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ABSTRACT Primate hair and skin are substrates upon which social interactions occur
and are host-pathogen interfaces. While human hair and skin microbiomes display body
site specificity and immunological significance, little is known about the nonhuman pri-
mate (NHP) hair microbiome. Here, we collected hair samples (n = 158) from 8 body sites
across 12 NHP species housed at three zoological institutions in the United States to
examine the following: (1) the diversity and composition of the primate hair microbiome
and (2) the factors predicting primate hair microbiome diversity and composition. If both
environmental and evolutionary factors shape the microbiome, then we expect signifi-
cant differences in microbiome diversity across host body sites, sexes, institutions, and
species. We found our samples contained high abundances of gut-, respiratory-, and
environment-associated microbiota. In addition, multiple factors predicted microbiome di-
versity and composition, although host species identity outweighed sex, body site, and
institution as the strongest predictor. Our results suggest that hair microbial communities
are affected by both evolutionary and environmental factors and are relatively similar
across nonhuman primate body sites, which differs from the human condition. These
findings have important implications for understanding the biology and conservation of
wild and captive primates and the uniqueness of the human microbiome.

IMPORTANCE We created the most comprehensive primate hair and skin data set to
date, including data from 12 nonhuman primate species sampled from 8 body regions
each. We find that the nonhuman primate hair microbiome is distinct from the human
hair and skin microbiomes in that it is relatively uniform—as opposed to distinct—across
body regions and is most abundant in gut-, environment-, and respiratory-associated
microbiota rather than human skin-associated microbiota. Furthermore, we found that
the nonhuman primate hair microbiome varies with host species identity, host sex, host
environment, and host body site, with host species identity being the strongest predictor.
This result demonstrates that nonhuman primate hair microbiome diversity varies with
both evolutionary and environmental factors and within and across primate species.
These findings have important implications for understanding the biology and conserva-
tion of wild and captive primates and the uniqueness of the human microbiome.
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Microbiome diversity—the “catalog” of host-associated microbial taxa and their
collective genes (1)—has important implications for host biology and health

(2). Animal microbiome diversity can influence, or be influenced by, metabolism (3),
behavior (4), and importantly immunity (5). Both environmental and evolutionary
factors shape animal microbiome diversity, including but not limited to habitat (6),
captivity status (7), diet (8), social contact (9), birth mode (10, 11), sex (12), and host
genetic variation (13). Phylosymbiosis—the apparent correlation between host phy-
logeny and microbiome diversity—has also been observed in numerous studies
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(14–17), suggesting that any factor which varies with host evolutionary history may
impact microbiome structure (16).

Most of our knowledge of animal (including human) microbiome diversity comes
from studies of the gut (18, 19), and little is known about the diversity of other body
regions, such as the hair. Hair is a defining feature of all mammals and plays a critical
role in numerous aspects of their biology. Aside from functioning in thermoregulation,
hair provides camouflage from predators (20, 21), signaling to conspecifics (20) and—
in primates and other social species—is an important substrate through which domi-
nance hierarchies are established and social cohesion is bolstered by grooming. Hair is
also home to multiple ectoparasites, including lice, ticks, and mites (22–24), making it
an important host-pathogen interface. As ectoparasitic infections may result in condi-
tions, such as anemia, and even death (22, 25), they can incur a substantial cost to fit-
ness in the host. Therefore, symbiotic relationships that control “hair-borne” pathogen
spread may confer an adaptive advantage to the host. Indeed, fungal isolates from
sloth hair have been shown to display antimicrobial activity as well as activity against
parasites (26).

Commensal microbes of the skin (5) and gut (27, 28) influence host immune response.
Skin-associated microbial symbionts (Staphylococcus hominis and Staphylococcus epidermis)
act as a first line of defense against pathogenic variants of Staphylococcus by targeting
them with antimicrobial peptides (AMPs) and working synergistically with the host
immune system (5). Hair has a close relationship with the skin, being a skin appendage,
with parts of the proximal portion of the hair belonging to the skin environment (29). Hair
forms the outermost barrier between host and the environment across many parts of the
nonhuman primate body, so hair-associated microbes may play a similar role to skin
microbes in host defense.

In humans, skin and hair microbial diversity vary between sexes, individuals (12, 29–31),
and especially between body sites (29, 30). Both human and bat hair microbiomes may
also be influenced by physical contact or sociality (12, 32). Human hair appears to be rich
in human skin-associated microbiota such as Staphylococcus and Corynebacterium (30),
while in a bat microbiome study, oral-associated Streptococcus salivarius was the most
common species in both the hair and the gut (32). Kolodny et al. also found that temporal-
ity and individual identity had different impacts on the bat hair microbiome between open
and captive bat colonies and that bacterial abundances correlated with various volatile
hair compounds, which can influence scent. These findings suggest that captivity status
influences hair microbiome structure and that hair microbes may play an important role in
olfactory excretions and therefore social interactions.

A notable aspect of the human hair microbiome is variation across body sites and
between sexes. For example, a comparison of the pubis and scalp found Staphylococcus
was highly abundant in both regions while Corynebacterium was differentially abundant in
the pubis (40%) and the scalp (7%) (30). In another human hair study, skin-associated bac-
teria (Corynebacterium and Anaerococcus spp.) were abundant in the scalp and pubis but
Lactobacillaceae—a bacterial family found commonly in the human gut and vaginal micro-
biome—was the most prevalent taxa in female pubic hair. Unlike pubic hair, scalp hair
microbial diversity did not differ noticeably with sex, although females did have more
“transient” scalp microbiota than males (12). The authors propose that this may be due to
more frequent washing and use of products in hair by females than those by males, which
results in less stable microbial hair communities (12). However, in the same study, a male-
female couple’s hair samples clustered more closely (compared to their previous samples)
in a principal coordinates analysis when intercourse occurred 18 h prior, despite the fact
that the couple showered in the interim (12). Therefore, the evidence for an effect of wash-
ing on hair microbiome diversity in humans is mixed, although it has been shown to alter
microbiome community composition on the skin of the human hand and to alter it differ-
entially between the sexes (33). Another study found that skin microbial communities—as
well as antimicrobial activity—are fairly resilient to normal washing, and thus, even
changes to the skin microbiome during normal washing may be temporary (34).
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In other mammalian species, differences in scent gland distribution and activity
between males and females may be driving sex differences in the microbial diversity of
mammalian skin and hair. For example, olfactory signals play an important role in mate
choice in many mammalian species, and microbes may modulate scent profiles by add-
ing volatile metabolites (35). Sex differences in scent gland microbiomes have been
observed in lemurs (19), bats (35), and hyenas (36). In wild spotted hyenas, juvenile
males harbor more taxonomically rich scent gland microbiomes than juvenile females,
which may be due to more frequent scent marking in male hyenas than that in females
(36). Lemurs rely heavily on olfaction compared with other primates, and differences in
prevalent microbial taxa have been noted between the sexes and between dominant
and nondominant males (19). Thus, there may be differences in hair microbiome diver-
sity between sexes due to differences in olfactory signaling.

The hair microhabitat lies adjacent to the skin. Additionally, sections of the hair—
such as the hair follicle—are part of the skin environment (29). Microbial diversity on
hair shafts has been shown to resemble that of the cutaneous skin region from which
the shaft originated (30). Microbiome diversity of human hair and skin varies substan-
tially across body sites and microhabitats, with sebaceous sites (oily skin sites with
lipid-rich sebum secretions) being the most distinct compositionally from the others,
such as “dry” sites (skin sites with little moisture) or “moist” sites (skin sites with high
moisture: these generally contain more sweat glands) (31, 37). Topographical features,
such as sweat glands, play an important role in shaping the skin and subsequently hair
microhabitat, as sweat glands contain antimicrobial substances that may prevent coloniza-
tion by some microbial taxa (37). Thus, we may expect to find that differences in hair mi-
crobial diversity correspond with higher-level taxonomic groupings in the order primates
(e.g., the parvorders Catarrhini and Plathyrrhini, and suborder Strepsirhini). This is because,
primates have both apocrine sweat glands—which are generally nonthermoregulatory,
distributed across the whole of the primate body, and are associated with hair follicles and
sebaceous glands—and eccrine sweat glands—which are associated with thermoregula-
tory sweating and vary in abundance and distribution between major primate clades (38).
Eccrine glands especially are distributed differentially across the major primate clades, with
a low ratio of eccrine to apocrine glands in platyrrhines and strepsirrhines, a higher ratio in
many catarrhines (near 1:1), and the highest ratios in apes with humans having nearly
100% of the body surface covered in eccrine glands (38). Supporting this idea, Council et
al. (18) found that axillary skin microbiome diversity corresponded with evolutionary dis-
tance among humans, chimpanzees, gorillas, macaques, and baboons. Humans also dis-
played high abundances of Staphyloccocaceae while more phylogenetically distant species
from humans (baboons and macaques) had increased amounts of microbiota associated
with soil, gut, and oral microbial communities (18).

Given these initial studies suggesting that the hair microbiome could play an important
role in primate immunity, social signaling, and various physiological functions, understand-
ing how host factors affect the hair microbiome is essential. The goal of the present study
was 2-fold, as follows: (i) to characterize hair microbiome diversity within and across 12 pri-
mate species and (ii) to identify the factors that explain this variation. We made several pre-
dictions regarding the factors explaining microbiome diversity within and across species.
First, we predicted that both the evolutionary history of the species and their environment
would explain variation in microbiome diversity. Second, we expected that microbiota
from different body regions would exhibit distinct patterns, although not to the extent
found in humans since nonhuman primates have more uniform hair and skin characteris-
tics across their body. Finally, we predicted that microbiome diversity would differ across
sexes, similar to the human condition (12).

RESULTS
Relative abundances of microbial taxa. All hair samples were dominated by spe-

cies from the Bacteria domain, with only five samples containing more than 5% relative
abundance of Archaea. The most abundant phyla (.15%) across all samples were
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Firmicutes (32.51%), Bacteroidetes (25.42%), and Proteobacteria (24.54%) (Fig. 1). The
most abundant genera (.1.0%) across samples were bacteria typically associated with
the gut, respiratory system, skin, and abiotic environment, such as Prevotella 9 (8.45%),
Streptococcus (4.07%), Treponema 2 (3.13%), Prevotella 1 (2.99%), and Staphylococcus
(2.90%) (see Table S2 and Fig. S1 in the supplemental material).

Univariate analyses examining hair microbiome diversity. We found significant
differences across species for all measures of alpha diversity (Table 1 and 2; Fig. 2a). We
found the highest Chao1 estimates and amplicon sequence variant (ASV) counts in Lemur
catta followed by Varecia rubra and Eulemur flavifrons, while the lowest scores were in
Pithecia pithecia followed by Cebus capucinus (which recently has been renamed to Cebus
imitator) and Hapalemur griseus (additional analyses of ASV counts were not performed
because of its redundancy with Chao1 results). The highest Shannon diversity values were
found in V. rubra (H’ = 7.96), L. catta (H’ = 7.87), and Trachypithecus obscurus (H’ = 7.85),
and the lowest score was in Pithecia pithecia (H’ = 5.78) (Table 1). Species differences in
Pielou’s evenness were statistically significant (Kruskal-Wallis, P , 0.0001, H = 65.78) with
the highest value found in T. obscurus (J = 0.80) and the lowest found in Allenopithecus
nigroviridis (J = 0.68). Based on Faith’s phylogenetic diversity, the most phylogenetically
diverse host hair samples were from V. rubra (84.5) and the lowest were from P. pithecia
(33.7) (Table 1; Fig. 2a). Using post hoc analyses, we found statistically significant differences
among most species pairs for each alpha diversity metric (see Table S3 in the supplemental
material).

Similarly, we found significant differences across species in weighted and unweighted
UniFrac distances (Fig. 3a and b) (see Table S4 in the supplemental material). The principal-
coordinate analysis (PCoA) based on unweighted UniFrac distances showed that platyrrhines

FIG 1 Relative abundances (%) of the top 10 microbial phyla present in host samples, organized by host species. Each bar represents a sample. The
“remainder” category is the aggregate abundance of microbial phyla that were not in the top 10 most abundant group.
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C. capucinus and P. pithecia clustered in the bottom left of the plot while catarrhines A. nigro-
viridis, Colobus angolensis, T. obscurus, and Symphalangus syndactylus grouped in the center
of the plot, and strepsirrhines cluster at either the top left or far right.

We found some sex differences in alpha diversity metrics. In particular, Faith’s phy-
logenetic diversity (PD) differed between males and females (P = 0.046, H = 3.97)
(Fig. 2b) and Chao1 diversity approached statistical significance (P = 0.055, H = 3.67). In
both cases, males had higher values than females. In contrast, we did not find sex dif-
ferences in Shannon diversity or Pielou’s evenness. In addition, we found that sexes
exhibited significantly different microbial compositions based on permutational multi-
variate analysis of variance (PERMANOVA) tests of weighted (P = 0.01, pseudo-F = 3.70)
and unweighted (P = 0.001, pseudo-F = 3.01) UniFrac distances (see Table S5 in the
supplemental material).

We did not find significant differences across body sites for any of the alpha or beta
diversity metrics (Table 2 and Table S5).

Finally, we found that some alpha diversity metrics significantly varied across the three
institutions (Chao1) but others did not. Although, we did find significant differences across
institutions using PERMANOVA tests of weighted and unweighted UniFrac distances (Fig. 3c
and Table S5). In addition, our post hoc analyses showed that each pair of institutions was
significantly different for the same beta diversity metrics (Table S5).

Linear models (LMs) predicting hair microbiome diversity. We found that spe-
cies identity was included in the best models predicting each of the eight alpha and
beta diversity metrics and was either the most important predictor of each variable (3
out of 8) or shared the highest sum of corrected Akaike’s information criterion (AICc)
weight values with body site (2 out of 8) or sex (3 out of 8) (Table 3). Sex was a strong
predictor of Chao1 and Faith’s PD, a moderate predictor of Shannon Diversity, and a
weak predictor of Pielou’s diversity. In addition, sex was an important predictor for
PCoA axis 1 and 2 based on weighted UniFrac distance and PCoA axis 1 based on
unweighted UniFrac distance. We found institution to be a moderate predictor of our
dependent variables (sum of AICc weight, 0.50), only ranking second in relative impor-

TABLE 1 Species averages for 5 alpha diversity metrics

Species

Species avg for:

Chao 1 Shannon Faith PD Pielou’s Observed ASVs
Allenopithecus nigroviridis 472 6.02 41.9 0.68 462
Cebus capucinus 459 6.04 34.2 0.70 420
Cercopithecus neglectus 985 7.42 68.0 0.76 898
Colobus angolensis 849 7.31 55.8 0.76 775
Eulemur flavifrons 1,026 7.51 72.9 0.77 945
Hapalemur griseus 461 6.40 39.2 0.73 444
Lemur catta 1,364 7.87 82.8 0.77 1,215
Mirza coquereli 485 6.85 36.4 0.78 468
Pithecia pithecia 354 5.78 33.7 0.70 342
Symphalangus syndactylus 694 7.41 57.9 0.79 658
Trachypithecus obscurus 1,018 7.85 63.0 0.80 918
Varecia rubra 1,288 7.96 84.5 0.78 1,183

TABLE 2 Results of univariate analysesa

Dependent variable

Results (H [P value]) by independent variable

Species identity Institution Sex Body site
Chao 1 111.5 (,0.0001) 6.4 (0.04) 3.7 (0.056) 4.9 (0.56)
Shannon 97.7 (,0.0001) 4.6 (0.10) 0.2 (0.63) 7.0 (0.32)
Faith PD 99.7 (,0.0001) 5.9 (0.051) 4.0 (0.046) 8.7 (0.19)
Pielou’s 65.8 (,0.0001) 2.7 (0.25) 2.1 (0.15) 5.4 (0.49)
aDifferences among species, institutions, sexes, and body sites for alpha diversity metrics determined using
Kruskal-Wallis.
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tance as a predictor for Pielou’s evenness. For all other dependent variables, institution
was the least or second to least important predictor.

In contrast to our univariate analyses, body site was often an important variable
explaining alpha and beta diversity metrics in our linear models. Body site was the sec-
ond most frequently occurring predictor variable in our best models (Table 3). It was
ranked with species identity as the most important predictors for Faith’s PD, PC1
(weighted UniFrac distances), and PC2 (unweighted UniFrac distances). Also, body site
was ranked only slightly below species identity and sex as the most important predic-
tor of Chao1 and PC1 (unweighted UniFrac distances) (sum of AICc weights, 0.92 and
0.99, respectively). Although, post hoc analyses showed that this effect was due largely
to the difference between the tail—and to a lesser extent the crown and thigh—and
other body sites (see Table S6 and S7 in the supplemental material).

DISCUSSION

We found that primate hair microbiome diversity is best explained by several fac-
tors, including their local environment, species identity, sex, and the body site where
the sample was obtained. Notably, however, there is less variation in microbiome di-
versity across body sites compared with that of humans. The more homogenous

FIG 2 (a) Boxplot of Faith’s phylogenetic diversity across primate host species (H = 99.7, P , 0.0001).
White dots represent individual samples. (b) Boxplot displaying Faith’s phylogenetic diversity data
distribution for male hair samples (n = 60) and female hair samples (n = 98) (H = 4.0, P = 0.046).
White dots represent individual samples.
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pattern of hair microbiome diversity across body sites in nonhuman primates may be
attributed to the relatively uniform distribution of hair and other skin appendages
across their body compared with that of humans (38). Our results are a first step in
examining broad patterns in the ecology and evolution of primate hair microbiota and
illustrate the unique biology of modern human hair and skin microbiota compared
with that of other primates and mammals (17, 18, 29).

Relative microbial abundances in primate hair. We found that the most prevalent
taxa in our hair samples are reminiscent of the relative abundances found in the human
and nonhuman primate (NHP) gut rather than the skin. While our four most abundant

FIG 3 (a) Principal-coordinate analysis based on weighted UniFrac distances. Each symbol represents a sample. There are significant
differences across species based on PERMANOVA (F = 25.1, P = 0.001). We also identified sex differences (PERMANOVA, F = 3.7 P = 0.014).
Ellipses indicate a 95% confidence interval. The solid line encircles samples from catarrhines, the dotted line encircles samples from
platyrrhines, and the dashed line encircles samples from strepsirrhines. (b) Principal-coordinate analysis based on unweighted UniFrac
distances. There are significant differences across species based on PERMANOVA (F = 15.1, P = 0.001). We also found sex differences
(PERMANOVA, F = 3.0, P = 0.001). (c) Principal-coordinate analysis based on weighted UniFrac distances. There are significant differences
across institutions based on a PERMANOVA of weighted (F = 10.0, P = 0.001) and unweighted UniFrac distances (F = 11.2, P = 0.001).
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phyla—Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria—are also the four com-
monly found phyla known from a limited data set for the NHP axillary skin (18), the higher
prevalence of Firmicutes and Bacteroidetes in relation to Actinobacteria is often associated
with gut microbiomes (29). Clayton et al. (2) showed that 22 out of 34 NHP gut microbiome
studies had Firmicutes and Bacteroidetes listed as the most abundant and second most
abundant phyla, respectively. Likewise, the most abundant genus in our samples,
Prevotella, is an especially prominent member of the human gut microbiome—although, it
is also present in the human oral microbiome (39)—and has been shown to be particularly
prevalent in the “humanized” gut microbiomes of captive primates whose diets are far less
diverse than their wild counterparts (6, 7). Prevotella and Bacteroides have been prevalent
in gut microbiome studies of some wild primates, such as wild lorises (40), Rhinopithecus
(41), and chimpanzees (42). However, in two other studies, Amato and colleagues found
that captive black howler monkeys and captive Asian colobines harbored relatively higher
abundances of Prevotella (6, 43) than their wild counterparts. In an NHP axillary skin micro-
biome study (18), the primate host species with high abundances of Prevotella were either
born in captivity (baboons) or were outdoor-living and given rations of “monkey chow”
(macaques—who had the highest abundances of Prevotella). However, these results may
also reflect evolutionary or biological differences between primate host species, as the non-
ape primates in the study (baboons and macaques) had proportionally more reads of
Prevotella and proportionally fewer reads of skin-associated microbial taxa than the apes in
the study (18). Therefore, we suggest that our captive primate hair microbiome samples
may reflect to some degree a humanized gut microbiome that is somehow impacting the

TABLE 3 Results of linear models predicting hair microbiome alpha and beta diversity metricsa

Dependent variable Model AICc

Predictors Sum of AICc weights

Species Sex Body site Institution Species Sex Body site Institution
Chao1 1 2185.2 1 1 1 1.00 1.00 0.92 0.50

2 2185.2 1 1 1 1

Shannon 1 391.9 1 1 1 1.00 0.54 0.53 0.50
2 391.9 1 1 1 1
3 392.3 1 1
4 392.3 1 1 1
5 392.3 1 1
6 392.3 1 1 1
7 392.4 1
8 392.4 1 1

Faith’s PD 1 1269.1 1 1 1 1.00 0.99 1.00 0.50
2 1269.1 1 1 1 1

Pielou’s 1 2375.7 1 1.00 0.23 0.04 0.50
2 2375.7 1 1

Weighted PC1 1 2237.4 1 1 1 1.00 0.83 1.00 0.50
2 2237.4 1 1 1 1

Weighted PC2 1 2392.5 1 1 1.00 0.86 ,0.01 0.50
2 2392.5 1 1 1

Unweighted PC1 1 2332.5 1 1 1 1.00 1.00 0.99 0.50
2 2332.5 1 1 1 1

Unweighted PC2 1 2383.6 1 1 1.00 0.39 1.00 0.50
2 2383.6 1 1 1
3 2382.7 1 1 1
4 2382.7 1 1 1 1

aAICc values for the best models (the model with the lowest AICc value and those within 2 values of this model) predicting each dependent variable are included. All
possible predictors are listed and their inclusion in each model is indicated by a “1.” The relative importance of each predictor variable for explaining each dependent
variable is based on the sum of AICc weights across models, which varies from zero to one (from least to most important).

Primate Hair Microbiome Diversity mSystems

July/August 2022 Volume 7 Issue 4 10.1128/msystems.00478-22 8

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00478-22


hair microbiome through transmission of gut microbes to hair or simply the interconnectiv-
ity of the gut and skin (44, 45). The potential to be colonized by Prevotella, regardless of
the microbe’s origin, may differ due to differences in host biology occurring at higher clade
levels. Future studies that include hair and skin microbiome samples from wild populations
will clarify whether or not our results are impacted by captivity.

The high abundance of Streptococcus in our primate hair samples is similar to the find-
ings of Kolodny et al. (32), where Streptococcus salivarius was the most prevalent species in
both the bat hair and gut microbiome. While Streptococcus is often associated with the re-
spiratory tract, the fact that other studies have found it commonly in the gut may demon-
strate that gut-associated taxa are introduced to the hair through contact with fecal matter
and/or that respiratory-associated taxa are introduced to the gut and hair through social
contact, particularly social grooming (32). Treponema is a generally nonpathogenic genus
found commonly in the oral cavity and intestines and is one of the most common genera
in the gut microbiomes of NHPs (46). Gut-associated Treponema appears to be host specific
in primates, and closely related Treponema species may appear only on certain host species,
suggesting that this genus has colonized primates throughout their evolutionary history
but is impacted by lifestyle or diet modifications as it appears to be under negative selec-
tion in human populations with “grocery store” diets (46).

Factors explaining primate hair microbiome diversity. (i) Host species identity.
Similar to studies of gut microbiome diversity, we found that variation in the primate
hair microbiome is explained by several factors. Host species identity was consistently
the most important predictor of hair microbiome diversity, which may be related to
the evolutionary history and unique biological characteristics of the host species. We
found noticeable differences among the microbiomes of catarrhines, platyrrhines, and
strepsirrhines based on unweighted UniFrac and Bray Curtis distances (Fig. 3b; see
Fig. S2 in the supplemental material). Compositional differences in the microbiomes of
these primate clades may be due to known variation in their eccrine gland abundance
and distributions, which may impact microbe colonization (37, 38). Specifically, eccrine
glands in platyrrhines and strepsirrhines are found only on the surfaces of the hands,
feet, and (in platyrrhines) the prehensile tail, while in catarrhines, these glands are dis-
tributed all over the body (38). These eccrine sweat glands may provide a moist micro-
habitat that make colonization possible for a more diverse array of microbes. This idea
would explain the generally higher alpha diversity in our catarrhines than that in the
platyrrhines and some strepsirrhines. Interestingly, these clades also differ in their reli-
ance on olfaction for social communication, with strepsirrhines being the most reliant
on scent. Strepsirrhines have scent glands that are not present in monkeys and apes,
and some lemurs are capable of emitting hundreds of chemical compounds. For exam-
ple, the highly social Lemur catta is known to produce hundreds of chemical com-
pounds in contrast to Eulemur, which secreted only 27 chemical compounds in one
study (47). Thus, the very high alpha diversity values for some strepsirrhines could be
driven by scent gland deployment, although behavioral data would be necessary to con-
firm this hypothesis. It has been confirmed in other mammals that integumentary-associ-
ated microbial communities vary with scent gland activity (36) and volatile compounds
that play a role in olfactory signaling (32). Therefore, hair microbiome structure in primates
may be linked to the morphology and activity of other parts of the integument.

In addition to biological variation, our species identity variable may simply reflect
the specific social and abiotic environment where each species was housed at their re-
spective institution. However, we do not have data about these environmental charac-
teristics or behavior, so further study is warranted.

(ii) Host sex. Host sex was a strong predictor of several alpha and beta diversity
metrics, with males scoring higher for measures of taxonomic richness, such as Faith’s
PD and Chao1. Factors such as hormone cycling and sex-biased microbial transmission
may play a role in differentiating male and female NHP hair microbial diversity.
Hormone cycling can impact both host olfactory secretions (19) and gut microbiome
structure (48), which is especially important considering the high abundances of gut-
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associated microbes in our samples. The differential transmission of microbes between
the sexes has also been documented in black howler monkeys (Alouatta pigra) (49)
and in marmosets (50).

In human hair microbiomes, sex differences in microbial diversity are body site specific;
females have more transient microbes in their scalp hair than males but fewer transient
microbes in the pubic hair than males (12). The higher relative “stability” of female pubic
hairs (as well as the high abundances of Lactobacillus spp.) is attributed to its proximity to
the vaginal microbiome which is dominated by potentially protective Lactobacillus spp.
(12). However, human females appear to be unique among primates in their high abun-
dances of vaginal Lactobacillus spp. (51). Therefore, body site-specific sex differences in
nonhuman primate hair microbial communities that arise from differences in reproductive
organ ecosystems may be driven by different microbial taxa than those which drive differ-
ences in humans, and more research is warranted on this topic.

(iii) Host institution. The institution where the primates were housed had a mixed
effect on microbiome diversity. Our clearest result was connected to the beta diversity met-
rics, with primates living in different institutions exhibiting a distinct composition of
microbes. The institution functions as the species’ environmental context, including their
abiotic and dietary characteristics. Although we do not have specific information related to
these characteristics for each species, we can assume that institutions differ to some extent.
Habitat-dependent variation has been associated with differences in gut microbiome diver-
sity in captive versus wild primates (6). Howler monkeys, for example, living in mostly pris-
tine environments had more varied diets, while those living in fragmented or captive envi-
ronments had less diverse diets (6). The reduction in diet diversity appears to result in a
humanized gut microbiome in nonhuman primates (7), and thus, the high abundances of
human gut-associated microbes like Prevotella in our samples may signal a dysbiotic gut.
Therefore, differences in diet content or variation across institutions may drive differences
in the microbiomes of our study species. Exposure to conspecifics creates opportunities for
horizontal microbial transmission which can increase overall community diversity and sub-
sequently host health and community resilience (9). Because microbial transmission can
also be sex biased (49, 50), the male-female ratios present in the zoo enclosures may
impact the hair microbiome structure of the host. Finally, microbes of the abiotic environ-
ment are affected by factors such as temperature, UV radiation, and atmospheric carbon
dioxide concentration that vary across geographic regions (52). Because primates and
other organisms interact constantly with their abiotic environment, the differences in abi-
otic microbiomes resulting from the various geographic locations of the institutions (in the
mid-Atlantic, Midwest, and Southwest) may influence the types of microbes colonizing pri-
mate hair.

(iv) Host body site. When accounting for other variables, we found a strong effect
of body site on microbiome diversity. Although, this finding was driven largely by dif-
ferences between the tail (and to some extent the crown and thigh) and other body
sites (see Fig. S3, Table S6, and Table S7 in the supplemental material). One explanation
for the distinctness of the tail may be differences in its grooming traffic compared with
other body sites. For example, the tail may have reduced grooming traffic from con-
specifics, which has been demonstrated in Verreaux’s sifaka (53), resulting in a unique
microbiome structure compared with that of more heavily frequented body sites.
Alternatively, the distinctness of tail hair microbiome structure may also be due to its
regular contact with gut microbes in feces due to its proximity to the anus.

Our results are in stark contrast to those of humans, who exhibit substantial differences
in skin/hair microbiome diversity across body sites. Much of the across-body site variation
in the human microbiome is likely the result of microenvironmental variation across sites
(29). For example, skin microbial communities sampled from different sites may be domi-
nated by completely different families, as follows: the nares by Corynebacteriaceae and
other Actinobacteria, the plantar heel by Staphylococcaceae, and the volar forearm by vari-
ous Proteobacteria (29) (as shown in Fig. 3). The high variability in composition across multi-
ple body sites in humans contrasts with our findings in nonhuman primates and suggests
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that the more uniform distribution of relatively thick, long hair—as well as less variation in
gland types (38)—across the bodies of nonhuman primates has a homogenizing effect on
microbial communities (see Fig. S4 online at https://figshare.com/articles/figure/Hair_micro
biome_diversity_within_and_across_primate_species/19860025).

Our results provide not only insight into primate variation but also a comparative
context for understanding human evolution and uniqueness. The evolution of reduced
body hair and the increase in eccrine gland density in the human lineage (38) has likely
played a major role in differentiating the human skin and hair microbiome from that of
other primates. This information in turn illustrates how an evolutionary change in one
trait (distribution of body hair) can have an substantial impact on other key biological
differences (microbiome diversity).

MATERIALS ANDMETHODS
Sample collection and DNA extraction. Hair samples from captive primates housed at three U.S.

institutions (Duke Lemur Center [Duke], Ft. Wayne Children’s Zoo [FW], and Gladys Porter Zoo [GPZ])
were plucked by institution staff between 2006 and 2011. Most hairs were associated with their roots
based on visual inspection, although we did not explicitly quantify this trait. The length of the hair shaft
immersed in each collection tube was around or under 3 cm. All samples were collected with IACUC ap-
proval from Yale University (number 2010-11410) and the respective institutions where the primates
were housed. We do not have information about the specific conditions under which the primates were
housed (e.g., social group composition, diet, hormone cycling data, and bathing information), although
we did request institution staff take samples only from healthy, adult individuals.

Our data set included a total of 158 hair samples representing primate species from each major
clade (Catarrhini, Platyrrhini, and Strepsirhini). We obtained hair samples from up to 8 body sites (arm,
back, belly, cheek, crown, thigh, proximal tail, and distal tail) from 21 individuals representing 12 gen-
era/species (members of the same genus are of the same species) (see Table S1 in the supplemental ma-
terial). Hair samples were stored in RNAlater at 280°C until DNA extraction. Our sampling included hair
from one male and one female for all genera except for Allenopithecus nigroviridis, Lemur catta, Mirza
coquereli, Trachypithecus obscurus (female-only), and Cercopithecus neglectus (male-only).

In preparation for DNA extraction, we cut hairs protruding from collection tubes with scissors
cleaned with DNA Away (Thermofisher) and 70% ethanol as outlined in Tridico et al. (12) to prevent con-
tamination. We extracted DNA using the Invitrogen PureLink microbiome DNA purification kit according
to the manufacturer’s protocol with the following modifications: (i) hair samples were moved between
collection tubes via tweezers sterilized with DNA Away and 70% ethanol between each relocation, (ii)
samples were incubated at 95°C for 10 min, (iii) samples in bead beater tubes were vortexed for 7 min
both horizontally and vertically for a total of 14 min, and (iv) we set our centrifuge to its maximum speed
of 12,100 � g rather than 14,000 � g that was recommended. The protocol modifications resulted from
our prior experiments using different extraction kits and modifications to maximize DNA yield from hair
samples. We quantified extracted DNA using a Qubit 3.0 fluorometer.

Library preparation and sequencing. We performed PCR amplification in triplicate using 515F-
806R primers to amplify the V4 hypervariable region of the 16S rRNA gene (54). PCR cleanup was con-
ducted using the Qiagen QIAquick PCR purification kit. Library preparation was completed according to
the protocol specified in the Earth Microbiome Project and was sequenced in one run on the Illumina
MiSeq platform with V3 chemistry and 201-bp read lengths (54–56) at the UMass Genomics Resource
Laboratory. We generated a total of 49,245,096 raw reads with 93.39% of the reads associated with a Q
value of .30. We specified a read depth of 20,000 reads and only included samples with at least 20,000
reads in downstream analyses, resulting in the exclusion of 1 hair sample (and 3 negatives). The average
number of reads for our remaining 158 samples was 104,031, ranging from 25,635 to 219,861 reads.

FastQ files were imported into the QIIME2 pipeline for bioinformatic analyses (57). We used the
DADA2 (58) plugin to identify amplicon sequence variants (ASVs) and to correct and/or remove
sequencing errors, chimeric sequences, and chloroplast- and mitochondrion-associated ASVs. We used
the naive Bayesian classifier method trained on SILVA (release 132) (59) reference sequences clustered at
99% similarity for taxonomic assignment of the ASVs.

Alpha and beta diversity metrics.We assessed alpha diversity using several metrics (Table 1 and 2)
(60–63). We reported the relative abundances of microbial taxa at the phylum and genus level (Fig. 1
and Fig. S1). We used a series of Kruskal-Wallis tests with post hoc pairwise comparisons to examine dif-
ferences in alpha diversity across body sites, institutions, sexes, and species (64). Post hoc test P values
were adjusted for multiple comparisons using the false discovery rate (FDR) (65). We quantified beta di-
versity using weighted and unweighted UniFrac distances (66) and the Bray-Curtis dissimilarity index
(67) and then visualized them via principal-coordinate analysis (PCoA). We used the UniFrac distances in
PERMANOVA tests (68) to examine differences in microbiome composition among body sites, institu-
tions, sexes, and species. We used 999 permutations for all PERMANOVAs. In addition, we used the PCoA
scores of the first two axes as dependent variables in linear models. All alpha and beta diversity analyses
were performed in QIIME2 (57). All figures were made in R (4.0.3) (69) and R Studio version 1.3.1073 (70)
with the ggplot2 (71), tidyverse (72), ggh4x (73), qiime2R (74), and pals (75) packages, except for Fig. S3,
which was produced in QIIME2.
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Linear models. Kruskal-Wallis and PERMANOVA analyses are employed commonly in micro-
biome analyses. However, they do not account for the potential covariation among predictor varia-
bles. Therefore, we used linear models (LMs) to examine alpha and beta diversity metrics. These
models have been applied commonly to community ecology data (76, 77), including those focused
on mammalian microbiome diversity (78). We conducted these analyses in R (4.0.3) (69) and R
Studio version 1.3.1073 (70) using the lm function. We included four predictor variables: species
identity, sex, body site, and institution. We examined the standardized residuals and Cook’s distan-
ces in the full models to detect overly influential data points and check the model’s assumptions.
We used corrected Akaike’s information criterion (AICc) to determine which combination of predic-
tors best explained our dependent variables (79). The model with the lowest AICc value was consid-
ered the best, while models within 2 AICc values of the best model were considered equally good
(79). We used the sum of AICc weights to determine which predictors best explained our data.
Higher values indicate a better ability to predict the dependent variable (79). When examining beta
diversity, we used PCoA scores from axis 1 and 2 as dependent variables. We conducted post hoc
comparisons of alpha diversity and beta diversity metrics for the species identity and body site pre-
dictor variables. We did these comparisons by switching the reference category (set as the inter-
cept) to obtain P values for pairwise differences between species and body sites. Then, we used the
Benjamini-Hochberg FDR method to adjust P values for multiple comparisons (65). We used the
MuMIn (80), lme4 (81), and lmerTest (82) packages to calculate AICc values and sum of AICc weights.

We considered using phylogenetic models to analyze our data since multiple species are represented
(83). However, given that a main goal of our study was to identify if there are species-level differences in
microbiome diversity, using a phylogenetic model would not be helpful since variation due to interspecific
differences would be accounted for by the model itself, resulting in a reduced ability to detect species-level
effects. In addition, we considered using a linear mixed model with Individual identity (ID) set as the random
effect because we obtained multiple samples from each individual. However, our data set includes samples
from species represented by a single individual or one male and one female. Therefore, the inclusion of sex
and species in our linear models nearly perfectly accounts for individual ID.
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