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Abstract

An operationally implementable predictive model has been developed to forecast the num-

ber of COVID-19 infections in the patient population, hospital floor and ICU censuses, venti-

lator and related supply chain demand. The model is intended for clinical, operational,

financial and supply chain leaders and executives of a comprehensive healthcare system

responsible for making decisions that depend on epidemiological contingencies. This paper

describes the model that was implemented at NorthShore University HealthSystem and is

applicable to any communicable disease whose risk of reinfection for the duration of the

pandemic is negligible.

Introduction

Upon its emergence in 2020, the COVID-19 pandemic presented immediate challenges to the

operation of NorthShore University HealthSystem (NS), a comprehensive regional healthcare

system located in the northern part of Chicago, Illinois, and its suburbs. The need to forecast

the expected demand on floor and ICU beds, ventilators and requisite supplies became press-

ing at the onset of the disease. The lack of reliable population data posed additional difficulty

in implementing a usable model. Additional constraints of robustness, distributability and

transparency imposed further requirements on the choice of the governing equations, solution

algorithm and software implementation. During the initial stage of the pandemic, the model

was delivered to the operational stakeholders daily; as time progressed, the frequency of dis-

semination was changed to once or twice a week, depending on the severity of the situation.

At the onset of the pandemic, the Clinical Analytics team was tasked with providing a reli-

able, scalable solution relevant to the local epidemiological situation [1]. While abundant liter-

ature exists on the theoretical aspects of the problem [2–21], few specific worked examples that

could be used by practitioners for immediate implementation are widely available. For a
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concise but comprehensive description of challenges facing a researcher attempting to develop

a workable model see, e.g., [22]. While most of the existing publications that offer applicable

practical solutions focus on country-wide statistics [23, 24], those dealing with local conditions

are scarce. In order to find a satisfactory answer to this challenge, we had to quickly construct

a flexible, scalable model easily adaptable to rapidly changing conditions that could be quickly

communicated to a growing number of stakeholders while affording them an opportunity to

create area-specific “back-of-an-envelope” analyses suitable for their needs. This task was

accomplished by augmenting the industry-standard Susceptible-Infected-Recovered (SIR)

model [2] with bootstrapping estimates and interpolation and extrapolation approximations

of patient flow dynamics. The resulting model was robust enough to exhibit accuracy sufficient

for predicting floor, general intensive care unit (ICU), ventilator census and mortality up to

two weeks in advance. The main accomplishments of the foregoing approach were the ability

to quickly adapt the model to the observed coefficient of transmission (R0) prevalent in the

hospital service area, compute the forward expected length of stay on the hospital floor, in the

ICU and on the ventilator, and incorporate actual and projected vaccination rates into the

model.

The paper is organized as follows. First, we review generally accepted modeling principles

for forecasting the progression of the disease (COVID-19). Next, we provide empirical formu-

las for approximating dynamically observed rates of hospitalizations, ICU and ventilator place-

ment, mortality and vaccination. Following that, we present the results and discuss their

accuracy. We conclude with a summary of findings and directions for further research.

Materials and methods

General equations

The choice of a model was informed by the requirements of specificity to the available NS pop-

ulation data, ease of implementation through a common tool understood by operational lead-

ers and ease of explanation to a non-mathematical audience. In general, available models

meeting those criteria include variants of the SIR model [2, 3] with a time-dependent coeffi-

cient of transmission [4] and vaccination effects [5]. While a stochastic SIR model [6] presents

a viable enhancement, estimating the parameters of the stochastic component may prove prob-

lematic during the onset of the pandemic. A plausible alternative, an Individual-Based Model

(IBM) [7], requires substantially more effort devoted to implementation and analysis [8], and

is more difficult to explain to the target audience than SIR.

From the practical standpoint, the need to develop a workable model prior to the publica-

tion of [4], as well as the need to have a robust, distributable software solution, necessitated the

adoption of a simplified time-dependent form (note that the time dependency of β precludes

the use of an analytical solution described in [9]).

dSðtÞ ¼ � ðbðtÞSðtÞIðtÞ þ VðtÞÞdt ; ð1Þ

dIðtÞ ¼ ðbðtÞSðtÞ � gÞIðtÞdt ; ð2Þ

where

S(t)—fraction of the population susceptible to the disease,

I(t)—fraction of the population currently infected with the disease,

β(t)—coefficient of transmission,

V(t)—fraction of the population that has been vaccinated,

γ—fraction of the infected population removed from further consideration due to (perma-

nent) recovery or death.
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We are not concerned with the dynamics of the recovered population, and hence leave the

“R” term out of Eqs (1) and (2). Since the dynamics for β(t) and V(t) are not known before-

hand, they are not included in the differential equations as separate terms, and are instead left

to be determined at a later discretization stage. For simplicity, we disregarded mobility consid-

erations reviewed in [25, 26], as well as implemented barriers to transmission (masking, social

distancing and quarantine measures) [27].

Numerical solution

Data extrapolation and scenario analysis. At the onset of the pandemic, there is no reli-

able way to determine the true number of infected patients and hence the transmission coeffi-

cient β(t). While initial attempts were made to infer likely epidemiological dynamic from

countries where the initial stage had by that time already passed [10], the validity of this

approach was questionable even at that time since different locales exhibited different curve

characteristics. In view of this, the approach adopted for the purpose of constructing a robust

model applicable to local conditions was as follows:

1. assume that the number of observed NS cases reflected the actual count of the disease in the

population. While this was certainly not the case initially, the accuracy of that number

increase over time as testing became more prevalent and comprehensive; moreover, it is fair

to assume that those inaccurate numbers reflected the qualitative dynamic of the pandemic;

2. extrapolate the evolution of β(t) implied by the historical data (initially, piecewise-constant;

subsequently, polynomial or 7-day moving average);

3. repeat 1–2 for the Chicago / Cook / Lake county (CCL) area containing the majority of the

NS catchment area;

4. construct a dynamic (time-dependent) ratio of NS to CCL cases and assume that it accu-

rately reflects the proportion of CCL patients attributable to NS;

5. solve Eqs (1) and (2) separately for CCL and NS;

6. use the minimum and maximum case number estimates from step 5 as boundaries for the

expected number of NS cases.

Specifically, for step 2, we need to find the value of β(t) that delivers an exact solution to (1)

and (2) at t (more on this in subsection below). We can do this by equating the number of

newly discovered cases in the NS population less the number of those newly vaccinated to the

instantaneous decline in the susceptible population (since the latter is monotonically decreas-

ing, i.e., dS(t)< 0, −dS(t)> 0 represents the number of patients who have been infected or vac-

cinated at time t):

dIþðtÞ ¼ lim
Dt!0

Iðt þ DtÞ � IðtÞ ¼ � dSðtÞ � dVðtÞ : ð3Þ

Eq (3) applies to the CCL population as well.

Numerical solution of the SIR equations

Conventionally, (1 and 2) are solved numerically using the 4-th order explicit Runge-Kutta

method [28]:

k1 ¼ � ðbðtÞSðtÞIðtÞ þ VðtÞÞ ; ð4Þ

l1 ¼ ðbðtÞSðtÞ � gÞIðtÞ ; ð5Þ
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k2 ¼ � bðtÞ SðtÞ þ
h
2
k1

� �

IðtÞ þ
h
2
l1

� �

þ VðtÞ
� �

; ð6Þ

l2 ¼ bðtÞ SðtÞ þ
h
2
k1

� �

� g

� �

IðtÞ þ
h
2
l1

� �

; ð7Þ

k3 ¼ � bðtÞ SðtÞ þ
h
2
k2

� �

IðtÞ þ
h
2
l2

� �

þ VðtÞ
� �

; ð8Þ

l3 ¼ bðtÞ SðtÞ þ
h
2
k2

� �

� g

� �

IðtÞ þ
h
2
l2

� �

; ð9Þ

k4 ¼ � ½bðtÞðSðtÞ þ hk3ÞðIðtÞ þ hl3Þ þ VðtÞ� ; ð10Þ

l4 ¼ ½bðtÞðSðtÞ þ hk3Þ � g�½IðtÞ þ hl3� ; ð11Þ

Sðt þ hÞ ¼ SðtÞ þ
h
6
k1 þ 2k2 þ 2k3 þ k4½ � ; ð12Þ

Iðt þ hÞ ¼ IðtÞ þ
h
6
l1 þ 2l2 þ 2l3 þ l4½ � : ð13Þ

The Runge-Kutta method (4–13) is explicit and therefore inherently unstable, however, it is

conventionally applied for h = 1. The justification of this can be found, e.g., in [29].

Estimating the number of potential NS patients

Eqs (1) and (2) are written in terms of population percentages, i.e.,

SðtÞ ¼
SðtÞ
NðtÞ

; ð14Þ

IðtÞ ¼
IðtÞ
NðtÞ

; ð15Þ

VðtÞ ¼
VðtÞ
NðtÞ

; ð16Þ

where

SðtÞ—NS population susceptible to the disease,

IðtÞ—NS population currently infected with the disease,

VðtÞ—NS population that has been vaccinated,

N(t)—NS population at time t.
In order to estimate N(t), we assumed that the current proportion of NS cases relative to the

observed CCL cases is indicative of the fraction of the CCL population that potential NS
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patients represent. In other words,

DIþNSðtÞ
DIþCCLðtÞ

¼
NðtÞ
NCCL

; ð17Þ

where

DIþNSðtÞ—newly discovered NS cases at time t,
DIþCCLðtÞ—newly discovered CCL cases at time t,
NCCL—CCL population (deemed constant).

The left hand side of (17) is time-dependent. This seemingly contradicts the static assump-

tion for N implied by the form of (1 and 2). One could, at least partially, refute this objection

by pointing out that N is an estimate at time t of the true NS population. The exact number of

potential NS patients in the NS catchment area is unknown since potential future NS patients

may have had no prior contact with NS facilities and, conversely, those who have sought treat-

ment at NS in the past may chose an alternative provide for their emergency care and subse-

quent recovery. It is presumed to approach the exact (steady-state) value asymptotically. The

rationale for that is mostly empirical, however, one could hypothesize that, as the epidemic

progresses, patient flow distributions across healthcare providers tend to stabilize. In fact, as

can be inferred from Fig 1, empirical data derived from positive test results and patient cen-

suses in various parts of the hospital suggests exponential decay of N
NCCL

that can be approxi-

mated by

N
NCCL

tð Þ ¼ aþ bemt ; ð18Þ

where

α> 0, β> 0, μ< 0—empirically determined constants: α = 0.452, β = 1.61, μ = −0.012 (the

presented empirical fit was performed on the data between Oct. 31, 2020 and May 30, 2021).

Fig 1. The ratio of NS and CCL populations. x-axis: elapsed time in days since March 10, 2020 (first identified NS

case); y-axis: NS / CCL population ratio less 0.452 (asymptotic limit).

https://doi.org/10.1371/journal.pone.0258710.g001
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U.S. Census Bureau [30] estimates the population of the CCL area to be 5,846,768 residents

as of July 2019 (the latest data available at the time of writing). From (18), we can obtain the

population estimate for NS to be approximately 392,000.

Projecting the number of hospitalizations, ICU and vent placements and

deaths

In order to forecast the number of patients requiring general beds, ICU placement or intuba-

tion, we assume that, at any given time, a patient can be observed in any of the following states:

Fig 2. Progression of a hospitalized patient through their stay.

https://doi.org/10.1371/journal.pone.0258710.g002
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• on the floor but not in the ICU (and not intubated; lower acuity);

• in the ICU but not intubated (elevated acuity),

• intubated (highest acuity).

The flowchart in Fig 2 represents the progression of a hospitalized patient through his or

her stay in the hospital. The following simplifying assumptions have been made:

• floor (lower acuity), ICU and intubated patients are accounted for separately, i.e., those are

mutually exclusive groups;

• a patient is initially placed on the floor. If their condition is grave, transfer to ICU and / or

intubation occurs (almost) instantly;

• upon deterioration, a patient proceeds from the floor to the ICU to intubation. No stages in

this sequence are skipped, but a patient can spend almost no time in any state and be trans-

ferred to a higher acuity stage instantly (in other words, if a severely ill patient expires with-

out being transferred to the ICU and / or being intubated, we consider that patient to have

instantaneously transitioned through those two stages to mortality);

• upon improvement, a patient proceeds from intubation to the ICU to the floor as applicable.

No stages in this sequence are skipped but a patient can spend almost no time and be trans-

ferred to a lower acuity stage instantly;

• there is no formal restriction on how many times a patient can deteriorate or improve.

Under those assumptions, the state equations describing the population dynamics inside

the hospital are

HFðtÞ ¼

HþFðt;NFÞ

IþNSðt;NFÞ
¼

XNF � 1

i¼0

DHþFðtiÞ

XNF � 1

i¼0

DIþNSðtiÞ
; T0 <¼ t0 < tNF � 1 <¼ T;

1

NF

XNF � 1

i¼0

HFðtiÞ; tNF � 1 > T

;

8
>>>>>>>>>><

>>>>>>>>>>:

ð19Þ

HICUðtÞ ¼

HþICUðt;NICUÞ

HþFðt;NICUÞ
¼

XNICU � 1

i¼0

DHþICUðtiÞ

XNICU � 1

i¼0

DHþFðtiÞ

; T0 <¼ t0 < tNICU � 1 <¼ T;

1

NICU

XNICU � 1

i¼0

HICUðtiÞ; tNICU � 1 > T

;

8
>>>>>>>>>><

>>>>>>>>>>:

ð20Þ
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HventðtÞ ¼

Hþventðt;NventÞ

HþICUðt;NventÞ
¼

XNvent � 1

i¼0

DHþventðtiÞ

XNvent � 1

i¼0

DHþICUðtiÞ

; T0 <¼ t0 < tNvent � 1 <¼ T ;

1

Nvent

XNvent � 1

i¼0

HventðtiÞ; tNvent � 1 > T

;

8
>>>>>>>>>><

>>>>>>>>>>:

ð21Þ

ti ¼ ti� 1 þ Dt :

where

NF—length of lookback period for floor patients (at the time of this writing, 14 days),

NICU—length of lookback period for ICU patients (14 days),

Nvent—length of lookback period for ventilated patients (14 days),

HF(t)—hospitalization rate at time t,
HþFðt;NFÞ—total number of new patients placed on the floor during the lookback period

NF,

IþNSðt;NFÞ—total number of new infections identified among NS patients during lookback

period NF,

HICU(t)—ICU placement rate at time t,
HþICUðt;NICUÞ—total number of new patients placed in the ICU during lookback period

NICU,

HþFðt;NICUÞ—total number of new patients placed on the floor during the lookback period

NICU,

Hvent(t)—intubation rate at time t,
Hþventðt;NventÞ—total number of new patients placed on the ventilator during lookback

period Nvent,

HþICUðt;NventÞ—total number of new patients placed on the floor during the lookback

period Nvent,

DHþFðtÞ—number of new patients placed on the floor at time t,
DHþICUðtÞ—number of new patients placed in the ICU at time t,
DHþventðtÞ—number of new intubations at time t,
T0—time of the start of the pandemic,

T—time of observation (“today”).

Setting t ¼ tNF
¼ tNICU

¼ tNvent
, i.e., setting the length of the lookback period NB to be the

same for all three groups of patients, NB� NF = NICU = Nvent reduces (19–21) to

HFðtÞ ¼

HþFðt;NBÞ

IþNSðt;NBÞ
; T0 <¼ t0 < tNB � 1 <¼ T;

1

NB

XNB � 1

i¼0

HFðtiÞ; tNF � 1 > T
;

8
>>>><

>>>>:

ð22Þ

HICUðtÞ ¼

HþICUðt;NBÞ

HþFðt;NBÞ
; T0 <¼ t0 < tNB � 1 <¼ T;

1

NB

XNB � 1

i¼0

HICUðtiÞ; tNB � 1 > T
;

8
>>>><

>>>>:

ð23Þ
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HventðtÞ ¼

Hþventðt;NBÞ

HþICUðt;NBÞ
; T0 <¼ t0 < tNB � 1 <¼ T;

1

NB

XNB � 1

i¼0

HventðtiÞ; tNB � 1 > T
:

8
>>>><

>>>>:

ð24Þ

In other words, hospitalization, ICU and vents rates are computed exactly as rolling N-day

averages up until the current time, and then extrapolated as averages over the same time period

going forward. It does not appear possible to define those rates smoothly since the calculation

of the rate itself depends on the predicted number of affected patients which, in turn, depends

on the rate creating a “circular reference”.

The numbers of hospitalizations, ICU and vent placements are specific to the population

served by a healthcare system and can be extrapolated to other entities only with caution. At

the beginning of the pandemic, state-wide and regional data was either not available or unreli-

able thus necessitating an approximation using NS census and deaths. In doing so, the number

of patients entering the hospital floor, ICU units and being intubated was assumed to be pro-

portional to the observed number of cases.

In order to predict the counts (censuses) of the patient population currently hospitalized,

placed in the ICU and intubated, it is necessary to model the flow of patients through each of

those units. This can be done by backing out (“bootstrapping”) recovery rates from the

observed population dynamics as follows:

HFðTÞ ¼ HFðT � DTÞ þ DHþFðtÞ � DH� FðtÞ ; ð25Þ

HICUðTÞ ¼ HICUðT � DTÞ þ DHþICUðtÞ � DH� ICUðtÞ ; ð26Þ

HventðTÞ ¼ HventðT � DTÞ þ DHþventðtÞ � DH� ventðtÞ ; ð27Þ

DHþFðtÞ ¼ HFðtÞDIþNSðtÞ ; ð28Þ

DHþICUðtÞ ¼ HICUðtÞDHþFðtÞ ; ð29Þ

DHþventðtÞ ¼ HventðtÞDHþICUðtÞ ; ð30Þ

DH� FðtÞ ¼ ðmFðtÞ � 1ÞH� Fðt � DtÞ þH� FðtÞ ; ð31Þ

DH� ICUðtÞ ¼ ðmICUðtÞ � 1ÞH� ICUðt � DtÞ þH� ICUðtÞ ; ð32Þ

DH� ventðtÞ ¼ ðmventðtÞ � 1ÞH� ventðt � DtÞ þH� ventðtÞ ; ð33Þ

where

HFðTÞ—floor census at time t,
HICUðtÞ—ICU census at time t,
HventðtÞ—number of ventilated patients at time t.
HF(t)—hospitalization rate at time t,
HICU(t)—ICU placement rate at time t,
Hvent(t)—intubation rate at time t,
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DH� FðtÞ—number of patients removed (due to discharge, placement in the ICU or death)

from the floor at time t,
DH� ICUðtÞ—number of patients removed (due to return to the general floor population,

intubation or death) from the ICU at time t,
DH� ventðtÞ—number of extubations (due to extubation or death) at time t,
NF—length of lookback period for floor patients (at the time of this writing, 7 days),

NICU—length of lookback period for ICU patients (7 days),

Nvent—length of lookback period for intubated patients (14 days),

μF(t)—observed floor removal rate at time t,
μICU(t)—observed ICU placement rate at time t,
μvent(t)—observed extubation rate at time t.
Eqs (31)–(33) can be used to determine the values of μF, μICU and μvent for t� T. For t> T,

moving average extrapolations are used (cf. (22–24)):

mFðtÞ ¼
1

NF

XNF � 1

i¼0

mFðtiÞ ; ð34Þ

mICUðtÞ ¼
1

NICU

XNICU � 1

i¼0

mICUðtiÞ ; ð35Þ

mventðtÞ ¼
1

Nvent

XNvent � 1

i¼0

mventðtiÞ ; ð36Þ

t � tNF
� tNICU

� tNvent
; ti ¼ ti� 1 þ Dt :

Following the patient flow assumptions reflected in Fig 1, mortality rate is computed as

MðtÞ ¼

XN

i¼0

MðtiÞ

XN

i¼0

HICUðtiÞ
; ð37Þ

where

M(t)—mortality rate at time t,
MðtÞ—cumulative number of deaths at time t,
t� tN—current time.

Projecting vaccination rates

Vaccination rates in the CCL area at the time of this writing followed a quartic trajectory with

remarkable accuracy, as shown in Fig 3.

Empirically, the shape of the quartic parabola is determined using the usual least squares

best fit to be

Vð4ÞCCLðtÞ¼ � 5:667435� 10� 3 t4 þ 7:590466 t3 � 3:619223� 103 t2

þ7:302425� 105 t � 5:232056� 107 :
ð38Þ

The number of significant digits in 38 is extended for consistency.
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Imposing the upper limit of 100% of the population and requiring that the number of vacci-

nated individuals be monotonically nondecreasing, we obtain (based on the official CCL vacci-

nation data from Jan. 3, 2021 to May 30, 2021)

VCCLðtÞ ¼ min½NCCL;maxðVð4ÞCCLðtÞ;VCCLðt � DtÞÞ� : ð39Þ

The number of fully vaccinated NS patients is then obtained from (18) as

VNSðtÞ ¼
N

NCCL
tð ÞVCCLðtÞ : ð40Þ

Results and discussion

Worked example

In the example below, we assume that CCL population is 5,846,768, relevant NS patient popu-

lation estimated by (18) is 392,000 and infection transmission period 1/γ = 15. We set the pan-

demic start date to March 10, 2020.

The date for this example was arbitrarily chosen from past history with the requirements

that the number of new cases, patient admissions and censuses on the floor, in the ICU and

attached to a ventilator be reasonable large to avoid instability and that the trajectory of the

pandemic be fairly well established.

NS case and admission data as of Feb. 26, 2021 is presented in Table 1.

The last row of the table is incomplete because, while reliable case data is generally available

up to and including the next-but-last day, case and hospitalization data is relatively reliable for

the preceding day.

Calculations for the Runge-Kutta implementation of the model for CCL as of Feb. 26, 2021

are presented in Table 2, and for NS they are displayed in Table 3.

With the line corresponding to the date of 2/24/2021 as an example, the algorithm proceeds

as follows:

1. Using Excel Solver’s unconstrained GRG (generalized reduced gradient) nonlinear optimi-

zation with centered difference approximation and automatic scaling with constraint

precision = convergence tolerance = 10−3 (or any other optimization routine), find the

value of β on the preceding day that minimizes the square of the residual between the pre-

dicted and observed number of cases at time t:

bðti� 1Þ ¼ argminðÎ ðt0; tiÞ � Iðt0; tiÞÞ
2
; ð41Þ

Î ðt0; tiÞ ¼ Î ðt0; ti� 1Þ þ ½ðSðtiÞ � Sðti� 1Þ

� ðVðti� 1Þ � Vðti� 2ÞÞ�NðtiÞ ; i ¼ 2; L ; tL � t ;
ð42Þ

where

Î ðt0; tiÞ—predicted cumulative number of identified positive cases from the beginning of

the pandemic t0 to time ti,
Iðt0; tiÞ—actual cumulative number of identified positive case from the beginning of the

pandemic t0 to time ti,
N(t)—NS population at time ti (i.e., the asymptotic limit of (18).

ti—current time at the i-th time step.

The value of β at which this minimum is achieved corresponds to the preceding time step,

2/23/2021, and is equal to 0.043 (rRounded to two significant digits)
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2. Compute the transmission rate

R0ðtiÞ ¼
b

g
; i ¼ 2; L ; tL � t ; ð43Þ

for future reference (1

g
= 15 days, R0 = 0.043 × 15 = 0.65).

3. Compute the NS susceptible rate (cf. 12)

SðtiÞ ¼ Sðti� 1Þ þ kðti� 1Þdt ; ð44Þ

kðti� 1Þ ¼
h
6
k1ðti� 1Þ þ 2k2ðti� 1Þ þ 2k3ðti� 1Þ þ k4ðti� 1Þ½ � ; ð45Þ

h ¼ ti � ti� 1 ; i ¼ 2; L ; tL � t :

The above yields S(ti) = 0.8604 − 6.35 × 10−4 × 1 = 0.8598.

4. Compute the NS vaccination rate from (39 and 40) and Table 3 (significant digits added for

consistency)

VCCLðtiÞ ¼ minf5; 846; 768; � 5:667435� 10� 3 � 3514 þ 7:590466� 3513

� 3:619223� 103 � 3512 þ 7:302425� 105 � 351

� 5:232056� 107g ¼ 318; 279 ;

VCCLðtiÞ ¼ VNSðtiÞ ¼
318; 279

5; 846; 768
¼ 0:054437 ;

VNSðtÞ ¼ 0:054437� 392; 000 ¼ 21; 339 :

Fig 3. CCL vaccination rates, Jan. 3.–May 30, 2021.

https://doi.org/10.1371/journal.pone.0258710.g003
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5. Compute the number of patients who are no longer susceptible to the disease

rNSðtiÞ ¼ ð1 � SðtiÞÞNðtiÞ ¼ ð1 � 0:8598Þ � 392; 000 ¼ 54; 967 ;

6. Compute the infection rate

IðtiÞ ¼ Iðti� 1Þ þ lðti� 1Þdt ; ð46Þ

lðti� 1Þ ¼
h
6
l1ðti� 1Þ þ 2l2ðti� 1Þ þ 2l3ðti� 1Þ þ l4ðti� 1Þ½ � ; ð47Þ

h ¼ ti � ti� 1 ; i ¼ 2; L ; tL � t :

The above yields I(ti) = 1.63 × 10−3 − 4.88 × 10−5 = 1.63 × 10−3.

7. Compute the predicted cumulative number of positive cases from (42) to arrive at

IðtiÞ¼ 36; 501þ ½ð0:86041 � 0:85978Þ � ð0:0493 � 0:0470Þ � 10� 3�

�392; 000 ¼ 36; 525 :

The predicted number of new infections is 36, 525 − 36, 501 = 24 (In reality, this calculation

is performed in reverse order).

Table 2. Runge-Kutta implementation for the CCL COVID-19 model, Feb. 1–24, 2021.

Date Beta R0 CCL Suscept rate CCL Vac rate Inf rate k1 l1 k2 l2 k3 l3 k4 l4 k l

2/1/2021 0.031 0.472 0.8958 0.018 0.0051 -1.05E-03 -1.02E-04 -1.05E-03 -1.02E-04 -1.05E-03 -1.02E-04 -1.04E-03 -1.01E-04 -1.05E-03 -1.02E-04

2/2/2021 0.048 0.718 0.8947 0.019 0.0050 -1.01E-03 -1.18E-04 -1.00E-03 -1.17E-04 -1.00E-03 -1.17E-04 -1.00E-03 -1.17E-04 -1.00E-03 -1.17E-04

2/3/2021 0.054 0.803 0.8937 0.020 0.0048 -1.32E-03 -9.11E-05 -1.32E-03 -9.05E-05 -1.32E-03 -9.05E-05 -1.32E-03 -9.05E-05 -1.32E-03 -9.06E-05

2/4/2021 0.064 0.955 0.8924 0.021 0.0048 -1.08E-03 -4.69E-05 -1.08E-03 -4.69E-05 -1.08E-03 -4.69E-05 -1.08E-03 -4.69E-05 -1.08E-03 -4.69E-05

2/5/2021 0.055 0.820 0.8913 0.022 0.0047 -9.78E-04 -8.44E-05 -9.76E-04 -8.38E-05 -9.76E-04 -8.38E-05 -9.76E-04 -8.38E-05 -9.77E-04 -8.39E-05

2/6/2021 0.039 0.584 0.8903 0.022 0.0046 -4.11E-04 -1.48E-04 -4.09E-04 -1.45E-04 -4.09E-04 -1.45E-04 -4.09E-04 -1.45E-04 -4.09E-04 -1.46E-04

2/7/2021 0.030 0.447 0.8899 0.023 0.0045 -9.85E-04 -1.80E-04 -9.83E-04 -1.76E-04 -9.83E-04 -1.76E-04 -9.83E-04 -1.76E-04 -9.83E-04 -1.77E-04

2/8/2021 0.034 0.513 0.8889 0.024 0.0043 -1.10E-03 -1.56E-04 -1.10E-03 -1.53E-04 -1.10E-03 -1.53E-04 -1.10E-03 -1.53E-04 -1.10E-03 -1.54E-04

2/9/2021 0.051 0.771 0.8878 0.025 0.0041 -1.50E-03 -8.72E-05 -1.50E-03 -8.65E-05 -1.50E-03 -8.65E-05 -1.50E-03 -8.65E-05 -1.50E-03 -8.66E-05

2/10/2021 0.052 0.783 0.8863 0.027 0.0041 -2.43E-03 -8.28E-05 -2.43E-03 -8.23E-05 -2.43E-03 -8.23E-05 -2.43E-03 -8.23E-05 -2.43E-03 -8.24E-05

2/11/2021 0.058 0.874 0.8839 0.029 0.0040 -2.28E-03 -6.03E-05 -2.27E-03 -6.01E-05 -2.27E-03 -6.01E-05 -2.27E-03 -6.01E-05 -2.27E-03 -6.01E-05

2/12/2021 0.045 0.669 0.8816 0.031 0.0039 -1.59E-03 -1.07E-04 -1.59E-03 -1.06E-04 -1.59E-03 -1.06E-04 -1.59E-03 -1.06E-04 -1.59E-03 -1.06E-04

2/13/2021 0.035 0.529 0.8800 0.032 0.0038 -9.27E-04 -1.36E-04 -9.24E-04 -1.33E-04 -9.24E-04 -1.33E-04 -9.24E-04 -1.33E-04 -9.25E-04 -1.34E-04

2/14/2021 0.032 0.485 0.8791 0.032 0.0037 -5.88E-04 -1.41E-04 -5.86E-04 -1.38E-04 -5.86E-04 -1.38E-04 -5.86E-04 -1.38E-04 -5.86E-04 -1.38E-04

2/15/2021 0.031 0.460 0.8785 0.033 0.0035 -9.69E-04 -1.41E-04 -9.67E-04 -1.38E-04 -9.68E-04 -1.38E-04 -9.68E-04 -1.38E-04 -9.68E-04 -1.38E-04

2/16/2021 0.040 0.604 0.8776 0.035 0.0034 -2.01E-03 -1.07E-04 -2.01E-03 -1.05E-04 -2.01E-03 -1.05E-04 -2.01E-03 -1.05E-04 -2.01E-03 -1.05E-04

2/17/2021 0.040 0.605 0.8755 0.037 0.0033 -2.56E-03 -1.03E-04 -2.55E-03 -1.02E-04 -2.55E-03 -1.02E-04 -2.55E-03 -1.02E-04 -2.56E-03 -1.02E-04

2/18/2021 0.052 0.777 0.8730 0.040 0.0032 -2.48E-03 -6.84E-05 -2.48E-03 -6.79E-05 -2.48E-03 -6.79E-05 -2.48E-03 -6.79E-05 -2.48E-03 -6.80E-05

2/19/2021 0.052 0.776 0.8705 0.040 0.0031 -5.68E-04 -6.76E-05 -5.66E-04 -6.69E-05 -5.66E-04 -6.69E-05 -5.66E-04 -6.69E-05 -5.66E-04 -6.70E-05

2/20/2021 0.043 0.648 0.8699 0.043 0.0031 -2.63E-03 -8.89E-05 -2.63E-03 -8.78E-05 -2.63E-03 -8.78E-05 -2.63E-03 -8.78E-05 -2.63E-03 -8.80E-05

2/21/2021 0.035 0.532 0.8673 0.044 0.0030 -1.60E-03 -1.07E-04 -1.60E-03 -1.05E-04 -1.60E-03 -1.05E-04 -1.60E-03 -1.05E-04 -1.60E-03 -1.05E-04

2/22/2021 0.045 0.680 0.8657 0.046 0.0029 -2.52E-03 -7.85E-05 -2.52E-03 -7.76E-05 -2.52E-03 -7.76E-05 -2.52E-03 -7.76E-05 -2.52E-03 -7.77E-05

2/23/2021 0.064 0.967 0.8629 0.047 0.0027 -7.26e-04 -3.02E-05 -7.25e-04 -3.01E-05 -7.25e-04 -3.01E-05 -7.24e-04 -3.00E-05 -7.25E-04 -3.01E-05

2/24/2021 0.048 0.721 0.8622 0.054 0.0027 -7.50e-03 -6.84E-05 -7.50e-03 -6.80E-05 -7.50e-03 -6.80E-05 -7.50e-03 -6.76E-05 -7.50e-03 -6.80E-05

https://doi.org/10.1371/journal.pone.0258710.t002
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8. Compute the predicted hospitalization rate from (22)

HFðtiÞ ¼ 0:1687 :

9. Compute cumulative hospitalizations

HFðt0; tiÞ ¼ maxðHFðt0; tiÞ;HFðt0; ti� NF
Þ þ HFðtiÞðDIðt0; tiÞ

� DIðt0; ti � NFÞÞÞ ¼ maxð3; 043; 2; 973þ 0:1687

�ð36; 525 � 36; 107ÞÞ ¼ 3; 044 :

and DHþFðtiÞ ¼ 3; 044 � 3; 043 ¼ 1 new patient.

10. Compute the predicted floor removal rate from (34): μF(ti) = 0.170.

11. Compute the predicted floor census from (25)

HFðtiÞ ¼ 4þ 35� ð1 � 0:170Þ ¼ 33 :

12. Repeat steps 8–11 for ICU and vented patients to obtain from (26–29)

HICUðtiÞ ¼ 0:140; ;

HICUðt0; tiÞ ¼ maxðHICUðt0; tiÞ;HICUðt0; ti� NF
Þ

þHICUðtiÞðHFðt0; tiÞ � HFðt0; ti � NFÞÞ

¼ maxð567; 558þ 0:140� ð3; 044 � 2; 973ÞÞ ¼ 568 ;

DHþICUðtiÞ ¼ 568 � 567 ¼ 1 ;

mICUðtiÞ ¼ 0:106 ;

HICU ¼ 1þ 7� ð1 � 0:106Þ ¼ 7 ;

Hventðt0; tiÞ ¼ maxðHventðt0; tiÞ;Hventðt0; ti� NF
Þ

þHventðtiÞðHICUðt0; tiÞ � HICUðt0; ti � NFÞÞ

¼ maxð284; 278þ 0:55� ð567 � 558ÞÞ ¼ 284 ;

DHþventðtiÞ ¼ 284 � 284 ¼ 0 ;

mventðtiÞ ¼ 0:130 ;

Hvent ¼ 0þ 5� ð1 � 0:13Þ ¼ 4 :

13. Compute expected mortality rate and mortality from (37)

MðtiÞ ¼
MðtiÞ

HICUðt0; tiÞ
¼

520

567
¼ 0:917 :

Model accuracy

An analysis of the accuracy of predictions was performed for the period starting on Mar. 10,

2020 and ending on May 24, 2021. Predictions were initially generated daily, then weekly, then
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twice a week, on Mondays and Thursdays with a few exceptions around statutory holiday.

Forecasts produced between the periods of calculation were classified as “one-day-ahead”

(even though they may have been issued 1 to 6 days in advance); one- and two-week-ahead

predictions were also considered.

Two sets of predictions were issued on each occasion: one based on the NS data, the other

extrapolated from the CCL data adjusting for the then-current share that NS population repre-

sented in the CCL pool according to (17 and 18). The synthesis of two disparate sources

required a different metric than, e.g., weighted interval score, employed for this purpose in

[31, 32]. For practical purposes, we adopted a simplified approach described below (in general,

our conclusions about the accuracy of the developed model, although arrived at through differ-

ent means, are similar in nature to those reached in [32] with respect to the short-term fore-

casting model for Germany and Poland). The minima and maxima of projections thus

generated were considered the lower and upper forecast boundaries. If subsequently realized

values fell within those boundaries, the corresponding error was set to zero, otherwise it was

taken to be the absolute relative error of the most accurate boundary (upper or lower).

The results are presented in Table 4. Evidently, the best predictions in terms for the number

of positive cases, floor, ICU and vent censuses are achieved one day in advance, and the accu-

racy deteriorates with the increase in the time horizon. This was to be expected. The accuracy

of mortality predictions is less dependent on the time horizon, and the relationship between

the former and the latter is less pronounced. This could be explained by the relative stability of

the number of mortality cases and the relatively static nature of (37).

Accuracy trajectories for the number of positive cases, inpatient, ICU and vent censuses are

presented in Fig 4. It can be observed that the most accurate predictions to date have been

made during periods of relative “calm”, i.e., those times when the infection curve followed a

declining or quasi-static pattern (approximately, May–September 2020). Periods of elevated

error include “regime changes” at the end of May 2020 and September 2020 to mid-January

2021. This was also to be expected given the uncertainty not captured by the moving average

or polynomial extrapolation of the future transmission coefficient, R0. Overall, the model

appears to have “erred on the side of caution” overestimating the expected patient census

while ICU and vent censuses tend to be underestimated more often, especially during the peri-

ods of “regime change”.

Practical application

The model was distributed as an Excel spreadsheet to NS executive administrative team, physi-

cian, nursing and supply chain leadership. This form of distribution allowed those interested

in scenario analysis and additional forecasting specific to their line of business the flexibility to

perform additional calculations independently, without the need to engage the Clinical

Table 4. Accuracy of the NS COVID-19 model, Mar. 10, 2020–May 24, 2021.

Variable Positive cases Inpatient census ICU census Vent census Cumul. Mortality

Pred. 1

day ago

Pred. 1

wk. ago

Pred. 2

wks. ago

Pred. 1

day ago

Pred. 1

wk. ago

Pred. 2

wks. ago

Pred. 1

day ago

Pred. 1

wk. ago

Pred. 2

wks. ago

Pred. 1

day ago

Pred. 1

wk. ago

Pred. 2

wks. ago

Pred. 1

day ago

Pred. 1

wk. ago

Pred. 2

wks. ago

% correct 32% 27% 21% 38% 37% 29% 25% 31% 23% 20% 27% 28% 34% 33% 32%

med %

err.

0% 0% 1% 4% 6% 18% 13% 11% 20% 18% 18% 24% 1% 1% 2%

av. % err. 2% 5% 16% 10% 15% 33% 21% 26% 40% 30% 39% 47% 2% 3% 3%

std. %

err.

8% 29% 139% 14% 22% 95% 35% 55% 106% 47% 67% 89% 3% 3% 3%

https://doi.org/10.1371/journal.pone.0258710.t004
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Analytics team. During the initial period from Mar. 26, 2020 to June 18, 2020, the forecast was

sent out daily. From June 22, 2020 to May 31, 2021, the distribution frequency was set to twice

a week.

The recipients were advised to treat any outlook more than two weeks ahead of the distribu-

tion date with caution. With this caveat, the forecasts were used as a general guide for near-

term future allocation of staff, hospital beds, resources and personal protective equipment.

While it is difficult to quantify the impact of the model on hospital operations, according to

the feedback received form stakeholders, the forecasts provided enough lead time to serve an

Fig 4. Historical accuracy of predictions for the number of positive NS cases, floor, ICU and vent censuses, March 10, 2020–May 24, 2021.

https://doi.org/10.1371/journal.pone.0258710.g004

PLOS ONE An implementable model for predicting the effects of an infectious disease on a hospital system

PLOS ONE | https://doi.org/10.1371/journal.pone.0258710 October 20, 2021 18 / 21

https://doi.org/10.1371/journal.pone.0258710.g004
https://doi.org/10.1371/journal.pone.0258710


additional data point in making operational decisions during the most difficult times of

COVID-19. According to the general feedback from forecast recipients, prediction accuracy,

the level of provided detail and the timing of distribution were adequate for rendering the

model useful for the purpose it was intended for.

Conclusion

The model provided acceptable predictive accuracy for the operational stakeholders to use it as

an additional data point in their decision-making process. While specifically designed for

COVID-19, the algorithm used for implementing the model and distributing the results could

be replicated for a similar communicable disease with high transmission, significant hospitali-

zation, near zero reinfection and moderate mortality rates, provided sufficient requisite data

describing its evolution in the community is available.
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