, 30, 31, 40, 49, 75 1 1, 2, 4, 5, 6, 9, 15, 20, 21, 22, 26, 27, 29, 32, 37, 38, 43, 44, 45, 46, 47, 48,
49, 50, 56, 57, 58, 60, 68, 69, 70, 71, 73, 75, 114

2 3, 9, 21, 23, 36, 42, 45, 55, 122 2 3, 12, 31, 33, 51, 61, 63, 64, 66, 77, 78, 122
3 4, 13, 19, 28, 32, 33, 39, 47, 48, 52, 53 3 7, 11, 53, 74, 118
4 5, 10, 17, 29, 147 4 8, 10, 18, 41, 72, 137
5 7, 12, 51, 137 5 13, 14, 25, 55, 147
6 8, 38, 118 6 16
7 11, 16, 54, 129 7 17, 42, 111
8 14, 27, 46, 50, 151 8 19, 23, 28, 39, 40, 52, 67, 151
9 15, 37, 67 9 24, 34, 76, 129
10 20, 107 10 30, 36, 65, 107
11 24, 125 11 35, 125
12 25, 26, 34, 35, 114 12 54, 62, 150
13 41, 81 13 59, 81
14 43, 150
15 44, 61
16 56, 66
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Figure 22: Stability analysis on the branch coverage.

Table 5: -e ANOVA test for DYNMAMA, MSGA, DYNMOGA,
and ESPRA at the 0.05 significant level.

Enron email
network

Sum of
squares df Mean

square F Sig.

Between groups 0.715 3 0.238 87.293 0.000
Within groups 0.207 76 0.003
Total 0.922 79
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Figures 11 to 20, which show that the answers to the pro-
posed idea are better than the methods compared. In future
work, we can combine other evolutionary algorithms with
multiagent systems and introduce robust structures to
recognize the structure of dynamic communities and in-
crease the strength of this type of network against possible
attacks. Let us examine whether combining other evolu-
tionary algorithms with multisystems can create a robust,
consistent, and efficient structure for large-scale dynamic
networks. -e multiagent memetic optimization algorithm
proposed in this paper can also solve other optimization
problems to improve results and increase efficiency. -e
output of this community structure detection algorithm can
be used in the following cases: recommender systems
(people in a community usually have the same interests and
tastes, and we can use this to make suggestions in recom-
mender systems), graph visualization tools (communities
are usually detected in very large diagrams, and each
community is represented by a node that represents all
members of that community), link prediction (given that
members of a community have many structural similarities,
they are more likely to make connections between members
of a community in the future), and improved search engines
(community detection can also be used in thematic clus-
tering of websites, and this helps to improve the perfor-
mance of search engines significantly). -e above are just a
limited number of practical purposes for detecting com-
munity structure by our proposed algorithm. In the future,
we will generalize our proposed method to weighted and
directed networks that exist in large numbers in real life.

8. Conclusions

One of the most critical issues recently raised in the structure
of complex networks is the discovery of communities that
change over time, i.e., dynamic communities. Changes in
internal links are recorded over time, and it is possible to
change the network structure to trace at different time stages.
-is paper proposes a multiagent optimization memetic
algorithm in complex networks to detect dynamic com-
munities in unweighted and undirected complex networks
and calls it DYNMAMA (dynamic multiagent memetic
algorithm). We can combine multiagent systems and evo-
lutionary algorithms to create new algorithms to solve
optimization problems that lead to convergence to optimal
global solutions. -is convergence occurs at high speed. We,
in this paper, use temporal asymptotic surprise (TAS) as an
algorithm evaluation function. -e temporal asymptotic
surprise criterion has a higher resolution than the modu-
larity criterion, breaking the resolution limit. We can obtain
a more precise and clear network community structure by
maximizing it. TAS can accurately measure the quality of
partitions on the dynamic network at a low cost. We also
used the NMI to evaluate the quality and accuracy of the
dynamic communities received. -e goal is to find the
optimal community structure. -e results of experiments on
the real-world Enron email networks and LFR networks
show that our proposed algorithm has been able to achieve
more efficiency and better answers than the four well-known

algorithms for detecting dynamic communities in complex
networks. DYNMAMA can handle networks with different
densities of edges beside communities by turning the pa-
rameter μ in LFR networks. Moreover, DYNMAMA has
good stability according to the standard deviations and can
handle large-scale networks with 1000 nodes. Our proposed
algorithm in all time steps was able to obtain the lowest error
rate compared to other algorithms, which shows that our
proposed algorithm can detect communities with higher
accuracy and quality.

Data Availability

Data used in this research are publicly available. -e [Real
World Network: Enron Email] data and the [Synthetic
Network: LFR] data used to support the findings of this
study are available at [http:// snap.stanford.edu/data
(Stanford Large Network Dataset Collection)], [https://
west.uni-koblenz.de/konect], [https://networkrepositor-
y.com (Network Repository)], and [http://staff.icar.cnr.it/
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cited as references at relevant places within the text [3, 4].
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