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Abstract: SARS-CoV-2 variants, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2
(Delta) variants, have displayed increased transmissibility and, therefore, have been categorized
as variants of concern (VOCs). The pervasiveness of VOCs suggests a high probability of future
mutations that may lead to increased virulence. Prior reports have shown that VOC infection without
expression of human angiotensin converting enzyme-2 receptor (hACE2) in mice is possible. We
sought to understand if the increased transmissibility of VOCs can infect C57BL/6 mice without
expression of hACE2 receptor required for entry of SARS-CoV-2 normally. We examined the ability
of infection with Beta and Gamma variants to infect and cause both pathological and clinical changes
consistent with severe COVID-19, including body weight changes, survival, subgenomic viral titer,
lung histology on Hematoxylin and Eosin (H&E) staining, and viral protein expression as measured
by immunohistochemistry staining of viral antigen (IHC). These methods were used to examine three
groups of mice: C57BL6, Rag2-/-, and Ccr2-/- mice. We observed that these mice, infected with Beta
and Gamma variants of SARS-CoV-2, did not show pathological changes as indicated by weight
loss, altered survival, or significant lung pathology on H&E staining. Subgenomic qPCR and IHC
staining for viral protein indicated that there was some evidence of infection but far below ACE2
transgenic mice, which showed clinical disease and pathologic changes consistent with ARDS. These
data suggest that these variants replicate poorly even in the setting of profound immune deficiency.

Keywords: SARS-CoV-2; variants of concern; immunocompromised mice

1. Introduction

SARS-CoV-2 continues to circulate and mutate rapidly with several different variants,
including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta) variants. The
appearance of new variants, including Beta and Gamma, may decrease the effectiveness
of the currently available vaccines. These variants have also displayed increased trans-
missibility and, therefore, have been categorized as variants of concern (VOCs) by the
World Health Organization (WHO). The pervasiveness of these variants suggests a high
probability of future mutations that may lead to increased virulence [1,2].

The Beta variant arose at the end of 2020 in South Africa, with multiple notable
mutations in the spike. The N501Y mutation in spike has been implicated in facilitating
enhanced binding to the humanized angiotensin converting enzyme 2 receptor (hACE2)
than that seen in the Alpha and other lineages [3]. Two other notable mutations, E484K and
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K417N, have been shown to enhance immune evasion by escaping neutralizing antibody
responses [1,2]. The Gamma variant, which was identified shortly after the Beta variant in
December of 2020, quickly became the dominant strain in Brazil [3]. N501Y, K417N, and
E484K are also seen in the Gamma variant and have been implicated along with the Beta
variant in increasing the transmissibility of SARS-CoV-2 [1–4].

Notably, these VOCs have been reported to infect mice without hACE2 and replicate
with relatively high viral titers within a few days post-inoculation [1–4]. Whether this is
due to any of the notable mutations of interest seen in VOCs is unknown. Despite the ability
to infect mice without hACE2 early post-inoculation, there are no indications of whether
C57BL/6 mice can model severe COVID-19 with pathological changes consistent with
ARDS [1–4]. To examine this, we used mice lacking either adaptive immunity (provided by
T and B cells) or CCR2+ inflammatory monocytes to optimize the likelihood of observing
severe pathology.

2. Materials and Methods
2.1. Mice and Ethics Statement

Male wild-type (WT) C57BL/6J (B6) mice were housed and bred in the animal facility
of Tulane University School of Medicine. The mice (6 to 10 weeks old) were purchased from
commercial sources and used in this study: (i) wild-type mice, (ii) Rag2-/- mice, which have
a disruption of the recombination activating gene 2 (Rag2) and fail to generate mature T or
B lymphocytes, (iii) Rag2/IL2rg mice, also known as Rag2-/- γc- mice, which exhibit T cell, B
cell and NK cell immunodeficiency, and (iv) Ccr2-/- mice, which have absence of the CCR2
chemokine receptor, which affects monocyte/macrophage infiltration and makes them
highly susceptible to pulmonary infection. The International Care and Use Committee
of Tulane University reviewed and approved all procedures for this experiment (permit
number P0443). The vivarial facilities at Tulane National Primate Research Center (TNPRC)
are fully accredited by the Association for Assessment and Accreditation of Laboratory
Animal Care (AAALAC).

2.2. In Vivo Infection to SARS-CoV-2 Variants

Wild-type B6 (n = 5), Rag2-/- (n = 5), Rag2/IL2rg-/- (n = 4), and CCR2-/- (n = 5) mice
were infected intranasally with 2 × 105 TCID50 of Brazilian SARS-CoV-2 variant and wild-
type (n = 5), Rag2-/- (n = 5), Rag2/IL2rg-/- (n = 4), and CCR2-/- (n = 5) mice were infected
intranasally with 1.5 × 104 TCID50 of South African SARS-CoV-2 variant in the BSL3
facility; their survival and daily weight was recorded for 7 days post-infection, keeping
criteria to euthanize the mice if there was greater than 20% weight loss.

2.3. Lung Tissue Processing

On day 7 post-infection, all surviving animals were euthanized, and the left lung was
collected in TRIzol™ reagent (ThermoFisher) on ice for RNA isolation for subgenomic viral
load. The right lung was collected in aqueous zinc formalin (Anatech) for histology and
viral staining.

2.4. Real-Time PCR

RNA was isolated as per manufacture protocol for RNA extraction using TRIzol™ reagent.
Lung RNA samples from wild-type (n = 5), Rag2-/- (n = 5), Rag2/IL2rg-/- (n = 4), and CCR2-/-
(n = 5) mice infected with the Brazilian COVID-19 variant, and wild-type (n = 5), Rag2-/-
(n = 5), Rag2/IL2rg-/- (n = 4), and CCR2-/- (n = 4) mice infected with the SA COVID-19
variant were taken for cDNA synthesis using iScript reverse transcriptase master mix
(Bio-Rad Laboratories). Quantitative real-time PCR was performed on the Bio-Rad-CFX96
for subgenomic viral load determination using a published assay [5,6]. Viral loads were
extrapolated from the COVID-19 subgenomic standard curve. A copy number of 1 was
assigned to the samples which had no detection. The viral copy numbers from the lung are
represented as copies/100 ng of RNA.
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2.5. Lung Histology and Viral Staining

Tissues collected at necropsy were placed in formalin fixative for 30 days prior to
being processed routinely [7]. Lung tissues were embedded in paraffin and cut into
5 um sections and either stained routinely or with immunohistochemistry. Stained tissue
sections were scanned using a Zeiss Axio Scan.Z1 and whole slide images were viewed and
captured using HALO image analysis software (HALO v3.2, Indica Labs, Albuquerque,
NM, USA) [7].

Immunohistochemistry was performed on 5 um sections of FFPE tissue. Sections were
baked overnight at 60 ◦C. They were then dewaxed and rehydrated with xylene, graded
ethanol, and dd water as described in [2]. Slides were retrieved using a microwave oven
heating method in Tris–EDTA buffer (ab93684, Abcam) for 20 min and cooled to room
temperature. Sections were incubated with endogenous blocking solution (SP-6000-100,
vector lab) for 10 min and 2.5% normal goat serum for 20 min at room temperature. Primary
antibodies were incubated overnight at 4 ◦C, and then the slides were incubated with HRP
horse anti-Rabbit IgG reagent for 30 min at room temperature. Immunoreactivity was
detected by developing with DAB chromogen for 60 min.

3. Results

Here, we used both Rag2-/- and Ccr2-/- mice, on a C57BL/6 background, which
exhibit a lack of matured T and B cells [8] or have a deficiency in monocyte recruitment
during immune responses, respectively [9]. Rag2-/- mice are deficient in the Rag2 gene,
which is critical for (V(D)J) recombination during the process of B and T cell maturation [8].
Ccr2-/- mice are deficient in the CCR2 chemokine receptor, which is essential for the
recruitment of monocyte/macrophages to sites of inflammation [9]. These mice were each
challenged with the Beta and Gamma variants. The outcome of exposure was determined
based on body weight changes, survival, lung histology, and measures of virus in lung
tissue as determined by immunohistochemistry.

Previously, we demonstrated that K18-hACE2 mice inoculated intranasally with
1–2 × 105 TCID50 showed a severe COVID-19 phenotype [4]. Based on our previous
study, we used 1.5 × 105 TCID50 of SARS-CoV-2 Beta or 2 × 105 TCID50 of SARS-CoV-
2 Gamma variants, to infect C57BL6 (n = 5), Rag2-/- (n = 5), and Ccr2-/- (n = 5) mice.
We measured body weight daily post-exposure and found that there were no significant
body weight changes among C57BL6, Rag2-/-, and Ccr2-/- mice infected with either Beta
or Gamma variant (Figure 1A,B). No mice reached humane euthanasia endpoints (ex-
hibiting >20% weight loss or abnormal behaviors) with either variant following exposure
(Figure 1C,D). Subgenomic viral load was used to detect replicating virus in the lung of
mice [4,6]. Both viral variants had significantly higher subgenomic viral loads in Rag2-/-
compared to C57BL6 or Ccr2-/- mice (Figure 1E,F). At euthanasia, there were no signif-
icant histological changes in the lungs of the mice among the three groups (Figure 2A).
We also detected SARS-CoV-2 spike antigen by immunohistochemistry in the lungs of
Rag2-/- but not B6 or Ccr2-/- mice infected with the Gamma variant (Figure 2B). Together,
these results indicate that neither wild-type or immunocompromised mice on a C57Bl/6
genetic background support high levels of SARS-CoV-2 variant infection and thus fail to
serve as a model of severe COVID-19.
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Figure 1. C57BL/6J (n=5), Rag2-/- (n=5), or Ccr2-/- (n=5) mice were infected intranasally with 2 x 105 TCID50 of P.1 

COVID variant (Figure 1A, 1C, 1E) or with 1.5x104 TCID50 of the B.1.351 COVID variant (Figure 1B, 1D, 1F). Weight 

loss and survival was monitored and recorded for the next 7 days with criteria to euthanize the mice with a weight 

loss cutoff of 20% of their starting weight. On day 7, mice were euthanized and the SARS-CoV2 viral load (SgN copy 

number) was assayed by qPCR. None of the mice with either variant lost weight of more than 5% (Figure 1A and 1B). 

Moreover, there was no mortality during the study period (C,D). Viral load was only reliably detected in the Rag2-/- 

mice (p < 0.05, compared to C57BL/6) but there were no statistical differences in viral loads using one way ANOVA 

and Tukey's multiple comparisons test (Figure 1E and 1F). 

Figure 1. C57BL/6J (n = 5), Rag2-/- (n = 5), or Ccr2-/- (n = 5) mice were infected intranasally with
2 × 105 TCID50 of P.1 COVID variant (A,C,E) or with 1.5 × 104 TCID50 of the B.1.351 COVID variant
(B,D,F). Weight loss and survival was monitored and recorded for the next 7 days with criteria to
euthanize the mice with a weight loss cutoff of 20% of their starting weight. On day 7, mice were
euthanized and the SARS-CoV2 viral load (SgN copy number) was assayed by qPCR. None of the
mice with either variant lost weight of more than 5% (A,B). Moreover, there was no mortality during
the study period (C,D). Viral load was only reliably detected in the Rag2-/- mice (p < 0.05, compared to
C57BL/6) but there were no statistical differences in viral loads using one way ANOVA and Tukey’s
multiple comparisons test (E,F).
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Figure 2. (Figure 2A) Histological analysis of lungs of the mice infected with Gramma and Beta 

variants. Representative images shows the H&E staining in lungs of C57/B6 (B6) (n=2), Rag2-/- (n=2) 

and Ccr2-/- mice (n=5). (Figure 2B) Immunohistology staining of SARS-CoV-2 spike in Rag2-/- mice 

infected with Gamma variant.  Green: SARS CoV-2 spike, Red: background staining, White; DAPI 

nuclear stain. 

4. Discussion 

Figure 2. (A) Histological analysis of lungs of the mice infected with Gramma and Beta variants.
Representative images shows the H&E staining in lungs of C57/B6 (B6) (n = 2), Rag2-/- (n = 2) and
Ccr2-/- mice (n = 5). (B) Immunohistology staining of SARS-CoV-2 spike in Rag2-/- mice infected with
Gamma variant. Green: SARS CoV-2 spike, Red: background staining, White; DAPI nuclear stain.

4. Discussion

Early studies suggested that these VOCs could replicate and cause some pathology
in mice on a C57BL/6 genetic background. This observation was important as it would
open the use of all the genetic tools available on the C57 background, and non-transgenic
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mice would have more natural expression of ACE2 when compared to hACE2 transgenic
mice. C57 mice would, additionally, theoretically allow for the investigation of GWAS
susceptibility loci using existing genetic tools on the C57BL6 background. Unfortunately,
we found that viral infection was self-limiting even in the setting of profound immune
deficiency. These data suggest that these VOCs are unable to support lung pathology
and thus the combination of these VOCs and the various transgenic mice on the C57BL/6
background will have limited utility to investigate the genetic risk for severe COVID-19.

We attribute the lack of pathologic changes in Rag2-/- mice infected with VOCs
to either a limited or absent inflammatory response. Our results differ slightly from
Shuai et al., wherein they observed higher viral loads in C57BL/6 mice and some pulmonary
pathology. However, this was at an earlier time point, 2 days post-exposure [1,3,4]. They
did observe a significant reduction in viral load by day 7 post-exposure, similar to our
findings reported here. Differences in experimental design may have accounted for the
differences in our results. One difference is that they used ketamine for anesthesia, and we
used a much briefer isoflurane anesthesia for inoculation. The longer effect of ketamine
could influence the dwell time of the inoculum. Despite this, our data show a lack of lung
pathology in mice lacking two critical pathways: in one strain lacking adaptive immunity
and one strain unable to recruit monocyte-derived macrophages. Together, these results
indicate that both murine strains are inadequate to model severe COVID-19 or COVID-19-
related long term pulmonary disease with the current dose of virus. A higher dose of virus
may be needed to infect both mouse strains to show pathological changes consistent with
severe COVID-19.

In summary, our data support the need for further development of mouse-adapted
strains on the C57Bl/6 background to further take advantage of the plethora of mouse
genetic tools on the C57 background. Alternatively, hACE2 can be transduced in the
lungs of those molecular-engineered mouse strains using various delivery systems [6].
Furthermore, previously, we and others have demonstrated that K18-hACE2 transgenic
mice infected with SARS-CoV-2 show a severe COVID-19 phenotype [4,10–12]. Therefore,
for pathogenesis studies, hACE2 introduction to genetically engineered mouse strains
through a genetic cross with K18-ACE2 mice would theoretically sensitize those mice to
severe SARS-CoV-2 infection [2,10–12].
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